
Informatics in Education, 2020, Vol. 19, No. 1, 15–32
© 2020 Vilnius University
DOI: 10.15388/infedu.2020.02

15

An Approach to Evaluate the Complexity
of Block-Based Software Product

Ilenia FRONZA1, Luis CORRAL2, Claus PAHL1

1Free University of Bozen/Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
2ITESM Campus Queretaro, Epigmenio Gonzalez 500, Queretaro, Mexico
e-mail: ilenia.fronza@unibz.it, lrcorralv@tec.mx, claus.pahl@unibz.it

Received: July 2019

Abstract. Computer programming skills have been growing as a professional competence also to
unqualified end-users who need to develop software in their professional practice. Quality evalua-
tion models of end-user-developed products are still scarce. In this paper, we propose a metric that
leverages “When”, a condition typically found in block-based software development frameworks.
We evaluated 80 Scratch projects collecting a metric related to the presence of the When condition
and investigated common traits and differentiation with other metrics already proposed in the lit-
erature. We found that, in an evaluation with respect to the conditionals found in Scratch projects,
When delivers a distinct and complementary approach to software complexity in products devel-
oped using block-oriented software development tools.

Keywords: software metrics, block-based programming languages, Scratch, complexity, When,
End-User Software Engineering, EUSE, software quality.

1. Introduction

The acquisition of computer programming skills has been growing as a professional
competence not only for specialists in Software Engineering or Computer Science but
also to unqualified1 end-users who often need to develop simple or complex software
systems as part of their professional practice. The introduction of fully graphical, block-
based software development tools like LabView or Simulink, or the inclusion of simple
development tools like embedding Visual Basic in Office documents, allow users with
little or no experience in software development to enable themselves as software pro-
grammers and deliver functional software products for enhanced productivity. Moreover,
the features offered by tools like Scratch, Lego Mindstorms, App Inventor or Thunkable

1 People who do not have either a degree in Computer Science/Software Engineering or extensive experi-
ence in software development.

I. Fronza, L. Corral, C. Pahl16

enable people of all ages to the creation of fully functional software tools, starting in the
early stages of their education.

The promotion of Computational Thinking principles in K-12 education provides a
strategic framework for the development of competencies that foster the approach and
orientation towards software development even though the student has not or will not
pursue a Computer Science or Software Engineering career (Wing, 2014)(Fronza and
Zanon, 2015). Enabling everybody to develop software can be seen as a very positive
trait and expands the productive capacity of a professional (Fronza et al., 2016); how-
ever, one of the main disadvantages is the overall low quality of a product that has not
been developed professionally. Even if the errors may not be catastrophic, if in certain
domains the effects are brought to a production environment, they can be relevant (Bur-(Bur-
nett, 2009). For example, software resources configured by end-users to monitor non-
critical medical conditions can cause unnecessary pain or discomfort for users who rely
on them (Orrick, 2006).

One of the reasons for the overall low quality of end-user-produced software is that
most of the end-users lack of specific training in Software Engineering (Scheubrein,
2003). This situation poses in Software Engineering research the question of finding
strategies to evaluate the quality of this kind of software product considering external
quality aspects that go beyond the functionality of satisfaction perception of the software
product in use (ISO 25010).

In this paper, we propose a new metric for assessing the complexity of the software
products created by trainee developers. This assessment approach takes advantage of
characteristics typically found in block-oriented software development frameworks like
Scratch or App Inventor. We evaluated 80 Scratch projects collecting a metric related to
the “When” event listener count, and we investigated the value delivered by this count,
its common traits and differentiation with respect to other metrics already proposed in
the available literature. We found that, in an evaluation with respect to other charac-
teristics found in Scratch projects, “When” delivers a distinct and complementary ap-
proach to software complexity (that is, Cyclomatic Complexity) in products developed
using block-oriented software development tools, shedding light on the way that trainees
implement their knowledge in the form of a more complex software product.

The paper is structured as follows. Section 2 reviews background literature, related
work, and relevant items for end-user software engineering. Section 3 introduces When,
a metric to complement the structural/complexity metrics. Section 4 describes the case
study that has been executed to investigate the correlation between the proposed metric
and the existing complexity metrics. Section 5 reports the results obtained, and Section
6 discusses the findings of this study. Finally, Section 7 concludes the present work and
provides directions for further research.

2. Background and Related Work

Block-Based Programming Languages (BBPL) have become a vital tool for an initial
approach to software development both for students and professionals. Statistics pro-

An Approach to Evaluate the Complexity of Block-Based Software Product 17

vided by relevant BBPLs platforms count users and products in millions: as of 2019,
Scratch repository hosts over 37 million projects created by over 35 million registered
users2; App Inventor counts over 8.3 million users who have created over 34 million
mobile apps3.

