The development of computational thinking is a major topic in K-12 education. Many of these experiences focus on teaching programming using block-based languages. As part of these activities, it is important for students to receive feedback on their assignments. Yet, in practice it may be difficult to provide personalized, objective and consistent feedback. In this context, automatic assessment and grading has become important. While there exist diverse graders for text-based languages, support for block-based programming languages is still scarce. This article presents CodeMaster, a free web application that in a problem-based learning context allows to automatically assess and grade projects programmed with App Inventor and Snap!. It uses a rubric measuring computational thinking based on a static code analysis. Students can use the tool to get feedback to encourage them to improve their programming competencies. It can also be used by teachers for assessing whole classes easing their workload.
The Computer Science Unplugged activities and project has been an influential STEM (Science, Technology, Engineering & Mathematics) initiative, providing enrichment and teaching activities supporting computational thinking. Many of its activities are suitable for children. One of the most popular Unplugged activities is "Kid Krypto", invented by Mike Fellows and Neal Koblitz. Kid Krypto demonstrates the mathematics underlying public-key cryptography without using advanced mathematics. The paper gives an example of a Kid Krypto-style encryption system that is based on disjoint cycles in a graph or network and which is accessible to a very young audience. Also described is the original Kid Krypto system which is based on a version of dominating set called perfect code. The paper urges research scientists to participate in mathematical sciences communication and outreach.
Despite a growing effort to implement computational thinking (CT) skills in primary schools, little research is reported about what CT skills to teach at what age. Therefore, the research questions that guide this study read: (1) How is age related to students' success in computational thinking tasks? (2) How are computational thinking tasks perceived by students? (3) How do students' experience learning with respect to computational thinking? 200 primary school students between the age of 6 and 12 participated in this study. These students got introduced to two CT subjects: abstraction and decomposition. We found that age seems to be related with these concepts, with an interaction effect for gender in the abstraction task. No differences found between young and older students in the constructs perceived difficulty, cognitive load, and flow indicate that young primary school students can engage in learning these CT skills.
Although there is no universal agreement that students should learn programming, many countries have reached a consensus on the need to expose K-12 students to Computational Thinking (CT). When, what and how to teach CT in schools are open questions and we attempt to address them by examining how well students around the world solved problems in recent Bebras challenges. We collected and analyzed performance data on Bebras tasks from 115,400 students in grades 3-12 in seven countries. Our study provides further insight into a range of questions addressed in smaller-scale inquiries, in particular about the possible impact of schools systems and gender on students' success rate.
In addition to analyzing performance data of a large population, we have classified the considered tasks in terms of CT categories, which should account for the learning implications of the challenge. Algorithms and data representation dominate the challenge, accounting for 75-90% of the tasks, while other categories such as abstraction, parallelization and problem decomposition are sometimes represented by one or two questions at various age groups. This classification can be a starting point for using online Bebras tasks to support the effective learning of CT concepts in the classroom.
As an international informatics contest, or challenge, Bebras has started the second decade of its existence. The contest attracts more and more countries every year, recently there have been over 40 participating countries. From a single contest-focused annual event Bebras developed to a multifunctional challenge and an activities-based educational community building model. This paper aims to introduce the Bebras model using ten years of observations in implementing the contest in different countries. The model is essentially based on democratic and inclusive education values. Systematic literature review of research papers concerning Bebras activities has made an integral background for this model. The model is represented both at international and national levels and consists of several components where the development of Bebras tasks has taken a very significant role. Reasoning on innovated learning informatics and strengthening computational thinking by utilising carefully selected informatics concepts is discussed as well.