
Informatics in Education, 2019, Vol. 18, No. 2, 321–344
© 2019 Vilnius University
DOI: 10.15388/infedu.2019.15

321

Source Code Plagiarism Detection
in Academia with Information Retrieval:
Dataset and the Observation

Oscar KARNALIM1, Setia BUDI1, Hapnes TOBA1, Mike JOY2

1Faculty of Information Technology, Maranatha Christian University, Bandung, Indonesia
2Department of Computer Science, University of Warwick, Coventry, United Kingdom
e-mail: {oscar.karnalim, setia.budi, hapnestoba}@it.maranatha.edu, m.s.joy@warwick.ac.uk

Received: March 2019

Abstract. Source code plagiarism is an emerging issue in computer science education. As a result,
a number of techniques have been proposed to handle this issue. However, comparing these tech-
niques may be challenging, since they are evaluated with their own private dataset(s). This paper
contributes in providing a public dataset for comparing these techniques. Specifically, the dataset
is designed for evaluation with an Information Retrieval (IR) perspective. The dataset consists
of 467 source code files, covering seven introductory programming assessment tasks. Unique
to this dataset, both intention to plagiarise and advanced plagiarism attacks are considered in its
construction. The dataset’s characteristics were observed by comparing three IR-based detection
techniques, and it is clear that most IR-based techniques are less effective than a baseline tech-
nique which relies on Running-Karp-Rabin Greedy-String-Tiling, even though some of them are
far more time-efficient.

Keywords: source code plagiarism, dataset, programming, computer science education.

1. Introduction

Source code plagiarism is an act of reusing other people’s code with no (or improper)
acknowledgement toward the original works (Cosma & Joy, 2008). It is an emerg-
ing issue in Computer Science (CS) education (Simon et al., 2018); as grades may
fail to reflect the students’ real capabilities. Such plagiarism detection is not an easy
task since the number of investigated source code files is typically high for three rea-
sons: programming assessments are often given at regular intervals, such as weekly
(Kustanto & Liem, 2009); for each task in one assessment, the source code files should
be compared to each other (Moussiades & Vakali, 2005); some students could be
tempted to plagiarise even on easy tasks, since plagiarising source code is easy (Rab-

O. Karnalim et al.322

bani & Karnalim, 2017). In order to support CS educators on detecting the issue, they
should be assisted with an automated detection tool such as JPlag (Prechelt, Malpohl,
& Philippsen, 2002).

In terms of a detection mechanism, a number of techniques have been proposed (Kar-
nalim, 2017). Some of them focus more on effectiveness factors (such as accuracy and
the capability to detect complex modification) while the others focus on the efficiency
(such as processing time). Nevertheless, they can be challenging to compare with each
other, since most techniques are evaluated using their own dataset and the dataset is
not publicly accessible. It is true that some datasets can be obtained by asking the cor-
responding author directly. However, such a mechanism can take a considerable amount
of time – the author may not be able to reply promptly since they could be busy or taking
a short leave. Further, the datasets (that are stored on the corresponding author’s local
repository) may be missing or corrupted due to technical problems.

Another important issue related to existing datasets is that some of them may not
represent real plagiarism cases. These datasets may be formed with no intention of pla-
giarising. Further, they may only focus on trivial plagiarism attacks; occasionally, it is
assumed that plagiarists to have poor academic performance – even though this is not
always true (Rabbani & Karnalim, 2017).

Most detection techniques are evaluated by perceiving plagiarism detection as a
searching task or IR task – where similarity degree acts as a plagiarism measurement.
The original code acts as a query while its plagiarised code files act as relevant docu-
ments and its non-plagiarised code files act as irrelevant documents. The plagiarised
and non-plagiarised code files are ranked based on their degree of similarity toward the
original, and a detection technique is considered as effective if all plagiarised code files
are highly ranked.

This paper presents a dataset for source code plagiarism detection. Specifically, the
dataset is modeled for evaluation from an IR perspective. Unique to this dataset, plagia-
rised code files are formed with the intention of plagiarising – plagiarists are explicitly
instructed to plagiarise. Further, these code files contain advanced plagiarism attacks in
addition to the trivial ones, since the plagiarists are instructed to plagiarise according to
plagiarism levels defined by Faidhi & Robinson (1987), where some of these levels are
the advanced ones.

The dataset characteristics were observed by comparing detection techniques de-
rived from three popular IR retrieval models: the Vector Space Model, Latent Semantic
Indexing, and the Language Model (Croft, Metzler, & Strohman, 2010).

2. A Review of Automated Source Code Plagiarism Detection

Research on automated source code plagiarism detection has been growing since 1970s
in which the current trend has been comprehensively described by Novak, Joy, & Ker-
mek (2019) and Novak (2016). The research covers not only the development of such
detection (Prechelt et al., 2002) but also comparative studies (Ahadi & Mathieson, 2019),
dataset suitability for detection analysis (Mirza, Joy, & Cosma, 2017), experiences of ap-

Source Code Plagiarism Detection in Academia with Information Retrieval ... 323

plying the detection in the education process (Pawelczak, 2018), and preprocessing for
higher accuracy in a particular condition (Sun et al., 2019).

Most automated source code plagiarism detection typically works in two consecutive
phases: tokenization and comparison. Technique classifications for both phases can be
seen on Fig. 1.

Tokenization converts source code files to an intermediate representation prior to
comparison. Among available representations, the source code token sequence is the most
common one, and is a sequence of structure-preserving terms found in the code files. It
has been adopted in a number of studies (Sulistiani & Karnalim, 2019) in which some
have been matured as tools – e.g., JPlag (Prechelt et al., 2002) and YAP (Wise, 1996). It
has been argued that the source code token sequence may not be comprehensive enough
for representing the code files, and hence more-advanced representations have been in-
troduced. Other techniques which have been proposed include: the use of abstract syntax
trees containing source code tokens in their syntactic structure (Fu et al., 2017; Ganguly
et al., 2018); program dependency graphs which describe how each instruction relies on
other instructions (Liu et al., 2006); and low-level token sequences extracted from the bi-
nary files of compiled source code (Karnalim, 2017, 2019; Rabbani & Karnalim, 2017).

The comparison phase measures the similarity degree between two source code files
based on their intermediate representation. This phase can be categorised further to three
techniques from how they define similarity degrees (Al-Khanjari et al., 2010; Karnalim,
2017), namely structure-based, attribute-based, and hybrid.

A structure-based technique determines similarity based on the structure of interme-
diate representation. If either a source code or low-level token sequence is used, its simi-
larity degree is commonly measured with a string-matching algorithm – e.g., Running-
Karp-Rabin Greedy-String-Tiling (RKRGST) (Wise, 1996) or Local Alignment (Smith
& Waterman, 1981). Otherwise, domain-specific similarity measurement could be used.
Two examples of such kind of measurement are a tree kernel algorithm (Fu et al., 2017)
and graph isomorphism measurement (Liu et al., 2006).

Fig. 1. A Venn diagram classifying source code plagiarism detection techniques based on
tokenization and comparison phases. In general, the comparison phase has more classifica-
tion variants.

O. Karnalim et al.324

A structure-based technique is usually considerably time-inefficient (Sulistiani &
Karnalim, 2019). Most of its similarity measurements take at least quadratic time com-
plexity while, for each assessment, its number of comparisons is typically high. There-
fore, an attribute-based technique is introduced, which calculates similarity based on a
set of attributes obtained by breaking down the structure of the intermediate representa-
tion. In this way, the similarity degree can be determined in a short time since the struc-
ture order is not considered as a large sequence. For example, techniques proposed by
Moussiades & Vakali (2005) and Ohmann & Rahal (2015) utilise clustering techniques
that rely on token mnemonics and their occurrences as vectors. Another example is a
technique which calculates shared information between tokens with Kolmogorov com-
plexity (Chen et al., 2004).