The need to assess learners’ software products has led to the onset of research into
the analysis of code written in BBPLs, in particular with the goal of assessing Compu-
tational Thinking learning (Fronza and Pahl, 2018) by assessing the development of CT
concepts, practices, and perspectives (Brennan and Resnick 2012) (Fronza et al., 2017).
Nevertheless, there are not many methods to analyze BBPL projects, and most of them
have been designed for Scratch. Of note is the project called Dr. Scratch, which analy-
ses a Scratch project to assign a Computational Thinking (CT) score and detects bad
programming habits or potential errors (Moreno-León et al., 2015). Another project
called Ninja Code Village (Ota et al., 2016) automatically assesses CT concepts in
Scratch.

One research challenge into this area is the definition of the appropriate set of met-
rics that need to be extracted for quality assessment. As shown in Table 1, some effort
has been spent on mapping the metrics that are used in professional programming to
the BBPLs environment (Hermans and Aivaloglou, 2016). S. Grover (2017) described
several difficulties novice programmers exhibit in introductory setting, such as assign-
ing meaningful names to variables. J. Waite (2017) explored code smells in BBPLs.
The same goal was pursued by F. Hermans and E. Aivaloglou (2016) for the specific
case of Scratch.

Research and practitioner literature on Software Engineering offers different ap- and practitioner literature on Software Engineering offers different ap-
proaches to evaluate the complexity of a software product. Examples of standard met-
rics used in a professional setting are Cyclomatic Complexity and the Halstead suite of
metrics; however, they use source code characteristics like conditions, decisions, and
operators that are hard to replicate in a BBPL context. Moreover, it is necessary to un-

2 https://scratch.mit.edu/statistics/
3 http://ai2.appinventor.mit.edu/stats

Table 1
Quality metrics for BBPLs

Metric Definition Ref.

Names Percentage of components that have not been renamed (Waite, 2017)
Superfluous stuff Code blocks left lying around (Waite, 2017)
Duplication Similar computations or events occur in multiple places in

the program (i.e., it could be implemented more elegantly, for
example by using a loop)

(Waite, 2017),
(Hermans and
Aivaloglou, 2016)

Long method A group of blocks grows very large, which implies lack of
decomposition and design

(Waite, 2017)

(Hermans and
Aivaloglou, 2016)

Variables Variables have a meaningful name (Grover, 2017)

I. Fronza, L. Corral, C. Pahl18

derstand the conditions intrinsic to BBPL that can as well provide additional insights for
the understanding of the complexity of a piece of software.

An approach to understanding the effectiveness of the educational process of trainee
developers is to understand the complexity of the products they create. The term soft-
ware complexity has been defined in several ways by different people. Basili (1980) de-
fined complexity as a measure of resources expended by a system while interacting with
a piece of software to perform a given task. The interacting system can be a computer or
a programmer. In the first case, complexity describes the execution time and amount of
storage needed to perform the computation. In the latter case, complexity is defined in
terms of the difficulty of performing tasks such as coding, debugging, testing, or modify-
ing the software (Kearney et al.,1986).

Software complexity metrics provide a quantified expression of the inherent char-
acteristics of software (Kevrekidis et al., 2009), such as reliability (Lew et al., 1988),
maintainability (Kevrekidis et al., 2009) and numerous other quality factors of software
systems. Increased software complexity means that maintaining and modifying will take
longer, will cost more, and will result in more errors.

Although software complexity cannot be eliminated, it can be controlled with the use
of a meaningful complexity metric to provide continuous feedback throughout a soft-
ware project to help control the development process. For this reason, with the increased
usage and sophistication of software applications, many programmers are looking at
ways of minimizing the complexity associated with software and thereby reduce the
maintenance costs associated with them. Therefore, many software complexity metrics
have been proposed over the time (De Silva et al., 2012).

Kaur and Verna (2016) provided a review of the various complexity metrics that can
be retrieved in the existing literature. Among these metrics, Cyclomatic Complexity
(CC) and Halstead’s metrics have been widely used in Software Engineering to estimate
maintenance effort and guide software testing, by identifying complicated and hard to
maintain modules (Kafura and Reddy, 1987) (Moreno-León et al., 2016).

The Cyclomatic Complexity (CC) metric was introduced by Thomas J. McCabe in
1976 to measure the maximum number of linearly independent paths through a control
flow graph (McCabe, 1976), and is considered as an indicator of testability and main-(McCabe, 1976), and is considered as an indicator of testability and main-, and is considered as an indicator of testability and main-
tainability of a program (Ammar et al., 2001). Halstead’s metrics identify specific prop-
erties of a program that can be measured and the relationships between them to assess
software complexity (Halstead, 1977). These metrics have been compared in the last
decades, with reported consistency between them (Henry et al., 1981) (Moreno-León
et al., 2016). Finally, a simple yet expressive metric is Lines of Code (LOC), as it evalu-
ates the size of a software product in terms of the number of executable lines of code,
excluding comments and blank lines.

