Although Machine Learning (ML) is integrated today into various aspects of our lives, few understand the technology behind it. This presents new challenges to extend computing education early to ML concepts helping students to understand its potential and limits. Thus, in order to obtain an overview of the state of the art on teaching Machine Learning concepts in elementary to high school, we carried out a systematic mapping study. We identified 30 instructional units mostly focusing on ML basics and neural networks. Considering the complexity of ML concepts, several instructional units cover only the most accessible processes, such as data management or present model learning and testing on an abstract level black-boxing some of the underlying ML processes. Results demonstrate that teaching ML in school can increase understanding and interest in this knowledge area as well as contextualize ML concepts through their societal impact.
The growing amount of information in the world has increased the need for computerized classification of different objects. This situation is present in higher education as well where the possibility of effortless detection of similarity between different study courses would give the opportunity to organize student exchange programmes effectively and facilitate curriculum management and development. This area which currently relies on manual time-consuming expert activities could benefit from application of smartly adapted machine learning technologies. Data in this problem domain is complex leading to inability for automatic classification approaches to always reach the desired result in terms of classification accuracy. Therefore, our approach suggests an automated/semi-automated classification solution, which incorporates both machine learning facilities and interactive involvement of a domain expert for improving classification results. The system's prototype has been implemented and experiments are carried out. This interactive classification system allows to classify educational data, which often comes in unstructured or semi-structured, incomplete and/or insufficient form, thus reducing the number of misclassified instances significantly in comparison with the automatic machine learning approach.