Early detection techniques were generally attribute-based ones, where similarity be-
tween two source code files are defined based on the occurrence frequencies of several
programming aspects. A technique proposed by Ottenstein (1976) considered the num-
ber of operators, operands, distinct operators, and distinct operands as its attributes for
detection. Other early techniques (Donaldson, Lancaster, & Sposato, 1981; Faidhi &
Robinson, 1987; Grier, 1981) expanded those attributes for higher accuracy.

IR is a mechanism to extract important information from a set of documents (Croft
et al., 2010). It is commonly applied on search engines such as Google and Bing to
provide relevant information from numerous documents in a short period of time. In the
context of attribute-based techniques, this mechanism is used to either detect plagiarised
source code files (Ganguly et al., 2018; Karnalim, 2019), compare source code files
based on their semantics (Ullah et al., 2018), or group source code files with similar
semantics (Cosma & Joy, 2012a, 2012b).

A hybrid technique combines the structure-based and attribute-based techniques,
which usually aims for either higher effectiveness or efficiency. In this paper, the former
is called an effectiveness-oriented hybrid technique while the latter is called efficiency-
oriented hybrid technique.

An effectiveness-oriented hybrid technique is developed under an argument that
structure-based and attribute-based techniques are resistant to different plagiarism
cases.

A technique proposed by El Bachir Menai & Al-Hassoun (2010), for instance, al-
lows an examiner (a lecturer or teaching assistant) to see the results of both techniques;
it is argued that a structure-based technique is suitable to handle cases with complex
modification while an attribute-based one is suitable to handle cases with trivial modi-
fication. Another alternative to exploit both resistibilities at once is to consider the
result of a particular technique as a part of the input to another. Techniques proposed
by Engels, Lakshmanan, & Craig (2007) and Poon et al. (2012) utilise the result of
a string-matching technique (structure-based technique) as a feature for an attribute-
based technique – which are learning- and clustering-based techniques respectively.
A technique proposed by Kuo, Cheng, & Wang (2018) measures the similarity from
three aspects (variable, comment, and function) using Cosine correlation; in which
the IDE-generated comments are excluded from comparison via a string-matching
technique.

Source Code Plagiarism Detection in Academia with Information Retrieval ... 325

Efficiency-oriented hybrid techniques have been developed because a structure-
based technique can be more effective than an attribute-based technique (Verco & Wise,
1996), even though the latter can be more time-efficient (Burrows, Tahaghoghi, & Zobel,
2007; Sulistiani & Karnalim, 2019). Such a technique utilises an attribute-based tech-
nique (with IR-based measurement) as an initial filter for its structure-based technique,
which is based on string-matching algorithm (Burrows, Tahaghoghi, & Zobel, 2007);
only source code pairs for which the attribute-based similarity degree is higher or equal
to a particular threshold are passed to the structure-based one. This technique has been
adapted by Sulistiani & Karnalim (2019), along with new similarity degree normalisa-
tion mechanisms that are sensitive to sub-sequence rearrangement.

Some works extend existing techniques instead of directly proposing new ones,
such as a meta-tool which combines several source code plagiarism detection tech-
niques (Portillo-Dominguez et al., 2017). A technique requiring steps for detecting (and
investigating) source code plagiarism is expected to form guidance for examiners (Ker-
mek & Novak, 2016). This is complemented by research which captures examiner per-
spectives about how to inform academic integrity in programming (Simon et al., 2018).
An active learning method has further been proposed to teach students that source code
similarity does not always entail plagiarism and to enrich student perspectives about
similarity (Yang, Jiau, & Ssu, 2014). Those perspectives could be used as references
when the examiner needs to inform students about academic integrity. Works proposed
by Chuda et al. (2012), Cosma & Joy (2008), Cosma et al. (2017), Joy et al. (2011),
and Zhang et al. (2014) summarise examiner and student perspectives about source
code plagiarism, and can be used to gain a consensus about the definition of source
code plagiarism.

Even though they are high in number, these detection techniques may be challenging
to compare with each other, and since most of the techniques are evaluated with their
own datasets, many of these datasets are not publicly available. Further, some datasets
may be formed with no intention of plagiarising and only focus on trivial plagiarism at-
tacks. These phenomena could inhibit the growth of this kind of research, and may lead
to inconsistent and limited findings.

3. The Dataset

This paper contributes in providing a dataset for source code plagiarism detection.
The dataset is expected to make existing source code plagiarism detection techniques
comparable to each other. Unique to this dataset, plagiarised code files are created
with the intention of plagiarising and they do not only cover trivial plagiarism attacks.
This section describes how the dataset is formed, and provides a general overview of
the dataset.

Due to a large variety of ways for evaluating detection techniques, the dataset is
specifically tailored only for evaluation from an IR perspective. The original code is a
query while its plagiarised code files are the relevant documents and its non-plagiarised
code files are the irrelevant ones.

O. Karnalim et al.326

3.1. Methodology

The dataset is formed in five stages (see Fig. 2). At the first stage, assessment tasks –
which are the main references to form the dataset – are defined. These tasks are advised
to cover various programming materials so that a wide range of plagiarism attacks on the
dataset may take place. Once the tasks have been defined, one or more solutions per task
are provided; each solution corresponds to one original code (or query).

At the second stage, contributors are selected and categorised to two groups: plagia-
rists and non-plagiarists. Plagiarists will create plagiarised code files (or relevant docu-
ments) per the original code while non-plagiarists will create non-plagiarised code files
(or irrelevant documents) per the assessment task to which the code relates. It is advised
to use teaching assistants (TAs) as the contributors, considering that they can have a lot
of experience with manual source code plagiarism detection. They will be able to both
include various plagiarism attacks and complete the assessment tasks. It is true that, as
plagiarists, the TAs’ intention to plagiarise may not be comparable to real plagiarists’,
since they are not concerned about being caught or needing to get a good mark. Howev-
er, TAs are more cooperative than real plagiarists, since most real plagiarists do not want
to admit their behaviour regardless of the degree of evidence. Further, real plagiarists’
plagiarism attacks may be more limited than TAs’, since their attacks only represent
their own perspective while TAs’ represent many different student perspectives (ob-
tained through the TAs’ experiences).

When compared to the lecturers – who could also be the researchers in charge in the
research project – TAs arguably have a more objective perspective toward source code
plagiarism. The TAs have no conflicts of interest with the project. In addition, they di-
rectly engage with students and the source code at the laboratory sessions.

Prior to the construction of the dataset, all contributors are required to read terms
and conditions related to their contribution, to acknowledge that their code files will be
published as a public dataset with their identity anonymized.

At the third stage, plagiarised and non-plagiarised code files are created. The former
are created by TAs adopting the roles of plagiarists while the latter are created by TAs
who do not plagiarise.

Contributors who are labeled as plagiarists are instructed to plagiarise original code
files. To assure that they plagiarise instead of solving the assessment tasks by them-
selves, they are not allowed to see the tasks, and only original code files are accessible to
them. In such a manner, their intention of plagiarising will emerge. Moreover, to involve
advanced plagiarism attacks in addition to simple ones, these contributors are explicitly
instructed to consider those advanced attacks while plagiarising. If they are not familiar
with the advanced attacks, examples are provided.

Fig. 2. How the dataset is formed. Five consecutive phases are required, starting from defin-
ing assessment tasks and solutions to validating contributors’ consent.