To understand the importance of the evaluation of the software product in an indus-
trial or productive context, international standards like ISO/IEC 25010 define Quality
in use as “the degree to which a product or system can be used by specific users to
meet their needs to achieve specific goals with effectiveness, efficiency, freedom from
risk and satisfaction in specific contexts of use”. For End-User Software Engineering
(EUSE), this means a perspective of quality from a standpoint in which the point of

An Approach to Evaluate the Complexity of Block-Based Software Product 19

view is of the user in the role of “end-user”, as this dimension of quality is observable
only when the final product is used in real-world execution conditions. Quality in use
represents the point of view of the final customer concerning the quality of the prod-
uct. Moreover, the subjective appreciation of the end-user influences the evaluation of
the quality in use. ISO/IEC 25010 defines two dimensions of quality: in the context
of EUSE, internal and external quality characteristics may define a view of “quality”
from a standpoint in which the point of view is of the user in her/his role of “devel-
oper”, making this perspective of high interest for our analysis. As ISO 25010 sheds
light on strategies to evaluate relevant quality characteristics of the software product,
it opens the door for proposing measuring strategies as it does not recommend how to
track quality attributes concretely. No additional literature resources were found to lay
the foundation on how to relate standardized software quality attributes to the context
of BBPLs.

3. When: a Proposed Metric to Complement the Structural/Complexity Metrics

Evaluating the accomplishment of the educational process of a trainee requires a quanti-valuating the accomplishment of the educational process of a trainee requires a quanti-
tative way to observe and assess the produced results. Understanding BBPL-originated
software products implies the challenge of evaluating the quality of source artifacts
without having traditional source code. The source artifacts are blocks that are sorted
and matched to follow a flow, execute a sentence, or evaluate a condition; therefore, we
need to take an approach that differs from traditional source code metrics. Structurally,
as proposed by Cyclomatic Complexity or Halstead’s metrics, we can evaluate the pres-
ence of conditions, decisions, or operators. However, it is necessary to be open to ad-
ditional characteristics, intrinsic to BBPLs, that can shed additional light on the quality
of the final software piece.

3.1. Events

In a common language definition, one can understand an event as “something that hap-
pens”. This definition holds for traditional source code programming languages and BB-
PLs. Events are situations that occur during the flow of execution of a piece of software,
and that can be caught or detected by a specific block of code called Event Listener to
eventually drive or impact the flow of execution of the program.

3.2. Event Listeners

A relevant source artifact present in BBPLs is the event listener. Event listeners are lines
of code that are placed to detect if a particular event has happened. Typically, an action
or event handler is associated with the event, to indicate the action that shall be triggered
in the case that the event is detected.

I. Fronza, L. Corral, C. Pahl20

Depending on the programming language used, event listeners can be easily em-
bedded into software code. Taking an example in HTML and JavaScript, we can see
how web browser or web document events allow the JavaScript language to implicitly
register different event handlers on elements in an HTML document. The event listener
onClick awaits the user’s click on the button to trigger the execution of the method
“execute_something()”.

<button onClick=”execute_something()”>Click here</button>

In the following example in the Java language, let myButton be an arbitrary button
visible in the user interface. The method setOnClickListener registers an event in-
terface to the button, while the OnClickListener method actually “listens” (awaits)
for the button to be clicked. The lines of code enclosed by the method onClick handle
the event, that is, define what shall be executed when is myButton pressed.

myButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 }
});

In BBPLs, where lines of code are not evident, event listeners are represented in the
form of blocks whose function is to “listen” or await for a specific execution circum-
stance to happen, and once such circumstance occurs, detect it so that a decision is made
and an action is executed. Control flow palettes typically expose several events for the
developer to leverage, and those blocks can be dragged and dropped always showing an
enclosing structure to embed the series of instructions that are to be executed should the
event happens during the execution of the program. Examples of events that are typically
caught are “When a Button is Clicked” (Fig. 1), “When a Sprite is Dragged”, or “When
a Sprite is touching a border”, etc.

Event listeners can be roughly compared with conditions: conditions are logically
evaluated according to an input and depending on the result (i.e., a TRUE or FALSE
Boolean value), a decision is made, and an execution flow is followed. Similarly, event
listeners do not necessarily calculate and evaluate a Boolean value but catch the pres-
ence of a certain execution circumstance and consequently trigger an action or impact
an execution flow.

