The development of communication and other soft skills among computer science students is not usually an easy task. Often, curricula focus on technical skills, with team projects being used for the improvement of communication skills. However, these teams usually comprise solely of computer science students. In this paper, we present a didactical methodology, called MIMI, which can be used in a short, intensive, programme for undergraduate students. This methodology has been implemented in real projects that have run annually since 2014. We advocate the use of team-based projects, with an important requirement that each team is both multidisciplinary and multinational. Additionally, the period of teamwork is short and intensive. A significant role in the project is given to team mentors. A mentor is a person, usually a university lecturer, who helps the team organize their work and tracks if the team’s planned didactical results are being achieved. The program has proved to stimulate an increase of soft skills among the students who participated and, in particular, among the computer science students. The detailed description of our process will allow others to implement and build similar events in their university or company environments, the focus of which is a Multinational, Intercultural, Multidisciplinary & Intensive (MIMI) methodology approach.
Previous studies have proposed many indicators to assess the effect of student engagement in learning and academic achievement but have not yet been clearly articulated. In addition, while student engagement tracking systems have been designed, they rely on the log data but not on performance data. This paper presents results of a non-machine learning model developed using ongoing formative assessment scores as indicators of student engagement. Visualisation of the classification tree results is employed as student engagement indicators for instructors to observe and intervene with students. The results of this study showed that ongoing assessment is related to student engagement and subsequent final programming exam performance and possible to identify students at-risk of failing the final exam. Finally, our study identified students impacted by the Covid-19 pandemic. These were students who attended the final programming exam in the semester 2019-2020 and who scored well in formative assessments. Based on these results we present a simple student engagement indicator and its potential application as a student progress monitor for early identification of students at risk.
Over its short disciplinary history, computing has seen a stunning number of descriptions of the field's characteristic ways of thinking and practicing, under a large number of different labels. One of the more recent variants, notably in the context of K-12 education, is "computational thinking", which became popular in the early 2000s, and which has given rise to many competing views of the essential character of CT. This article analyzes CT from the perspective of computing's disciplinary ways of thinking and practicing, as expressed in writings of computing's pioneers. The article describes six windows into CT from a computing perspective: its intellectual origins and justification, its aims, and the central concepts, techniques, and ways of thinking in CT that arise from those different origins. The article also presents a way of analyzing CT over different dimensions, such as in terms of breadth vs. depth, specialization vs. generalization, and in terms of skill progression from beginner to expert. Those different views have different aims, theoretical references, conceptual frameworks, and origin stories, and they justify their intellectual essence in different ways.
The purpose of the study is to examine the moderating effect of age on gender differences in teachers’ self-efficacy for using information and communication technology (ICT) in teaching as well as possible variables underlying this effect. Following Bandura’s conceptualisation of self-efficacy, we defined teachers' self-efficacy as their confidence in performing specific tasks that require the integration of ICT into the teaching practice. The study was conducted via an online questionnaire on a sample of 6613 elementary and upper secondary school teachers in Croatia. The hierarchical multiple regression analysis was applied. The findings indicate minor gender differences in self-efficacy for using ICT that are more prominent among older teachers and practically non-existent among younger teachers. These effects remain statistically significant after controlling for the type of school where the teacher works, perceived technical and professional support for using ICT in school, and frequency of use of computer programmes in teaching. The interaction effect ceases to be statistically significant after the introduction of length of computer use in teaching and/or attitudes towards computers in the model, indicating that these two variables have a role in low self-efficacy for using ICT among older female teachers. A similar level of self-efficacy for using ICT among young male and female teachers is an encouraging finding which could hopefully be followed by gender equality in other aspects of ICT use. The findings suggest that strategies for enhancing ICT self-efficacy should be particularly targeted at older female teachers. This study contributes to a better understanding of the underresearched topic of gender differences in teacher’s ICT self-efficacy.
Computing as a discipline has common roots with mathematics and written languages, and computing as a way of thinking and handling has been integral to human culture since ever. This is not only a reasonable argument for convincing society to consider informatics as one of the very fundamental pillars of education, but it also puts the potential contributions of teaching informatics in schools into the correct perspective in the context of science and humanities. Many European countries are switching from teaching information technologies to informatics education during the current second decade of this century. Informatics curriculum is becoming a central part of school education. We explain and design a way of developing informatics curriculum that offer the critical competences new generations need to survive and thrive in todays’ knowledge society and will allow them to contribute to the future development of society. These competences also strongly support the development of their intellectual potential and creativity. Our design of informatics curriculum takes into account the interaction with other scientific disciplines as well with the subject didactics, pedagogy and psychology. The starting point is merging constructionism and critical thinking. Constructionism with its “learning by doing” and “learning by getting things to work” enables designing a teaching process in which students acquire knowledge by creating products, analysing the properties and the functionality of their own products, and finally derive motivation to improve these products. Critical thinking asks us not to teach products of science and technology and their application, but to teach the creative process of their development. To implement this approach, we use the historical method allowing the students to learn by productive failures in the process of searching for a solution. To organize the process of learning and make the different steps available to the appropriate age groups we take into account the cognitive dimensions of the revised taxonomy of Bloom. To illustrate how the combination of all these concepts works we present a detailed curriculum for algorithm design, programming, robotics, and communication in networks.