Source Code Plagiarism Detection in Academia with Information Retrieval ... 327

Contributors who are labeled as non-plagiarists are instructed to solve the assessment
tasks by themselves. To assure their honesty, they can only access the tasks, and the
original and plagiarised code files are not accessible to them. If possible, those assistants
are gathered in one room at a particular time and they should complete their tasks there
without seeing others’ work. Otherwise, they can be instructed to complete the tasks in
their own time and place as long as they have high integrity. It is worth noting that Inter-
net access will not pose a threat to the validity of the dataset as long as the original and
plagiarised code files are not published online.

At the fourth stage, all code files are stored in a particular directory structure with
their contributors’ data anonymized. In terms of directory structure, each original code
is paired with its respective plagiarised and non-plagiarised code files, and therefore
stored under a case directory with three sub-directories: original, plagiarised and non-
plagiarised (see Fig. 3). These sub-directories store the code files for which the category
is similar to their name. If there is more than one code file under a particular category,
each code is stored in a separate sub-directory to avoid conflicting file names. It is im-
portant to note that, considering the code files may not be uniform in terms of format
and structure, all project-related files and information are removed. Upon removal, these
code files are compiled once more to ensure that they still work properly.

The dataset is anonymized for privacy reasons. Getting involved on providing a pla-
giarism dataset may be harmful for the contributors’ reputation (especially for those

Fig. 3. A sample directory structure of the dataset where a shaded-backgrounded text refers to
a directory. I refers to the number of plagiarised code files in case-01, J refers to the number
of non-plagiarised code files in case-01, and K refers to the number of cases included in the
dataset. plagiarised and non-plagiarised store their source code files under sub-directories
since they have more than one source code.

O. Karnalim et al.328

who act as the plagiarists). All private information from both source code filename and
content is replaced with their respective MD5 hash values (Zhong, Wan, & Kong, 2016).
The replacement works in two phases. First, a simple program replaces each item of
predefined information with its hash value. Afterwards, the source code files are checked
manually to assure that no private information remains, and any remaining information
is replaced with a hash value in a semi-manual manner.

Finally, once the dataset is ready for publication, contributors’ consents are vali-
dated to make sure that they know what their code files will look like when published.
Contributors’ consents are validated through email, since paper-based consent forms are
quite inconvenient to use and not all contributors can be met in person. Each contribu-
tor is sent an email containing a link to the dataset and restated terms and conditions. If
they still agree to contribute, they can reply to the email with their name written on the
replying email’s body, otherwise, they can provide a reason why they have changed their
decision. In this way, contributors’ consents are stored on an email account with a non-
modifiable timestamp. We would argue that this mechanism is quite secure and provides
a trusted consent proof.

3.2. Result

Our plagiarism dataset (Karnalim, Budi, Toba, & Joy, 2019) consists of 467 source
code files, depicting seven introductory programming assessment tasks. Each task has
one original code file, 15 non-plagiarised code files, and up to 54 plagiarised code
files – which are classifi ed further according to six of the seven plagiarism levels de-– which are classifi ed further according to six of the seven plagiarism levels de-which are classified further according to six of the seven plagiarism levels de-
fined by Faidhi & Robinson (1987). All code files are written in the Java programming
language.

Original code files were taken from Liang (2013) where their task details were
created by the first author of this paper through an observation about how these code
files work. The details are (for conciseness, sample input and output for each task are
not listed):

T1 (Output): Write a program that prints “Welcome to Java” five times. ●
T2 (Input): Write a program that accepts the radius & length of a cylinder and ●
prints the area & volume of that cylinder. All inputs and outputs are real num-
bers.
Cylinder’s area = radius * radius * 3.14159
Cylinder’s volume = area * length.
T3 (Branching): Write a program that accepts the weight (as a real number rep- ●
resenting pound) and height (as two real numbers representing feet and inches
respectively) of a person. Upon accepting input, the program will show that per-
son’s BMI (real number) and a piece of information stating whether the BMI is
categorised as underweight, normal, overweight, or obese.
A person is underweight if BMI < 18.5; normal if 18.5 ≤ BMI < 25; overweight if
25 ≤ BMI < 35; or obese if BMI ≥ 35.
Height = feet * 12 + inches

Source Code Plagiarism Detection in Academia with Information Retrieval ... 329

BMI = weight * 0.45359237 / (height * 0.0254)2

T4 (Looping): Write a program that shows a conversion table from miles to kilo- ●
meters where one mile is equivalent to 1.609 kilometers. The table should display
the first ten positive numbers as miles and pair them with their respective kilome-
ter representation.
T5 (Method): Write a program that accepts an integer and displays that integer with ●
its digits shown in reverse. You should create and use a method void reverse(int
number) which will show the reversed-digit form of the parameterised number.
T6 (Array): Write a program that accepts 10 integers and shows them in reversed ●
order.
T7 (Matrix): Write a program that accepts a 4 x 4 matrix of real numbers and ●
prints the total of all numbers placed on the leading diagonal of the matrix. You
should create and use a method double sumMajorDiagonal(double[][] m) which
will return the total of all numbers placed on the leading diagonal of the param-
eterised matrix.

The plagiarised code files were created by assigning nine teaching assistants as pla-
giarists. These assistants were proficient in Java programming and had sufficient ex-
perience with manual source code plagiarism detection. For each original code, these
assistants were instructed to create six plagiarised code files based on the plagiarism
level taxonomy defined by Faidhi & Robinson (1987) – excluding the lowest level since
it leads to no modifications between original and plagiarised code; one plagiarised code
corresponds to one plagiarism level. The plagiarised code files have been used to com-
pare the effectiveness of two low-level techniques by Karnalim & Budi (2018). How-
ever, these code files have not been published.

Plagiarism levels defined in Faidhi & Robinson (1987) map source code plagiarism
attacks to seven categories based on their difficulty. Fig. 4 shows how these categories
interact with each other and their signature attacks as phrased by Karnalim & Budi
(2018). The easiest (or the most trivial) one is level-0 which is verbatim copy (no modifi-
cations exist between original and plagiarised code). The most challenging one is level-6

Fig. 4. Plagiarism Level Taxonomy as defined by Faidhi & Robinson (1987). It has seven
levels where a particular level’s attack also covers its lower levels’ attacks.

O. Karnalim et al.330

which is logic change, and is only considered as a plagiarism evidence if it occurs in
combination with other attack levels. It is important to note that plagiarised code files on
a particular level may have plagiarism attacks from lower levels. For example, level-5
plagiarised code may contain identifier modification (which is the level-2 attack). Using
this plagiarism level taxonomy, plagiarists were guaranteed to put advanced attacks in
some plagiarised code files.

The number of plagiarised code files per task can be seen in Table 1. Since there are
nine plagiarists, it is expected that each level per task has nine plagiarised code files.
However, some of them have fewer code files, since code files which excessively vio-
late their targeted plagiarism level (e.g., a level-1 code that utilises a level-6 attack) are
excluded.

The non-plagiarised code files were created with the help of 15 teaching assistants
(as the non-plagiarists) who were instructed to solve the assessment tasks without see-
ing other code files. Since they were trusted in terms of integrity, we let them create the
non-plagiarised code files at home. Although we can use any code files for the non-pla-
giarised ones, we would argue that these code files should be created by solving similar
assessment tasks as the original and plagiarised code files; they would be able to share
coincidental similarity with other code files, making the dataset more realistic.

Original, plagiarised, and non-plagiarised code files were then stored and anony-
mized. In our case, plagiarised code files were grouped further under their plagiarism
level (where each level refers to one sub-directory of plagiarised directory). Moreover,
removed private information covers student names, student academic IDs, laptop prod-
uct, and social media account names.