Fig. 1. Scratch event listener.

An Approach to Evaluate the Complexity of Block-Based Software Product 21

3.3. Event Listeners

We propose to leverage the presence of relevant event listeners to define an additional
indicator of complexity specifically thought for BBPLs. Although event listeners are
common in web and mobile programming, little research has been done to analyze the
presence of event listeners to relate them to a software metric. For example, in the con-
text of web programming, Watanabe et al. (2015) counted the number of JavaScript
mouse event listeners to calculate a metric that identifies how focus navigation has been
implemented on the web.

The metric proposed by this work is called “When” and represents the total number
of When event listener blocks present in the collection of source blocks of the software
piece. In Scratch, a When block is a graphic representation of an event listener that waits
for an individual situation to occur to trigger an action. Those events can be relevant to
GUI interaction (e.g., “When the user hits a key”) or to interaction between elements of
the process flow (“When a sprite touches a border”).

We believe that, in the context of BBPLs, the count of When blocks might pro-
vide an indication of the increasing difficulty in modifying and understanding the
code (i.e., complexity), since the presence of an event listener implies the necessity
of evaluating a condition within the execution context, in a similar manner in which
internal source blocks or source code conditions are evaluated and thus decisions
are made. Traditional source code metrics like Cyclomatic Complexity or Halstead’s
metrics are not sensitive to event-listening and may leave out relevant complexity
conditions given by the presence of event listener instructions. Furthermore, focusing
our study on BBPLs positions our analysis in a development environment in which
we believe that a direct way to associate functionality to user interface elements is via
event handlers.

4. Case Study

The goal of our case study is isolating the independent value that the evaluation of event
listening blocks may deliver to the complete understanding of the complexity of a BBPL-
generated software piece. Therefore, we can formulate our hypothesis as follows:

Hypothesis: The value delivered by the evaluation of the code block “When”
provides an additional insight that does correlate to complex-
ity and size metrics.

To acquire the numerical data to confirm or reject our hypothesis, we retrieved a
collection of Scratch projects and ran several evaluations where we calculated When
and other metrics to relate the presence of When blocks to the structural/complexity
metric.

I. Fronza, L. Corral, C. Pahl22

4.1. Data Extraction

For data extraction, we used Hairball, an open-source, static analysis tool to extract
metrics from Scratch projects (Boe et al., 2013). The tool is programmed in Python and
provides plug-ins to perform different types of analysis4. In our case, we have used the
metrics and blocks plug-ins to extract the following metrics:

Total number of blocks (using ● blocks.BlockCounts);
Cyclomatic complexity ● (using metrics.CyclomaticComplexity) of a Scratch
project, which equals the number of decision points in the code plus one. Deci-
sion points are: if %s then %s, if %s then %s else %s, repeat until, wait until, %s
and %s, %s or %s;
Halstead’s Vocabulary ● and Length (using metrics.Halstead) calculation is based
on the number of distinct operators (n2), the number of distinct operands (n1), the
total number of operators (N2) and the total number of operands (N1) in a pro-
gram (Moreno-León et al., 2016) (Ruan et al., 2017). For example, in the case
of the code snippets shown in Fig. 2 we have that: n1 = 4, N1 = 4, n2 = 3, N2 = 4.
Operands: when %s do, set %s to, %s – %s, get %s; Operators: tick, global time
(*2), 1. Based on these numbers, following the guidelines of (Moreno-León et al.,
2016), we take into account only Vocabulary and Length, which are calculated as
follows: Vocabulary: n = n1 + n2; Length: N = N1 + N2.
When (using ● blocks.BlockCounts): total number of “When” blocks (e.g., when a
button is clicked).

4.2. Study Sample

The study sample consists of 80 randomly selected Scratch projects. Part of these proj-
ects have been retrieved online from a public Scratch source code repository5. Another
part of the sample consists of projects that were collected by the authors when teaching
Scratch in elementary and middle schools. The type and purpose of those projects are
very diverse; some of them are simple animations, while others imply intensive user
interaction and complex execution flows.

4 https://github.com/ucsb-cs-education/hairball
5 https://github.com/LLK/Scratch_1.4/tree/master/Projects

Fig. 2. App Inventor code snippet.

An Approach to Evaluate the Complexity of Block-Based Software Product 23

5. Results

Table 2 shows the descriptive statistics of the analyzed projects for the different metrics
listed in Section 4.1.

Table 3 shows the correlations between each of the considered metrics. The values
settling around 1, as well as the obtained p-values show that the proposed metric When
has a positive, significant, and robust correlation with Cyclomatic Complexity, Length,
and Vocabulary. The correlation indicates that the proposed metric When is in line with
other, classic software engineering complexity metrics. As reported in the existing lit-
erature (Moreno-León et al., 2016), Halstead’s metrics and Cyclomatic Complexity also
have a positive, significant strong correlation; the same happens between Halstead’s
Vocabulary and Length.

