The primary purpose of this study is to investigate CT skills development process in learning environments. It is also aimed to determine the conceptual understanding and measurement approaches in the studies. To achieve these aims, a systematic research review methodology was implemented as the research design. Empirical studies on computational thinking indexed in the Web of Science and ERIC databases were selected without constraint on the publication dates. The studies found were examined and a pre-analysis was conducted by the researchers. Following the pre-analysis, 29 articles were selected to be included in the study. Content analysis was applied in order to determine and evaluate the common codes and themes related to the findings. In conclusion, instead of relying on attractiveness, functionality, market share of educational tools (robotic sets, software packets etc.), availability of qualified learning activities focused on problem solving is the main point practitioners should consider.
The Bebras challenge offers pupils and teachers an engaging opportunity to discover informatics, by solving small tasks that aim at promoting computational thinking. Explanations and comments that reveal the computing concepts underlying the tasks are published after the contest, and teachers are encouraged to use this material in their school practice. In this paper we present an exploratory study aimed at investigating how teachers can make use of Bebras material; in particular our interest is understanding whether teachers are able to identify, comprehend, and apply the computing concepts implied by Bebras tasks, and how they can integrate them into their teaching practice. We qualitatively analyzed teaching projects developed by Italian teachers during a workshop on computing education and based on Bebras tasks; the analysis shows that teachers are in general able to build upon the tasks soundly, but it also raises some critical issues.
At 21st century Computational Thinking (CT) is considered a fundamental skill that anyone should possess and develop from a young age. Serious games and more specifically educational games (EGs) are a promising means of introducing algorithmic thinking and programming concepts and engaging students through the process of learning. In this article, a new EG called BlocklyScript is presented. BlocklyScript aims to help students develop their CT by learning basic programming concepts, designing algorithms and correcting mistakes. During the designing phase different EGs were taken under consideration and an EG design framework was followed in order to provide a better user experience. The game was evaluated by 10 experienced computer science educators of primary and secondary schools. The positive results of this pilot evaluation show that BlocklyScript is expected to help students understand the basic concepts of CT. However, the game should be evaluated by more teachers and students in order to provide future researchers with safe results.
Computational thinking (CT) has been introduced in primary schools worldwide. However, rich classroom-based evidence and research on how to assess and support students’ CT through programming are particularly scarce. This empirical study investigates 4th grade students’ (N = 57) CT in a comparatively comprehensive and fine-grained manner by assessing their Scratch projects (N = 325) with a framework that was revised from previous studies to aim towards enhancing CT. The results demonstrate in detail the various coding patterns and code constructs the students programmed in assorted projects throughout a programming course and the extent to which they had conceptual encounters with CT. Notably, the projects indicated CT diversely, and the students altogether encountered dissimilar areas in CT. To target the acquisition of CT broadly, manifold programming activities are necessary to introduce in the classroom. Furthermore, we discuss the possibilities of applying the assessment framework employed herein to support CT education through Scratch in classrooms.
This paper investigates unplugged computing as a formal pedagogical strategy to teaching computing to a Maltese secondary class of Year 9 students. It aims at identifying the effectiveness of this pedagogy outlining the strengths and weaknesses in its application, taking into consideration the level of attainment for students, as well as the impact on teachers’ lesson preparation. This research study is based on the delivery of five unplugged activities. It analyses students’ reaction when exposed to such unplugged activities to assess the viability of using this pedagogy when teaching computing concepts in a formal setting. The study concludes that unplugged computing is an effective pedagogical strategy that helps attain a high level of engagement and student involvement, encouraging teamwork and collaboration. Students experience a wide attention span and good retention through the constant link of computing scenarios to real-life examples and the use of tangible non-computing related objects. Notwithstanding, the study also identifies certain limitations of this pedagogy, mainly that it is not sufficient as a standalone pedagogy, but needs to be applied in conjunction with other pedagogies to be able to cover all the expected learning objectives of the curriculum.