Object-oriented programming distinguishes between instance attributes and methods and class attributes and methods, annotated by the static modifier. Novices encounter difficulty understanding the means and implications of static attributes and methods. The paper has two outcomes: (a) a detailed classification of aspects of understanding static, and (b) a collection of questions designed to serve as a learning/practice/diagnostic tool to address those aspects. Providing answers requires learners to apply higher-order cognitive skills and, hence, to advance their understanding of the essential meaning of the concept. Each question is analyzed according to three characteristics: (a) the static aspects that the question examines according to a detailed classification the paper provides; (b) identification of the question according: to Bloom’s revised taxonomy, to the Structure of Observed Learning Outcome (SOLO) taxonomy; and to the problem-solving keywords used in the question's formulation. Several recommendations for teaching are presented.
Emotions can influence cognitive development and are key elements to the teaching-learning process. Positive emotions (e.g., engagement) can improve the ability to solve problems, store information, and make decisions. On the other hand, negative emotions (e.g., boredom) reduce the capacity to process information at a deeper level, preventing learning to become effective. Therefore, students’ emotions must be regulated to hinder negative and to promote positive emotions during learning. To support the choice of the best intervention to regulate individual emotions, this article proposes an algorithm based on simulated data considering different individual performances in solving Algebra exercises. The results suggest that the proposed model has high success rates (over 90%) in the choice of interventions and may be applied in real scenarios.
Computing science which focuses on computational thinking, has been a compulsory subject in the Thai science curriculum since 2018. This study is an initial program to explore how and to what extend computing science that focused on STEM education learning approach can develop pre-service teachers' computational thinking. The online STEM-based activity-Computing Science Teacher Training (CSTT) Program was developed into a two-day course. The computational thinking test (CTT) data indicated pre-service teachers’ fundamental skills of computational thinking: decomposition, algorithms, pattern recognition, pattern generalization and abstractions. The post-test mean score was higher than the pre-test mean score from 9.27 to 10.9 or 13.58 percentage change. The content analysis indicated that there were five key characteristics founded in the online training program comprised: (1) technical support such as online meeting program, equipment, trainer ICT skills (2) learning management system such as Google Classroom, creating classroom section in code.org (3) the link among policy, curriculum and implementation (4) pre-service teachers' participation and (5) rigor and relevance of how to integrate the applications of computing science into the classroom.
Teaching introductory computer programming and choosing the proper tools and programming languages are challenging tasks. Most of the existing tools are not fully integrated into systems to support the teaching-learning processes. The present paper describes the usability evaluation of the Virtual Programming Lab module for Moodle (VPL-Moodle) based on a satisfaction questionnaire answered by 37 undergraduate students enrolled in CS1 and CS2 courses and 7 lecturers. Moreover, a heuristic evaluation performed by two specialists is also presented. Results of the descriptive and inferential analysis revealed mainly two things: a) the VPL-Moodle has a low level of usability in all five aspects analyzed by the students: satisfaction, efficiency, learnability, helpfulness, and environment control; and b) lecturers found some difficulties using the VPL-Moodle. A number of suggestions for the improvement of the VPL-Moodle interface are provided based on the findings of the paper.
The digital transformation of teaching processes is guided and supported by the use of technological, human, organizational and pedagogical drivers in a holistic way. Education 4.0 aims to equip students with cognitive, social, interpersonal, technical skills, among others, in the face of the needs of the Fourth Industrial Revolution and global challenges, such as mitigating the causes and effects of climate change based on people's awareness. This work presents the development and experimentation of a method, called TADEO - acronym in Portuguese language to Transformação Digital na Educação (digital transformation in education), to guide the design and application of teaching and learning experiences from groups of drivers of the digital transformation in education, aiming to achieve Education 4.0 objectives. The TADEO method was applied in the context of classes of basic subjects of elementary and higher education to increase students' understanding of climate change through the development of projects to mitigate environmental problems caused by anthropogenic action and, at the same time, exercise students the soft and hard skills required by 21st century learning and work. The results of the evaluations of students and educators participating in the teaching and learning experiences guided by the TADEO method point to the achievement of the expected purposes.