Fig. 3 shows the scatter plot of the metrics When and Cyclomatic Complexity, togeth-
er with the best fitting line. The coefficient of determination is r2 = .81 (p-value < 0.05),
which indicates that, in a project, 81% of the variance of When metric can be predicted
from Cyclomatic Complexity.

Fig. 4, which shows the scatter plot of the metrics When and Halstead’s Vocabulary
with the best fitting line, depicts a similar situation. In this case r2 = .60 (p-value < 0.05),
which states a lower accuracy of the linear model than the prior one. The scatter plot of
the metrics When and Halstead’s Length with the best fitting line (r2 = .73, p-value < 0.05)
shown in Fig. 5 illustrates a similar behavior.

The results detailed so far show that more complex projects (i.e., having higher
CC, Vocabulary, and Length) also have higher values of When metric. However, we

Table 2
Metrics extracted from the Scratch projects in the study sample: descriptive statistics

Min 1st qu. Median Mean 3rd qu. Max

Total number of blocks 9.00 30.75 64.00 145.60 129.00 1566.00
Cyclomatic complexity 1.00 4.00 11.00 29.44 21.50 389.00
Halstead length 13.00 64.75 116.50 270.30 254.50 2805.00
Halstead vocabulary 11.00 30.50 46.00 60.31 75.25 340.00
When 1.00 4.00 8.00 22.90 21.00 177.00

Table 3
Correlation between metrics

Cyclomatic
Complexity

Halstead
Length

Halstead
Vocabulary

When

Cyclomatic Complexity 1 0.89** 0.64** 0.90**
Halstead Length 1 0.84** 0.86**
Halstead Vocabulary 1 0.78**
When 1

I. Fronza, L. Corral, C. Pahl24

Fig. 3. Scatter plot of the metrics When and Cyclomatic Complexity, with best-fitting line.

Fig. 4. Scatter plot of the metrics When and Halstead’s Vocabulary, with best-fitting line.

An Approach to Evaluate the Complexity of Block-Based Software Product 25

are interested in focusing on projects having low complexity: the goal of the When
metric, indeed, is to provide an easier indication of complexity, which might be es-
pecially useful for novices. For this reason, we are interested in checking if the same
results hold for projects having lower complexity. As a rule of thumb6, CC should
always be lower than 20; thus, we selected only the 57 projects in our data set having
CC ≤ 20, and we repeated the above-presented analysis. Table 4 and Table 5 show
the descriptive statistics and the correlations between each of the extracted metrics,
respectively.

6 https://www.c-sharpcorner.com/article/3-tips-to-reduce-cyclomatic-complexity-in-
c-sharp/

Fig. 5. Scatter plot of the metrics When and Halstead’s Length, with best-fitting line.

Table 4
Metrics extracted from the Scratch projects in the study sample:

descriptive statistics (when CC <= 20)

Min 1st qu. Median Mean 3rd qu. Max

Total number of blocks 9.00 26.00 40.00 49.47 70.00 138.00
Cyclomatic complexity 1.00 4.00 6.00 7.98 12.00 20.00
Halstead length 13.00 56.00 80.00 95.75 130.00 256.00
Halstead vocabulary 11.00 24.00 34.00 37.61 48.00 90.00
When 1.00 3.00 5.00 6.37 9.00 28.00

I. Fronza, L. Corral, C. Pahl26

The analysis of the projects having CC ≤ 20 reveals that the proposed metric When
still has a positive, strong and significant correlation with Cyclomatic Complexity, while
the correlation with Length and Vocabulary is lower respect to the previous data set (Ta-
ble 2). The scatter plot in Fig. 6 indicates that, in a project, 64% of the variance of When
metric can be predicted from CC because the coefficient of determination is r2 = .64
(p-value < 0.05). This value is lower than before (i.e., when considering the entire data
set), but still suggests that When can be considered as an indicator of complexity also for
those projects having lower complexity.

The situation changes in Fig. 7 and Fig. 8, where the coefficients of determination are
r2 = 0.30 (p-value < 0.05) and r2 = .20 (p-value < 0.05), respectively. This suggests that
When cannot be predicted from Vocabulary or Length.

Table 5
Correlation between metrics (when CC <= 20)

Cyclomatic
Complexity

Halstead
Length

Halstead
Vocabulary

When

Cyclomatic Complexity 1 0.69** 0.66** 0.80**
Halstead Length 1 0.90** 0.56**
Halstead Vocabulary 1 0.45**
When 1

Fig. 6. Scatter plot of the metrics When and Cyclomatic Complexity,
with best-fitting line (projects having CC <= 20).