All participants completed the consent process and agreed to publish their code files
for non-profit research purposes.

The statistics from our dataset can be seen in Table 2, which has 467 source code files
with 59,201 tokens in total, and each code has an average of 126 tokens.

Three important remarks should be made about the dataset. First, the plagiarism
level taxonomy provided by Faidhi & Robinson (1987) may not be strictly followed
due to different interpretations by the authors and the plagiarists of the taxonomy.
However, we can guarantee that the plagiarism attacks become more advanced as the
plagiarism level is increased. Second, some code files may not solve their respective

Table 1
The number of plagiarised code files per task

Task ID Lv1 Lv2 Lv3 Lv4 Lv5 Lv6 Total

T1 9 5 6 6 5 9 40
T2 9 9 9 9 9 9 54
T3 8 9 8 9 9 9 52
T4 9 9 9 9 9 9 54
T5 9 8 9 9 9 9 53
T6 8 8 8 9 9 9 51
T7 8 8 8 9 9 9 51

Source Code Plagiarism Detection in Academia with Information Retrieval ... 331

task perfectly due to the contributors’ carelessness (e.g., some code files may have
minor output errors), but each one compiles. These code files are still included to keep
the naturalness of our dataset, and in real conditions, not all submitted code files get
a perfect score. Third, the dataset may not cover all types of plagiarism attacks on
introductory programming, since the tasks used to form the dataset are only a subset
of introductory programming tasks and the plagiarism attacks are purely defined by
the plagiarists.

4. Observing the Dataset Characteristics:
A Comparative Study of IR-Based Techniques

To provide more details about the dataset’s characteristics, a comparative study with
such a dataset on board was performed, involving three IR-based source code plagiarism
detection techniques (IR-based techniques). The findings can be a broad overview of the
dataset characteristics when a particular technique is applied. Those IR-based techniques
are derived from three popular retrieval model: the Vector Space Model (VSM), Latent
Semantic Indexing (LSI), and the Language Model (LM) (Croft et al., 2010); they are re-
ferred to as VSM-based technique (VSM-t), LSI-based technique (LSI-t), and LM-based
technique (LM-t) respectively. This section explains how these techniques are compared
and what the findings resulting from the study are.

4.1. Methodology

Fig. 5 depicts how the IR-based techniques work per the original code. First, they accept
all source code files and translate them to token sequences; one source code results in
one sequence. The translation is performed with the help of ANTLR (Parr, 2013) where
comments and whitespace tokens are removed. An example of the translation (or tokeni-
zation) process can be seen in Fig. 6.

Table 2
Dataset Statistics

Metric Value

Number of original code files 7
Number of plagiarised code files 355
Number of non-plagiarised code files 105
Total number of code files 467
Total number of tokens 59,201
Total number of distinct tokens 540
Maximum number of tokens per code 286
Minimum number of tokens per code 40
Average number of tokens per code 126

O. Karnalim et al.332

Second, an index for each sequence is built. Index is a data structure containing key-
value pairs where key refers to a token mnemonic and value refers to the occurrence fre-
quency of that mnemonic. To illustrate this, let us assume we have a token sequence: {x,
=, x, +, y, ;}. The resulted index will have 5 tuples which are: {‘x’:2}, {‘=’:1}, {‘+’:1},
{‘y’:1}, and {‘;’:1}.

Third, the original code’s index acts as a query to rank all plagiarised and non-pla-
giarised code files based on the given IR-based measurement. An IR-based technique
is considered as effective if it can distinguish the plagiarised code files from the non-
plagiarised ones and put them at the top of the list.

VSM, LSI, and LM (Croft et al., 2010) work in different ways for determining simi-
larity. VSM models the code files as vectors based on their token occurrence frequencies,
and the similarity between two vectors is commonly calculated using cosine similarity.
LSI is an improved model of VSM where the vector similarity is defined based on con-
cept relation (generated from Singular Value Decomposition) instead of token occur-
rence frequency. LM considers the probability distribution over token sequences. In our
case, a query-likelihood LM model is used; plagiarised and non-plagiarised code files
are ranked based on the probability of given original code in their language model. Each
document is scored as in (1) where Q refers to the original code, q refers to one original
code’s token, D refers to a plagiarised or non-plagiarised code, C refers to the whole col-
lection, and f(a,B) returns the occurrence frequency of a in B. It is important to note that
the two constants in (1) – i.e., 0.3 and 0.7 – are selected due to their success on previous
LM-related research (Croft et al., 2010).

𝑠(𝑄,𝐷,𝐶) = � log (0.3 ∗ 𝑓(𝑞,𝐷)
|𝐷| + 0.7 ∗ 𝑓(𝑞,𝐶)

|𝐶|)
𝑞∈𝑄

(1)

String matching based detection technique with RKRGST (Wise, 1996) is included
in our study as a baseline, since it is commonly used for source code plagiarism detec-

Fig. 5. IR-based technique works in three phases per original code. It accepts the code with
their plagiarised and non-plagiarised code files as the inputs and returns plagiarism-suspected
code files as the results.

Fig. 6. An example of a translation process from a source code file to a token sequence; all
comments and whitespaces are excluded from the sequence.

Source Code Plagiarism Detection in Academia with Information Retrieval ... 333

tion (Sulistiani & Karnalim, 2019). This technique (which is labeled as RKRGST-t)
works in a similar manner as IR-based techniques except that it requires no indexes and
the similarity is based on RKRGST toward given source code files’ token sequences. In
our context, RKRGST’s similarity degree is calculated with two as its minimum match-
ing length and average normalisation (Prechelt et al., 2002; Sulistiani & Karnalim,
2019) as its normalisation mechanism. Average normalisation is performed as in (2)
where C1 and C2 are given source code files’ token sequences; the number of matched
tokens – labeled as match(C1,C2) – is doubled and divided by the total number of both
code files’ tokens.

𝑛𝑜𝑟𝑚(𝐶1,𝐶2) = 2 ∗ 𝑚𝑎𝑡𝑐ℎ(𝐶1,𝐶2)
|𝐶1| + |𝐶2|

𝑛𝑜𝑟𝑚(𝐶1,𝐶2) = 2 ∗ 𝑚𝑎𝑡𝑐ℎ(𝐶1,𝐶2)
|𝐶1| + |𝐶2|

 (2)

In order to provide more comprehensive analyses, n-gram and Term-Frequency-
Inverse-Document-Frequency (TF-IDF) weightings (Croft et al., 2010) are also con-
sidered in this study. N-gram is a mechanism which considers n contiguous tokens
as one token, where higher n usually leads to more contextual features. For IR-based
techniques, this mechanism is applied right after the translation (or tokenisation) pro-
cess. TF-IDF weighting is a mechanism to make unique tokens become more impor-
tant than the common ones, and on most occasions, this technique results in higher
effectiveness. It is applied in IR-based techniques immediately before the indexes are
built.

Fig. 7 depicts how the comparative study is performed. Two evaluation metrics are
considered: Mean Average Precision (MAP) – for effectiveness – and time complexity –
for efficiency. As seen in (3), MAP (Croft et al., 2010) is a rank-sensitive proportion
between the number of plagiarised code files and the total number of plagiarised and
non-plagiarised code files (D), averaged for all original code files (O). Average preci-
sion is calculated as in (4) where prec(i) is precision at position i, is_rel(i) returns true
if the ith-ranked code was plagiarised from the original code (o), and relevant(o) refers
to the original’s plagiarised code files. Precision is calculated as in (5) where relevant_
retrieved(o,i) refers to the original’s plagiarised code files which rank is higher or equal
to i. Time complexity is an algorithmic approach to calculate the proportion between
given input and processing time (Levitin, 2012). It is used to replace real execution time
for measuring time efficiency since it is unaffected by hardware and operating system
dependencies on our dataset (which is limited in size). Considering that all techniques’
numbers of comparisons are the same in this context, time complexity is only measured
per comparison.

