When it comes to mastering the digital world, the education system is more and more facing the task of making students competent and self-determined agents when interacting with digital artefacts. This task often falls to computing education. In the traditional fields of computing education, a plethora of models, guidelines, and principles exist, which help scholars and teachers identify what the relevant aspects are and which of them one should cover in the classroom. When it comes to explaining the world of digital artefacts, however, there is hardly any such guiding model. The ARIadne model introduced in this paper provides a means of explanation and exploration of digital artefacts which help teachers and students to do a subject analysis of digital artefacts by scrutinizing them from several perspectives. Instead of artificially separating aspects which target the same phenomena within different areas of education (like computing, ICT or media education), the model integrates technological aspects of digital artefacts and the relevant societal discourses of their usage, their impacts and the reasons behind their development into a coherent explanation model.
Contemporary society is characterized by diversity and intricacy, necessitating more meaningful learning experiences. To meet these evolving needs, the incorporation of computational systems into education must acknowledge the distinctive characteristics of learners. Therefore, we conducted a Systematic Mapping Study (SMS) to investigate technologies that support the Learner eXperience (LX) design in computational systems. LX refers to learners’ perceptions, reactions, and achievements while engaging with learning resources, encompassing digital games, simulations, and multimedia. The SMS results uncovered distinct LX design technologies, with a noticeable inclination towards learner-centric strategies. Interestingly, the results highlighted a scarcity of research targeting non-traditional learning environments (e.g., technical visits) and that facilitate interactions among learners beyond their own classmates (e.g., industry experts). In this way, the SMS contributes by revealing LX design technologies, LX design elements, relevant constructs/theories, computational systems, environments, contexts, and other related factors, thereby enhancing the understanding of optimal learning experiences within computational learning systems.
As our society has advanced in the era of digital transformation, education has been transformed from knowledge-centered to competency-centered to solve future problems in the light of unpredictable changes and events in our lives. Programming education provides the basic knowledge needed, and fosters higher-order thinking skills in the process of generating and converging ideas to solve problems. However, in Korean elementary schools, it is mostly based on a lecture-based instructional design and focuses on knowledge delivery, which has limited the educational effects of programming. However, productive failure (PF) focuses on learning concepts in authentic problems, and lets the students generate different solutions and discuss them in an acceptable environment, with the result that they fail to solve the problem. Therefore, this study developed a PF-based educational program and tested it on sixth-grade students in a Korean elementary school. The results showed that the computational thinking (CT) and creative problem-solving (CPS) skills of the experimental group were significantly greater than those of the control group, with a medium effect size for CT and a high effect size for CPS skills. To generalize the results and increase the applicability, follow-up studies should expand the subject of the study, develop specific teaching guidelines for teachers, and invent various learning problems appropriate to the students’ level and different domains of learning.
This paper presents the first experiences of the use of an online open-source repository with programming exercises. The repository is independent of any specific teaching approach. Students can search for and select an exercise that trains the programming concepts that they want to train and that only uses the programming concepts they already know. Then, they can submit their solutions and get automatic feedback from the system. We analyzed quantitatively how students used the system by inspecting the logged actions of the students using the system. We also did a qualitative analysis by interviews, to find out how the students appreciated the use of the repository and to get feedback for improvements. We focused on how students select exercises as finding the exercise that fulfills the training needs of a student is the innovative part of our repository.
The integration of artificial intelligence (AI) topics into K–12 school curricula is a relatively new but crucial challenge faced by education systems worldwide. Attempts to address this challenge are hindered by a serious lack of curriculum materials and tools to aid teachers in teaching AI. This article introduces the theoretical foundations and design principles for implementing co-design projects in AI education, empirically tested in 12 Finnish classrooms. The article describes a project where 4th- and 7th-graders (N = 213) explored the basics of AI by creating their own AI-driven applications. Additionally, a framework for distributed scaffolding is presented, aiming to foster children's agency, understanding, creativity, and ethical awareness in the age of AI.