An Approach to Evaluate the Complexity of Block-Based Software Product 27

Fig. 7. Scatter plot of the metrics When and Halstead’s Vocabulary,
with best-fitting line (projects having CC <= 20).

Fig. 8. Scatter plot of the metrics When and Halstead’s Length,
with best-fitting line (projects having CC <= 20).

I. Fronza, L. Corral, C. Pahl28

6. Discussion

The quantitative analysis shows a positive, strong and significant correlation between
the When count with respect to Cyclomatic Complexity, which grants significant level
of reliability to predict one metric using the other. The analysis showed as well that
Halstead metrics Vocabulary and Length cannot be associated (that is, predicted) by the
presence and count of When event listeners.

Those assertions can be analyzed in a twofold way. On the one hand, the Cyclo-
matic Complexity is a metric that indicates a level of elaboration that is observable
through the number of branches or possible ways that the flow of execution may take
to reach the end of a piece of code. On the other hand, the analyzed Halstead metrics,
Vocabulary and Length, are instead indicators of the size and operands of a computer
program. The two approaches provide very distinct insights in terms of Software En-
gineering metrics.

 As an event listener, When associates its behavior to the evaluation of “something
that happens” and triggers the execution of a set of instructions. With this approach, it is
easier to understand the stronger association it has with the Cyclomatic Complexity, that
denotes the unfolding of different branches based on conditionals, and its loose tie with
metrics that relate to size.

Our hypothesis claims that “the value delivered by the evaluation of the code block
When provides an additional insight that does correlate to complexity and size metrics”.
Our data analysis confirms that the When count metric can be an efficient aid to predict
Cyclomatic Complexity. It is worthy of discussion that When can be calculated more
straightforwardly: the Cyclomatic Complexity metric is calculated following a formula
that evaluates the decision points of the code and its eventual branching. The When
metric, instead, is calculated more directly, as it only associates the count of When event
listeners present in the analyzed set of blocks.

Moreover, in the context of the user that develops software using BBPL, assuming a
beginner, non-expert profile, it is expected that the inexperienced developer prefers a lin-
ear approach to the solution of problems, and that the presence of traditional conditions
such as if shall be lower (Venables, 2009), posing an additional challenge to calculate
Cyclomatic Complexity. Instead, event listeners are needed even in very simple Scratch
projects to trigger actions, including the execution of the project itself (typically with
the block “When the flag is clicked”). The absence of conditions challenges to evaluate
the complexity of a project using conditional-based metrics like Cyclomatic Complexity
since it will return systematically lower values on that metric.

This opens the opportunity that, from a didactic and pedagogical point of view, eval-
uating When event listeners can shed light on understanding the complexity of projects
developed by beginners or novice developers that do not have enough experience to
structure or draw complex execution flows, yet can associate actions to events caught
in the user interface or by the interaction of components within. In this way, instructors
can leverage the calculation of this metric to understand how their educational strategies
have an impact on a particular quality characteristic (i.e., complexity) of the software
product developed by trainees.

An Approach to Evaluate the Complexity of Block-Based Software Product 29

7. Open Items and Conclusions

BBPL-originated programs can be complex even without the presence of multiple
or nested conditions. Without source code, the evaluation of the complexity of such
projects can be a hard and inefficient task. The presence of event listeners, difficult
GUI blocks, and other BBPL-intrinsic conditions pose an additional challenge in un-
derstanding, developing, and maintaining pieces of software. Event listeners are found
to be a relevant source of complexity for software pieces, however, they remain non-
visible to traditional source code metrics like Cyclomatic Complexity or Halstead’s
metrics as they look for the presence of a particular code structure and take event
listeners as a simple source code line, even though such line evaluates a condition and
makes a decision.

Further analysis shall be done to determine if When can be useful to analyze the
complexity of projects developed by beginners who do structure complex execution
flows and that would eventually produce very linear projects with low Cyclomatic
Complexity but more complex in terms of the events that are listened and handled. To
this end, we recommend extending the analysis performed in this work associating to
each project a metric that describes the level of expertise of the developer. In this way,
it can be studied, discussed, and eventually confirmed if the presence of When blocks
can relate effectively to evaluate the complexity of BBPL-based programs originated
by novice developers.

As a means of future validation or reproducibility of this study, we recommend
replicating the analysis proposed in this work using an alternative BBPL like App In-
ventor. App Inventor, like Scratch, is a BBPL framework that allows the development
of mobile applications for the Android Operating System. App Inventor projects can as
well be exported and eventually analyzed in Cyclomatic Complexity and event listener
count (that is, When), to understand if the association found in Scratch projects holds
as well in other BBPLs.