Computer science concepts have an important part in other subjects and thinking computationally is being recognized as an important skill for everyone, which leads to the increasing interest in developing computational thinking (CT) as early as at the comprehensive school level. Therefore, research is needed to have a common understanding of CT skills and develop a model to describe the dimensions of CT. Through a systematic literature review, using the EBSCO Discovery Service and the ACM Digital Library search, this paper presents an overview of the dimensions of CT defined in scientific papers. A model for developing CT skills in three stages is proposed: i) defining the problem, ii) solving the problem, and iii) analyzing the solution. Those three stages consist of ten CT skills: problem formulation, abstraction, problem reformulation, decomposition, data collection and analysis, algorithmic design, parallelization and iteration, automation, generalization, and evaluation.
Computational thinking abilities development is a recent popular research topic. Teachers need support and examples of suiTable STEAM activities that focuses on CT implementation. For this purpose, possible class activities were presented for CT abilities development purpose. Teachers from different disciplines identified possible interconnections between presented activities and CT abilities. The case study results showed that primary assumptions were quite different from teachers believes as assumptions weakly correlate with five teachers opinions. The implication of these results is that it provides a better understanding of CT integration in education and is particularly useful for researchers interested in CT and its applications in different subjects.
This study investigated the role of using unplugged computing activities on developing computational thinking (CT) skills of 6th-grade students. The unplugged computing classroom activities were based on the Bebras challenge, an international contest that aims to promote CT and informatics among school students of all ages. Participants of the study were fifty-three 6th-grade students from two public middle schools in Istanbul. The unplugged computing activities involved the tasks with three different difficulty levels covering the CT processes found to be common in CT definitions in the literature. To evaluate students’ CT skills, two equivalent tests were constructed from Bebras tasks considering the same parameters (difficulty levels and CT processes). The results showed that students’ post-test scores were significantly higher than their pre-test scores. There were not any significant differences between students’ scores in terms of gender, and there was no interaction effect between students’ CT scores and their gender.
The purpose of the study is to examine the effect of unplugged coding activities carried out with middle school students on their computational thinking skills. This study employed nested-mixed design, which is a mixed research method; the data were supported by including the qualitative phase into an experimental study. In this frame, a group of 114 middle school students consisting of 5th graders were given coding training titled "Kesfet Project - I Discover Coding" by using unplugged coding content. The Computational Thinking Scale was applied to the students at the beginning and end of the training; the results obtained from the scale were analyzed by means of a paired t test. Finally, it was found out that unplugged coding activities had a positive effect on the improvement of computational thinking skills of the students. An examination of the sub-factors revealed that there is statistically no significant change in the problem solving skill despite the positive impact observed on creativity, algorithmic thinking, collaboration and critical thinking skills. Following the analysis of observation and daily data, the findings obtained revealed that the students usually displayed high levels of motivation and class participation in unplugged coding activities, they had difficulty in concretizing certain concepts as well as subjects requiring mathematical knowledge; various teaching methods and techniques were used in classes; the students liked the activities especially due to their appealing nature and their relation to daily life; however, there were occasional problems with scheduling of activities and teamwork due to over-crowded class size; the students experienced problems in achieving outcomes such as perceiving the relationship between computer science and mathematics and analyzing the given problem, and could have difficulty in associating between computer science and mathematics or between the subjects learned and the computer lesson, and in analyzing a given problem.
The aim of the present study was to investigate the properties of paper-and-pencil data collection instruments developed to measure Computational Thinking (CT) based on several variables. Thus, keywords were identified and used in searches conducted in various databases. The outcomes of the search were analyzed based on the inclusion/exclusion criteria and 64 studies that focused on CT measurement were identified. Content analysis findings were classified under several themes. Based the present study findings, it was determined that the number of tools developed to measure CT demonstrated an increasing trend over time. Furthermore, it was found that the above-mentioned studies included mainly tests. Moreover, it was observed that the processes of ensuring validity and reliability were not clearly specified for more than half of the paper-and-pencil data collection instruments designed to measure CT. Based on the findings, several recommendations were presented for future studies and implementations in the related field.