Teaching programming is a complex process requiring learning to develop different skills. To minimize the challenges faced in the classroom, instructors have been adopting active methodologies in teaching computer programming. This article presents a Systematic Mapping Study (SMS) to identify and categorize the types of methodologies that instructors have adopted for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The results provide an overview and comprehensive view of active learning methodologies employed in teaching programming, technologies, programming languages, and the metrics used to observe student learning in this context. In the results, we identified thirty-seven different ALMs adopted by instructors. We realized that seventeen publications describe teaching approaches that combine more than one ALM, and the most reported methodologies in the studies are Flipped Classroom and Gamification-Based Learning. In addition, we are proposing an educational and collaborative tool called CollabProg, which summarizes the primary active learning methodologies identified in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their pedagogical requirements and teaching programming context.
The paper discusses an alternative method of assessing the difficulty of pupils’ programming tasks to determine their age appropriateness. Building a program takes the form of its successive iterations. Thus, it is possible to monitor the number of times such a program was built by the solver. The variance of the number of program builds can be considered as a criterion of the difficulty of the task. We seek to verify whether this variance is the greatest in the age group for which the task is most suitable. We created several series of programming tasks and offered them to 87000 pupils from 4th to 13th grade. For each task, we compared the optimal age group determined by the variance of the number of program builds method with the group determined by the correct answer ratio method. A strong correlation was observed in traditional microworlds Karel the Robot and Turtle. A moderate correlation was achieved in the new microworld Movie.
Concurrency is a complex to learn topic that is becoming more and more relevant, such that many undergraduate Computer Science curricula are introducing it in introductory programming courses. This paper investigates the combined use of Sonic Pi and Team-Based Learning to mitigate the difficulties in early exposure to concurrency. Sonic Pi, a domain-specific music language, provides great support for “playing” with concurrency and “hearing” common problems such as data races and lack of synchronization among different concurrent threads. More specifically, the paper focuses on students’ misconceptions regarding concurrency in Sonic Pi, and compares them to those arising in traditional concurrent programming languages. In addition, it preliminarily explores knowledge transfer from Sonic Pi to C/C++. The approach has been applied in two teaching experiments with undergraduate students in our University involving 184 participants. Our investigations bring out the need to address misconceptions through targeted interventions for a clear understanding of concurrent programming concepts. Sonic Pi’s simplified abstraction and domain-specific flavor has demonstrated to be effective, especially for first-year students.
Programming students need to be informed about plagiarism and collusion. Hence, we developed an assessment submission system to remind students about the matter. Each submission will be compared to others and any similarities that do not seem a result of coincidence will be reported along with their possible reasons. The system also employs gamification to promote early and unique submissions. Nevertheless, the system might put unnecessary pressure as coincidental similarities can still be reported. Further, it does not specifically cover self-plagiarism. We revisit the system and shift our focus to report simulated similarities from student own submission instead of reporting actual similarities across submissions. According to our evaluation with 390 students and five quasi-experiments, students with simulated similarities are slightly more aware of plagiarism and collusion, self-plagiarism in particular. Their awareness of the matter is somewhat acceptable (around 75%) and they see the benefits of our assessment submission system.
In K-12 computing education, there is a need to identify and teach concepts that are relevant to understanding machine learning technologies. Studies of teaching approaches often evaluate whether students have learned the concepts. However, scant research has examined whether such concepts support understanding digital artefacts from everyday life and developing agency in a digital world. This paper presents a qualitative study that explores students’ perspectives on the relevance of learning concepts of data-driven technologies for navigating the digital world. The underlying approach of the study is data awareness, which aims to support students in understanding and reflecting on such technologies to develop agency in a data-driven world. This approach teaches students an explanatory model encompassing several concepts of the role of data in data-driven technologies. We developed an intervention and conducted retrospective interviews with students. Findings from the analysis of the interviews indicate that students can analyse and understand data-driven technologies from their everyday lives according to the central role of data. In addition, students’ answers revealed four areas of how learning about data-driven technologies becomes relevant to them. The paper concludes with a preliminary model suggesting how computing education can make concepts of data-driven technologies meaningful for students to understand and navigate the digital world.