In this paper, we proposed an approach to evaluate the complexity of software
products developed by non-experts. We leveraged the presence of standard event lis-
tener block in BBPLs like Scratch, to propose a software metric called When, whose
purpose is to shed light on the complexity of BBPL-originated programs taking as
fundamental characteristic the number of event listeners present in the program. We
evaluated the count of When event listeners and the impact of such blocks in evaluat-
ing the complexity of the complete software piece. A case study run in 80 Scratch
projects showed a significant correlation between the When count with respect to
Cyclomatic Complexity, in particular in structurally complex projects. Projects that
return a high Cyclomatic Complexity metric deliver as well a high When metric, with
the consideration that calculating When is more straightforward as the metric only
associates a block count.

Evaluating software metrics in traditional source-code based computer programs
can be a challenging yet insightful task, that permits us to understand a more precise
panorama on how the software is developed, how logic is constructed and how com-

I. Fronza, L. Corral, C. Pahl30

plex the software product is. Extending this possibility to BBPLs is a precious resource
since source code is not accessible, yet the logic is openly structured. Having a primary
means to understand better the complexity of BBPL-based pieces of software opens
as well the doors to have a better understanding on how non-expert profiles develop
software, how the acquisition of software development competencies are growth, and
how end-users create proficiency and attainment in the capacity of developing software
autonomously.

References

Ammar, H., Nikzadeh, T., Dugan, J. (2001). Risk assessment of software-system specifications. IEEE transac-
tions on reliability, 50, 171–183.

Basili, V. (1980). Qualitative Software Complexity Models: A Summary. In Tutorial on Models and Methods
for Software Management and Engineering, IEEE Computer Society Press, Los Alamitos.

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., Franklin, D. (2013). Hairball: Lint-inspired Static Analy-
sis of Scratch Projects. SIGCSE Technical Symposium. ACM.

Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the development of compu-
tational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research As-
sociation (AERA’12). 1–25.

Burnett, M. (2009). What is end-user software engineering and why does it matter? International Symposium
on End User Development. Springer.

De Silva, D., Kodagoda, N., Perera, H. (2012). Applicability of Three Complexity Metrics. The International
Conference on Advances in ICT for Emerging Regions – ICTer, (p. 82–88).

Fronza, I., Zanon, P. (2015). Introduction of computational thinking in a hotel management school [Introduzio-
ne del Computational Thinking in un istituto alberghiero]. Mondo Digitale, 14 (58), pp. 28–34.

Fronza, I., El Ioini, N., Corral, L. (2016). Blending mobile programming and liberal education in a social-eco-
nomic high school. Proceedings – International Conference on Mobile Software Engineering and Systems,
MOBILESoft 2016, pp. 123–126.

Fronza, I., El Ioini, N., Corral, L. (2017). Teaching Computational Thinking Using Agile Software Engineer-
ing Methods: A Framework for Middle Schools. ACM Trans. Comput. Educ. 17, 4, Article 19.

Fronza, I., Pahl, C. (2018). Envisioning a computational thinking assessment tool. CEUR Workshop Procee-
dings, 2190.

Grover, S. (2017). Tackling novice learners naive conceptions in introductory programming. Hello World.
Halstead, M. (1977). Elements of Software Science (Operating and programming systems series). Elsevier

Science Inc.
Henry, S., Kafura, D., Harris, K. (1981). On the relationships among three software metrics. ACM SIGMET-

RICS Performance Evaluation Review. Vol. 10. No. 1. ACM.
Hermans, F., Aivaloglou, E. (2016). Do code smells hamper novice programming? A controlled experiment on

Scratch. Program Comprehension (ICPC), 2016 IEEE 24th International Conference on (p. 1–10). IEEE.
Kafura, D., Reddy, G. (1987). The use of software complexity metrics in software maintenance. IEEE Transac-

tions on Software Engineering, 3, 335–343.
Kaur, H., Verma, G. (2016). Software Complexity Measurement: A Critical Review. International Journal of

Engineering and Applied Computer Science (IJEACS), 12–16.
Kearney, J., Sedlmeyer, R., Thompson, W., Gray, M., Adler, W. (1986). Software Complexity Measurement.

Communications of the ACM, 29, 1044–1050.
Kevrekidis, K., Albers, S., Sonnemans, P., Stollman, G. (2009). Software complexity and testing effectiveness:

An empirical study. 2009 Annual Reliability and Maintainability Symposium. Fort Worth, TX, US: IEEE.
Lew, K., Dillon, T., Forward, K. (1988). Software complexity and its impact on software reliability. IEEE

Transactions on Software Engineering, 14(11), 1645–1655.
McCabe, T. (1976). A Complexity Measure. IEEE Transaction on Software Engineering, 6, 308–320.
Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. scratch: Automatic analysis of scratch proj-

ects to assess and foster computational thinking. RED-Revista de Educacion a Distancia, 1–23.