Fig. 7. Four comparative study phases that are conducted in order. It starts with analysing
the characteristics of the baseline technique and ends with analysing the characteristics of
LM-based techniques.

O. Karnalim et al.334

𝑠(𝑄,𝐷,𝐶) = � log (0.3 ∗ 𝑓(𝑞,𝐷)
|𝐷| + 0.7 ∗ 𝑓(𝑞,𝐶)

|𝐶|)
𝑞∈𝑄

𝑛𝑜𝑟𝑚(𝐶1,𝐶2) = 2 ∗ 𝑚𝑎𝑡𝑐ℎ(𝐶1,𝐶2)
|𝐶1| + |𝐶2|

𝑀𝐴𝑃(𝑂,𝐷) =
∑ 𝑎𝑣𝑔_𝑝𝑟𝑒𝑐(𝑜,𝐷)𝑜∈𝑂

|𝑂|

𝑎𝑣𝑔𝑝𝑟𝑒𝑐(𝑜,𝐷) =
∑ 𝑝𝑟𝑒𝑐(𝑜, 𝑖) ∗ 𝑖𝑠𝑟𝑒𝑙(𝑖)|𝐷|
𝑖=1

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑜)|

𝑝𝑟𝑒𝑐(𝑜, 𝑖) = |𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑜, 𝑖)|
𝑖

 (3)

𝑠(𝑄,𝐷,𝐶) = � log (0.3 ∗ 𝑓(𝑞,𝐷)
|𝐷| + 0.7 ∗ 𝑓(𝑞,𝐶)

|𝐶|)
𝑞∈𝑄

𝑛𝑜𝑟𝑚(𝐶1,𝐶2) = 2 ∗ 𝑚𝑎𝑡𝑐ℎ(𝐶1,𝐶2)
|𝐶1| + |𝐶2|

𝑀𝐴𝑃(𝑂,𝐷) =
∑ 𝑎𝑣𝑔_𝑝𝑟𝑒𝑐(𝑜,𝐷)𝑜∈𝑂

|𝑂|

𝑎𝑣𝑔𝑝𝑟𝑒𝑐(𝑜,𝐷) =
∑ 𝑝𝑟𝑒𝑐(𝑜, 𝑖) ∗ 𝑖𝑠𝑟𝑒𝑙(𝑖)|𝐷|
𝑖=1

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑜)|

𝑝𝑟𝑒𝑐(𝑜, 𝑖) = |𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑜, 𝑖)|
𝑖

 (4)

𝑠(𝑄,𝐷,𝐶) = � log (0.3 ∗ 𝑓(𝑞,𝐷)
|𝐷| + 0.7 ∗ 𝑓(𝑞,𝐶)

|𝐶|)
𝑞∈𝑄

𝑛𝑜𝑟𝑚(𝐶1,𝐶2) = 2 ∗ 𝑚𝑎𝑡𝑐ℎ(𝐶1,𝐶2)
|𝐶1| + |𝐶2|

𝑀𝐴𝑃(𝑂,𝐷) =
∑ 𝑎𝑣𝑔_𝑝𝑟𝑒𝑐(𝑜,𝐷)𝑜∈𝑂

|𝑂|

𝑎𝑣𝑔𝑝𝑟𝑒𝑐(𝑜,𝐷) =
∑ 𝑝𝑟𝑒𝑐(𝑜, 𝑖) ∗ 𝑖𝑠𝑟𝑒𝑙(𝑖)|𝐷|
𝑖=1

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑜)|

𝑝𝑟𝑒𝑐(𝑜, 𝑖) = |𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑜, 𝑖)|
𝑖 (5)

Baseline analysis measures how effective the baseline technique (RKRGST-t) is from
a plagiarism level perspective. The effectiveness toward a particular level is calculated
by considering only plagiarised code files from that level. The result of this analysis is
used as the baseline effectiveness for the remaining analyses.

VSM-oriented analysis compares VSM-based techniques with the baseline technique
from a plagiarism level perspective. In this analysis, the impact of n-gram and TF-IDF
weighting are also measured. The former is measured by comparing four n-gram sce-
narios, starting from unigram (n = 1) to quartogram (n = 4), for each plagiarism level.
The latter is measured by comparing the absence with the presence of TF-IDF weighting
toward all scenarios used for measuring the impact of n-gram.

LSI-oriented analysis works similar to VSM-oriented analysis except that it util-
ises LSI-based techniques instead of VSM-based techniques. To measure the impact
of the LSI number of dimensions, this analysis is further broken down into two sub-
analyses. The former uses two as the number of dimension, that leads to the most
general semantic categorisation. The latter uses the total number of involved code files
(original + plagiarised + non-plagiarised code files), which range from 21 to 25 for
each original code per plagiarism level. This setting leads to the most specific semantic
categorisation.

LM-oriented analysis also works similarly as VSM-oriented analysis. However, it
replaces VSM-based techniques with LM-based techniques. Further, it is not featured
with the analysis of TF-IDF weighting; LM, to some extent, works in a similar manner
as TF-IDF weighting.

4.2. Baseline Analysis

The effectiveness of our baseline technique (RKRGST-t) is inversely proportional to
the plagiarism level (see Fig. 8). Further observation shows that, at higher levels, more
advanced plagiarism attacks are used and those attacks are hard to detect. Level-1
is the only level where RKRGST-t generates the perfect MAP (100%). Its signature
plagiarism attacks are nullified prior to comparison, since comment and whitespace
tokens are automatically removed by ANTLR. In terms of efficiency, RKRGST-t takes
cubic complexity in theory and quadratic complexity in practice (Prechelt et al., 2002;
Wise, 1996).

Source Code Plagiarism Detection in Academia with Information Retrieval ... 335

4.3. VSM-oriented Analysis

In the dataset, VSM relies on 540 tokens as vectors for the unigram scenario. That num-
ber gets higher as n in n-gram is increased. Bigram, trigram, and quartogram lead to
2,336, 4,697, and 6,903 vectors respectively.

Fig. 9 shows that the VSM-t is slightly more effective than the baseline technique
(RKRGST-t) as long as unigram scenario (n = 1) is not used, and on average, it gener-
ates 2.04% higher MAPs. Unigram leads to a 0.03% lower MAP than RKRGST-t since it
does not consider token order. The absence of such order results in similarity degrees for
both plagiarised and non-plagiarised code files resembling each other when they share
similar token sets to their original code.

Fig. 8. MAP for RKRGST-t as the baseline technique. The horizontal axis refers to plagiarism
levels while the vertical axis refers to their corresponding MAPs.

Fig. 9. MAP for VSM-based techniques. The horizontal axis refers to plagiarism levels with
various n-gram settings while the vertical axis refers to their corresponding MAPs.

O. Karnalim et al.336

The token order can be introduced by increasing n in n-gram; each n-gram token
contains n-ordered initial tokens. As seen in Fig. 9, n is proportional to MAP improve-
ment. When n = 1, its average MAP improvement is -0.03% (which is a slight re-
duction). It then improves to 2.04%, 2.98%, and 3.17% respectively as n is gradually
increased.

Qualitatively speaking, higher n provides more meaningful terms for differentiating
the plagiarised from the non-plagiarised code files. To illustrate this, two unigram terms
from the original code files are semicolon and dot; they are less meaningful than most
quartogram (n = 4) terms from the same code files – e.g., int miles = 1 and print(“Enter
a 4 by 4 matrix row by row: “).