An Approach to Evaluate the Complexity of Block-Based Software Product 31

Moreno-León, J., Robles, G., & Román-González, M. (2016). Comparing computational thinking develop-
ment assessment scores with software complexity metrics. Global Engineering Education Conference
(EDUCON) (p. 1040–1045). IEEE.

Orrick E. (2006). Position Paper, Second Workshop on End-User Software Engineering, in conjunction with
the ACM Conference on Human Factors in Computing, Montreal, Quebec.

Ota, G., Morimoto, Y., Kato, H. (2016). Ninja code village for Scratch: Function samples/function analy-
ser and automatic assessment of computational thinking concepts. Visual Languages and Human-Centric
Computing (VL/HCC), 2016 IEEE Symposium on (p. 238–239). IEEE.

Ruan, L., Patton, E., Tissenbaum, M. (2017). Evaluations of programming complexity in app inventor. Siuch-
eung KONG The Education University of Hong Kong. Hong-Kong.

Scheubrein, R. (2003). Elements of end-user software engineering. INFORMS Transactions on Education, 4,
1, 37–47.

Venables, A., Tan, G., Lister, R. (2009). A closer look at tracing, explaining and code writing skills in the
novice programmer. In Proceedings of the fifth international workshop on Computing education research
workshop (ICER ‘09). ACM, New York, NY, USA, 117–128.

Waite, J. (2017). Do we pass on best practice when we teach block-based programming to primary school
pupils? Hello World.

Watanabe, W., Dias, A., Fortes, R. (2015). Fona: Quantitative metric to measure focus navigation on rich
internet applications. ACM Trans. Web 9, 4, Article 20 (September 2015), 28 pages.

Wing, J.M. (2014). Computational thinking benefits society. Retrieved October 18, 2019. http://socialis-
sues.cs.toronto.edu

Xie, B., Abelson, H. (2016). Skill progression in MIT app inventor. Visual Languages and Human-Centric
Computing (VL/HCC), 2016 IEEE Symposium on (p. 213–217). IEEE.

Xie, B., Shabir, I., Abelson, H. (2015). Measuring the programmatic sophistication of app inventor projects
grouped by functionality. Retrieved October 18, 2019. http://web.mit.edu/bxie/www

I. Fronza is an assistant professor in software engineering at the Free University of
Bozen-Bolzano, Italy. She received a M.Sc. degree in Mathematics from the University
of Trento, Italy, and a PhD in Computer Science from Free University of Bozen-Bol-
zano. Her research interests lie in the software engineering field, specifically on software
engineering training and education. This endeavour shall provide a better understanding,
innovative techniques and tools for teaching software engineering, technology enhanced
learning, and product assessment (also in non-conventional programming languages).
Ilenia Fronza is guiding the Software Engineering Training Education research group,
which aims at proposing educational techniques and tools to improve software develop-
ment in production and educational ecosystems. Over the years, she has engaged a large
number of students and educators in various projects.

I. Fronza, L. Corral, C. Pahl32

L. Corral completed his Ph.D. at the Free University of Bozen-Bolzano, Italy, and his
Master of Computer Science at the Autonomous University of Guadalajara, Mexico
after a Bachelor of Science in Computer Systems Engineering at the Technological
Institute of Queretaro, Mexico. Luis Corral has strong industrial experience. Through
his career, he has held positions as Software Engineer in General Electric Aviation,
leading globalized Quality Assurance processes for certifiable airborne software. He
has a full commitment with education, training and development, serving as research
fellow of the Faculty of Computer Science of the Free University of Bozen-Bolzano,
Italy. Currently, he lectures Computer Science in the School of Information Technol-
ogy and Electronics of ITESM, Campus Queretaro, and leads the Technical Educa-
tion Programs at GE Infrastructure Queretaro. He is member of the Mexican National
Research System, in the area of Engineering. His areas of interest are computational
thinking, software quality assurance, mobile software engineering and energy aware
mobile systems.

C. Pahl is a professor of computer science and vice-dean of research at the Free Uni-
versity of Bozen-Bolzano, Italy. His research interests include software engineering
in service and cloud computing, specifically migration, architecture specification, dy-
namic quality, performance engineering, and scalability. Software engineering has been
a continuous, cross-cutting concern. He received a Ph.D. in computing from the Uni-
versity of Dortmund and has held academic positions in Germany, Ireland, Denmark
and Italy.