For the top half of the plagiarism levels, token order leads to a higher MAP when it is
partially considered. VSM-t with trigram (n = 3) and quartogram (n = 4) generate higher
MAPs than RKRGST-t (which are, in average, 5.58% and 6.34% higher respectively).
The highest improvement occurs for the level-4 category which the most frequently ap-
plied attack is method introduction. That introduction changes the order of large token
subsequences, and therefore favors techniques which rely on many short token subse-
quences (such as VSM-t with trigram or quartogram).

When TF-IDF weighting is applied, Fig. 10 shows that VSM-t experiences MAP
reduction instead of improvement. This finding is expected since, in plagiarised code
files, several identifiers are renamed. They are weighted more as mismatches since they
are unique and only occur on few code files.

Theoretically, the VSM-based technique is more time-efficient than the baseline
technique. It has only linear complexity (for both indexing and comparison phase) while
the baseline has up to cubic time complexity.

Fig. 10. MAP for TF-IDF VSM-based techniques. The horizontal axis refers to techniques
involving a particular n in n-gram for a plagiarism level. For instance, 1-g lv-2 refers to a
technique with unigram mechanism (n = 1) for level-2 plagiarism category. The vertical axis
refers to these techniques’ corresponding MAPs. The line corresponds to standard techniques
without TF-IDF while the bars refer to those techniques with TF-IDF.

Source Code Plagiarism Detection in Academia with Information Retrieval ... 337

4.4. LSI-Oriented Analysis

Fig. 11 shows that LSI-based techniques with minimum number of dimensions (2-dim
LSI-t) generate similar MAPs regardless of plagiarism levels and those MAPs are gener-
ally lower than those of the baseline (RKRGST-t). In addition, increasing the n in n-gram
provides no clear findings. Further observation shows that both plagiarised and non-plagia-
rised code files generate LSI-based similarity degrees which resemble each other, adding
more difficulties in separating the plagiarised code files from the non-plagiarised ones.

When TF-IDF weighting is applied, Fig. 12 depicts that it worsens 2-dim LSI-t ef-
fectiveness. However, such reduction is less significant compared to that weighting’s

Fig. 11. MAP for 2-dim LSI-based techniques. The horizontal axis refers to plagiarism levels
while the vertical axis refers to their corresponding MAPs.

Fig. 12. MAP for TF-IDF 2-dim LSI-based techniques. The horizontal axis refers to tech-
niques involving a particular n in n-gram for a plagiarism level. For instance, 1-g lv-2 refers
to a technique with unigram mechanism (n = 1) for level-2 plagiarism category. The vertical
axis refers to these techniques’ corresponding MAPs. The line corresponds to standard tech-
niques without TF-IDF while the bars refers to those techniques with TF-IDF.

O. Karnalim et al.338

impact on the VSM-t. In average, it only reduces MAP by 6.04% on 2-dim LSI-t while
reducing by 7.66% on VSM-t. One of the possible reasons is that 2-dim LSI-t uses far
fewer dimensions than VSM-t, and TF-IDF weighting affects more when many dimen-
sions are considered.

Once the number of dimensions is increased (see Fig. 13), the LSI-t effectiveness
pattern becomes more similar to the baseline’s, and the MAP tends to be inversely pro-
portional to the plagiarism level. Moreover, increasing n in n-gram starts to affect the ef-
fectiveness. A higher number of dimensions leads to more specific topic categorisation,

Fig. 13. MAP for k-dim LSI-based techniques. The horizontal axis refers to plagiarism levels
while vertical axis refers to their corresponding MAPs.

Fig. 14. MAP for TF-IDF k-dim LSI-based techniques. The horizontal axis refers to tech-
niques involving a particular n in n-gram for a plagiarism level. For instance, 1-g lv-2 refers
to a technique with unigram mechanism (n = 1) for the level-2 plagiarism category. The ver-
tical axis refers to these techniques’ corresponding MAPs. The line corresponds to standard
techniques without TF-IDF while the bars refers to those techniques with TF-IDF.

Source Code Plagiarism Detection in Academia with Information Retrieval ... 339

strengthening the difference between the plagiarised and non-plagiarised code files. That
topic specificity also leads to a broader similarity degree range, which is 51.39%.

The TF-IDF weighting mechanism still worsens LSI-t effectiveness when the num-
ber of dimensions is high. However, as seen in Fig. 14, its average reduction (1.13%) is
less significant than its reduction on 2-dim LSI-t (6.04%).

The LSI-based technique’s comparison phase is comparable to the VSM-based
technique’s in terms of processing time, however, its indexing phase is obviously
slower. In addition to collecting token occurrence frequencies, the LSI-based tech-
nique also needs to perform Singular Value Decomposition (which commonly takes
quadratic time complexity). Compared to the baseline technique, the LSI-based tech-
nique may take similar processing time, as the baseline technique also takes quadratic
time complexity.

4.5. LM-Oriented Analysis

As presented in Fig. 15, LM-t is slightly less effective than the baseline technique
(RKRGST-t) even though its pattern is fairly similar to the VSM-based technique. This
finding is not surprising since LM, to some extent, works like VSM with TF-IDF weight-
ing, and such weighting accentuates the impact of renamed identifiers (on the plagiarised
code files) as mismatches.

Compared to other n-gram scenarios, unigram generates the lowest MAP on the first
four plagiarism levels. Further observation shows that it generates the narrowest simi-
larity degree range on those levels, resulting in some difficulties in differentiating the
plagiarised code files from the non-plagiarised ones. Unigram’s similarity degree range
is only 14.54%, which is far lower than others’ (21.68% for bigram, 25.32% for trigram,
and 26.97% for quartogram).

Fig. 15. MAP for LM-based techniques. The horizontal axis refers to plagiarism levels while
the vertical axis refers to their corresponding MAPs.

O. Karnalim et al.340

For the last two plagiarism levels, n-gram does not provide a significant impact.
Advanced plagiarism attacks and LM’s token relation could mitigate the impact of
n-gram in terms of exploiting shared context between original and plagiarised code
files.

According to our implementation, LM-t takes more processing time than VSM-t
since its measurement considers more aspects (such as local and global relation), hence
it is less time efficient than VSM-t. However, it is still faster than the baseline technique
since LM-t only takes linear time complexity.

4.6. Summary

As seen in Table 3, most IR-based techniques are less effective than the baseline tech-
nique (RKRGST-t) as they do not fully consider token order (in exchange to shorter
processing time). However, this can be compensated with n-gram mechanism; higher n
leads to more contextual information.

Among all IR-based techniques used in this study, VSM-t is the most comparable to
RKRGST-t as the difference is mainly about the similarity algorithm. It can even outper-
form RKRGST-t when combined with n-gram mechanism.

LSI-t performs worse than VSM-t because latent relations captured from our dataset
are not salient enough to differentiate plagiarised code files to the non-plagiarised ones.
Despite k-dim LSI-t experiences larger reduction than 2-dim LSI-t, its result is more
similar to RKRGST-t’s result. The MAP is inversely proportional to the plagiarism level
(see Fig. 11 and Fig. 13).

LM-t leads lower MAP as it accentuates the impact of rare tokens in which some
of those tokens are a part of plagiarism attacks (e.g., identifier renaming, a plagiarism
attack that replaces the names of some identifiers). This is also a reason why TF-IDF
weighting seems to lower effectiveness. We presume this issue can be dealt by generalis-
ing those identifiers to the same token.

In terms of efficiency, VSM-t is more time-efficient than RKRGST-t, followed by
LM-t and LSI-t respectively. This is expected as VSM-t has no need to compute addi-
tional relations like the latent ones in LSI-t.

Table 3
Averaged MAP Differences toward RKRGST-t

Metric Unigram Bigram Trigram Quartogram

VSM-t -0.03% 2.04% 2.98% 3.17%
TF-IDF VSM-t -17.02% -8.48% -3.64% -1.63%
2-dim LSI-t -13.36% -19.1% -15.03% -13.65%
TF-IDF 2-dim LSI-t -18.73% -21.75% -21.44% -23.41%
k-dim LSI-t -21.54% -18.16% -16.42% -16.65%
TF-IDF k-dim LSI-t -24.07% -20.02% -17.38% -15.86%
LM-t -12.81% -4.39% -3.5% -2.94%

Source Code Plagiarism Detection in Academia with Information Retrieval ... 341

5. Conclusion

This paper proposes a dataset for evaluating source code plagiarism detection techniques
from an IR perspective, where the plagiarised cases are formed with the intention of
plagiarising and contain advanced plagiarism attacks in addition to simple ones. In total,
there are 467 source code files depicting seven introductory programming assessment
tasks. Each task has one original code, 15 non-plagiarised code files, and up to 54 pla-
giarised code files.

The dataset characteristics have been observed through a comparison of three IR-
based detection techniques, derived from the Vector Space Model, Latent Semantic In-
dexing, and the Language Model. The comparison yields four main results. Firstly, in
terms of effectiveness, IR-based technique with the Vector Space Model and the baseline
technique derived from Running-Karp-Rabin Greedy-String-Tiling are in favour of the
dataset. Secondly, in the dataset, the TF-IDF weighting mechanism does not enhance
the effectiveness of the IR-based techniques, mostly due to identifier renaming. Thirdly,
higher n in n-gram usually leads to more context consideration and then higher effec-
tiveness. Finally, all IR-based techniques, except those which rely on Latent Semantic
Indexing, are theoretically faster than RKRGST-based techniques.

For future work, we plan to expand the scope of the dataset with advanced program-
ming topics (e.g., searching and sorting) and code files taken from other programming
courses (e.g., Object-Oriented Programming or Algorithms and Data Structures). This
expansion may enable unique and uncovered plagiarism attacks.

Acknowledgments

The authors would like to thank all the contributors who are involved in the process of
dataset creation.

References

Ahadi, A., & Mathieson, L. (2019). A comparison of three popular source code similarity tools for detecting
student plagiarism. 21st Australasian Computing Education Conference, 112–117.
https://doi.org/10.1145/3286960.3286974

Al-Khanjari, Z. A., Fiaidhi, J. A., Al-Hinai, R. A., & Kutti, N. S. (2010). PlagDetect: a Java programming pla-
giarism detection tool. ACM Inroads, 1(4), 66–71. https://doi.org/10.1145/1869746.1869766

Burrows, S., Tahaghoghi, S. M. M., & Zobel, J. (2007). Efficient plagiarism detection for large code reposito-
ries. Software: Practice and Experience, 37(2), 151–175. https://doi.org/10.1002/spe.750

Chen, X., Francia, B., Li, M., McKinnon, B., & Seker, A. (2004). Shared information and program plagiarism
detection. IEEE Transactions on Information Theory, 50(7), 1545–1551.
https://doi.org/10.1109/TIT.2004.830793

Chuda, D., Navrat, P., Kovacova, B., & Humay, P. (2012). The Issue of (software) plagiarism: a student view.
IEEE Transactions on Education, 55(1), 22–28. https://doi.org/10.1109/TE.2011.2112768

O. Karnalim et al.342

Cosma, G., & Joy, M. (2008). Towards a definition of source-code plagiarism. IEEE Transactions on Educa-
tion, 51(2), 195–200. https://doi.org/10.1109/TE.2007.906776

Cosma, G., & Joy, M. (2012a). An approach to source-code plagiarism detection and investigation using latent
semantic analysis. IEEE Transactions on Computers, 61(3), 379–394.
https://doi.org/10.1109/TC.2011.223

Cosma, G., & Joy, M. (2012b). Evaluating the performance of LSA for source code plagiarism detection.
Informatica, 36(4), 409–424.

Cosma, G., Joy, M., Sinclair, J., Andreou, M., Zhang, D., Cook, B., & Boyatt, R. (2017). Perceptual compari-
son of source-code plagiarism within students from UK, China, and South Cyprus higher education institu-
tions. ACM Transactions on Computing Education, 17(2). https://doi.org/10.1145/3059871

Croft, W. B., Metzler, D., & Strohman, T. (2010). Search Engines : Information Retrieval in Practice. Addi-
son-Wesley.

Donaldson, J. L., Lancaster, A.-M., & Sposato, P. H. (1981). A plagiarism detection system. 12th SIGCSE
Technical Symposium on Computer Science Education, 13(1), 21–25.
https://doi.org/10.1145/800037.800955

El Bachir Menai, M., & Al-Hassoun, N. S. (2010). Similarity detection in Java programming assignments.
Fifth International Conference on Computer Science & Education, 356–361.
https://doi.org/10.1109/ICCSE.2010.5593613

Engels, S., Lakshmanan, V., & Craig, M. (2007). Plagiarism detection using feature-based neural networks.
38th SIGCSE Technical Symposium on Computer Science Education, 39(1), 34.
https://doi.org/10.1145/1227504.1227324

Faidhi, J. A. W., & Robinson, S. K. (1987). An empirical approach for detecting program similarity and plagia-
rism within a university programming environment. Computers & Education, 11(1), 11–19.
https://doi.org/10.1016/0360-1315(87)90042-X

Fu, D., Xu, Y., Yu, H., & Yang, B. (2017). WASTK: a weighted abstract syntax tree kernel method for source code
plagiarism detection. Scientific Programming, 2017, 1–8. https://doi.org/10.1155/2017/7809047

Ganguly, D., Jones, G. J. F., Ramírez-de-la-Cruz, A., Ramírez-de-la-Rosa, G., & Villatoro-Tello, E. (2018).
Retrieving and classifying instances of source code plagiarism. Information Retrieval Journal, 21(1), 1–23.
https://doi.org/10.1007/s10791-017-9313-y

Grier, S. (1981). A tool that detects plagiarism in Pascal programs. 12th SIGCSE Technical Symposium on
Computer Science Education, 13(1), 15–20. https://doi.org/10.1145/800037.800954

Joy, M., Cosma, G., Yau, J. Y.-K., & Sinclair, J. (2011). Source code plagiarism–a student perspective. IEEE
Transactions on Education, 54(1), 125–132. https://doi.org/10.1109/TE.2010.2046664

Karnalim, O. (2017). A low-level structure-based approach for detecting source code plagiarism. IAENG In-
ternational Journal of Computer Science, 44(4), 501–522.

Karnalim, O. (2019). Source code plagiarism detection with low-level structural representation and informa-
tion retrieval. International Journal of Computers and Applications.
https://doi.org/10.1080/1206212X.2019.1589944

Karnalim, O., & Budi, S. (2018). The effectiveness of low-level structure-based approach toward source code
plagiarism level taxonomy. Sixth International Conference on Information and Communication Technol-
ogy, 130–134. https://doi.org/10.1109/ICoICT.2018.8528768

Karnalim, O., Budi, S., Toba, H., & Joy, M. (2019). Source code plagiarism dataset. Retrieved from
https://github.com/oscarkarnalim/sourcecodeplagiarismdataset

Kermek, D., & Novak, M. (2016). Process model improvement for source code plagiarism detection in student
programming assignments. Informatics in Education, 15(1), 103–126.
https://doi.org/10.15388/infedu.2016.06

Kuo, J.-Y., Cheng, H.-K., & Wang, P.-F. (2018). Program plagiarism detection with dynamic structure. Seventh
International Symposium on Next Generation Electronics, 1–3.
https://doi.org/10.1109/ISNE.2018.8394758

Kustanto, C., & Liem, I. (2009). Automatic source code plagiarism detection. 10th ACIS International Confer-
ence on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing,
481–486. https://doi.org/10.1109/SNPD.2009.62

Levitin, A. (2012). Introduction to the design & analysis of algorithms. Pearson.
Liang, Y. D. (2013). Introduction to Java programming, comprehensive version (9th Edition). Pearson.
Liu, C., Chen, C., Han, J., & Yu, P. S. (2006). Gplag: detection of software plagiarism by program dependence

graph analysis. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
872. https://doi.org/10.1145/1150402.1150522

Mirza, O. M., Joy, M., & Cosma, G. (2017). Style analysis for source code plagiarism detection – an analysis

Source Code Plagiarism Detection in Academia with Information Retrieval ... 343

of a dataset of student coursework. 17th International Conference on Advanced Learning Technologies,
296–297. https://doi.org/10.1109/ICALT.2017.117

Moussiades, L., & Vakali, A. (2005). PDetect: a clustering approach for detecting plagiarism in source code
datasets. Computer Journal, 48(6), 651–661. https://doi.org/10.1093/comjnl/bxh119

Novak, M. (2016). Review of source-code plagiarism detection in academia. 39th International Convention on
Information and Communication Technology, Electronics and Microelectronics, 796–801.
https://doi.org/10.1109/MIPRO.2016.7522248

Novak, M., Joy, M., & Kermek, D. (2019). Source-code similarity detection and detection tools Used in aca-
demia: a systematic review. ACM Transactions on Computing Education, 19(3), 27:1--27:37.
https://doi.org/10.1145/3313290

Ohmann, T., & Rahal, I. (2015). Efficient clustering-based source code plagiarism detection using PIY. Knowl-
edge and Information Systems, 43(2), 445–472. https://doi.org/10.1007/s10115-014-0742-2

Ottenstein, K. J. (1976). An algorithmic approach to the detection and prevention of plagiarism. ACM SIGCSE
Bulletin, 8(4), 30–41. https://doi.org/10.1145/382222.382462

Parr, T. (2013). The definitive ANTLR 4 reference. Pragmatic Bookshelf.
Pawelczak, D. (2018). Benefits and drawbacks of source code plagiarism detection in engineering education.

2018 IEEE Global Engineering Education Conference (EDUCON), 1048–1056.
https://doi.org/10.1109/EDUCON.2018.8363346

Poon, J. Y. H., Sugiyama, K., Tan, Y. F., & Kan, M.-Y. (2012). Instructor-centric source code plagiarism de-
tection and plagiarism corpus. 17th ACM Annual Conference on Innovation and Technology in Computer
Science Education, 122. https://doi.org/10.1145/2325296.2325328

Portillo-Dominguez, A. O., Ayala-Rivera, V., Murphy, E., & Murphy, J. (2017). A unified approach to automate
the usage of plagiarism detection tools in programming courses. 12th International Conference on Com-
puter Science and Education, 18–23. https://doi.org/10.1109/ICCSE.2017.8085456

Prechelt, L., Malpohl, G., & Philippsen, M. (2002). Finding plagiarisms among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016–1038.

Rabbani, F. S., & Karnalim, O. (2017). Detecting source code plagiarism on .NET programming languages
using low-level representation and adaptive local alignment. Journal of Information and Organizational
Sciences, 41(1), 105–123. https://doi.org/10.31341/jios.41.1.7

Simon, Sheard, J., Morgan, M., Petersen, A., Settle, A., & Sinclair, J. (2018). Informing students about aca-
demic integrity in programming. 20th Australasian Computing Education Conference, 113–122.
https://doi.org/10.1145/3160489.3160502

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Mo-
lecular Biology, 147(1), 195–197. https://doi.org/10.1016/0022-2836(81)90087-5

Sulistiani, L., & Karnalim, O. (2019). ES-Plag: efficient and sensitive source code plagiarism detection tool for
academic environment. Computer Applications in Engineering Education, 27(1), 166–182.
https://doi.org/10.1002/cae.22066

Sun, W., Wang, X., Wu, H., Duan, D., Sun, Z., & Chen, Z. (2019). MAF: method-anchored test fragmentation
for test code plagiarism detection. 41st International Conference on Software Engineering: Software Engi-
neering Education and Training, 110–120. https://doi.org/10.1109/ICSE-SEET.2019.00020

Ullah, F., Wang, J., Farhan, M., Jabbar, S., Wu, Z., & Khalid, S. (2018). Plagiarism detection in students’ pro-
gramming assignments based on semantics: multimedia e-learning based smart assessment methodology.
Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-5827-6

Verco, K. L., & Wise, M. J. (1996). Software for detecting suspected plagiarism: comparing structure and
attribute-counting systems. First Australasian Conference on Computer Science Education, 81–88.
https://doi.org/10.1145/369585.369598

Wise, M. J. (1996). YAP3: improved detection of similarities in computer program and other texts. 27th
SIGCSE Technical Symposium on Computer Science Education, 28(1), 130–134.
https://doi.org/10.1145/236452.236525

Yang, F.-P., Jiau, H. C., & Ssu, K.-F. (2014). Beyond plagiarism: an active learning method to analyze causes
behind code-similarity. Computers & Education, 70, 161–172.
https://doi.org/10.1016/J.COMPEDU.2013.08.005

Zhang, D., Joy, M., Cosma, G., Boyatt, R., Sinclair, J., & Yau, J. (2014). Source-code plagiarism in universi-
ties: a comparative study of student perspectives in China and the UK. Assessment & Evaluation in Higher
Education, 39(6), 743–758. https://doi.org/10.1080/02602938.2013.870122

Zhong, L., Wan, W., & Kong, D. (2016). Javaweb login authentication based on improved MD5 algorithm.
2016 International Conference on Audio, Language and Image Processing (ICALIP), 131–135.
https://doi.org/10.1109/ICALIP.2016.7846653

O. Karnalim et al.344

O. Karnalim graduated with a Bachelor of Engineering degree from Parahyangan
Catholic University in 2011, and completed his Master degree at Bandung Institute of
Technology (ITB) in 2014. His research interests are about computer science education,
especially source code plagiarism and educational tools. He works at Maranatha Chris-
tian University as a full-time lecturer and he is currently pursuing a PhD in Information
Technology at University of Newcastle, Australia.

S. Budi completed his academic exercise in Computer Science at the University of Tas-
mania, Australia. Australia Awards Scholarships and Sense-T Elite Scholarships enabled
him to get his Master and PhD qualifications. His primary research interests include
optimisation problem, environmental monitoring, data science, educational data mining,
and computer vision.

H. Toba graduated with a Master of Science from Delft University Technology, the
Netherlands in 2002, and completed his doctoral degree at Universitas Indonesia in
2015. He has been working as faculty members at the Faculty of Information Technol-
ogy, Maranatha Christian University since 2003. His interests are in the field of informa-
tion retrieval and educational datamining.

M. Joy received the MA degree in mathematics from Cambridge University, the MA de-
gree in post-compulsory education from the University of Warwick, and the PhD degree
in computer science from the University of East Anglia. He is currently a professor at
the University of Warwick. His research interests focus on educational technology and
computer science education.

