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Abstract. Computer programming skills have been growing as a professional competence also to 
unqualified end-users who need to develop software in their professional practice. Quality evalua-
tion models of end-user-developed products are still scarce. In this paper, we propose a metric that 
leverages “When”, a condition typically found in block-based software development frameworks. 
We evaluated 80 Scratch projects collecting a metric related to the presence of the When condition 
and investigated common traits and differentiation with other metrics already proposed in the lit-
erature. We found that, in an evaluation with respect to the conditionals found in Scratch projects, 
When delivers a distinct and complementary approach to software complexity in products devel-
oped using block-oriented software development tools.
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1. Introduction

The acquisition of computer programming skills has been growing as a professional 
competence not only for specialists in Software Engineering or Computer Science but 
also to unqualified1 end-users who often need to develop simple or complex software 
systems as part of their professional practice. The introduction of fully graphical, block-
based software development tools like LabView or Simulink, or the inclusion of simple 
development tools like embedding Visual Basic in Office documents, allow users with 
little or no experience in software development to enable themselves as software pro-
grammers and deliver functional software products for enhanced productivity. Moreover, 
the features offered by tools like Scratch, Lego Mindstorms, App Inventor or Thunkable 

1 People who do not have either a degree in Computer Science/Software Engineering or extensive experi-
ence in software development.
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enable people of all ages to the creation of fully functional software tools, starting in the 
early stages of their education.

The promotion of Computational Thinking principles in K-12 education provides a 
strategic framework for the development of competencies that foster the approach and 
orientation towards software development even though the student has not or will not 
pursue a Computer Science or Software Engineering career (Wing, 2014)(Fronza and 
Zanon, 2015). Enabling everybody to develop software can be seen as a very positive 
trait and expands the productive capacity of a professional (Fronza et al., 2016); how-
ever, one of the main disadvantages is the overall low quality of a product that has not 
been developed professionally. Even if the errors may not be catastrophic, if in certain 
domains the effects are brought to a production environment, they can be relevant (Bur-(Bur-
nett, 2009). For example, software resources configured by end-users to monitor non-
critical medical conditions can cause unnecessary pain or discomfort for users who rely 
on them (Orrick, 2006). 

One of the reasons for the overall low quality of end-user-produced software is that 
most of the end-users lack of specific training in Software Engineering (Scheubrein, 
2003). This situation poses in Software Engineering research the question of finding 
strategies to evaluate the quality of this kind of software product considering external 
quality aspects that go beyond the functionality of satisfaction perception of the software 
product in use (ISO 25010).

In this paper, we propose a new metric for assessing the complexity of the software 
products created by trainee developers. This assessment approach takes advantage of 
characteristics typically found in block-oriented software development frameworks like 
Scratch or App Inventor. We evaluated 80 Scratch projects collecting a metric related to 
the “When” event listener count, and we investigated the value delivered by this count, 
its common traits and differentiation with respect to other metrics already proposed in 
the available literature. We found that, in an evaluation with respect to other charac-
teristics found in Scratch projects, “When” delivers a distinct and complementary ap-
proach to software complexity (that is, Cyclomatic Complexity) in products developed 
using block-oriented software development tools, shedding light on the way that trainees 
implement their knowledge in the form of a more complex software product.

The paper is structured as follows. Section 2 reviews background literature, related 
work, and relevant items for end-user software engineering. Section 3 introduces When, 
a metric to complement the structural/complexity metrics. Section 4 describes the case 
study that has been executed to investigate the correlation between the proposed metric 
and the existing complexity metrics. Section 5 reports the results obtained, and Section 
6 discusses the findings of this study. Finally, Section 7 concludes the present work and 
provides directions for further research.

2. Background and Related Work

Block-Based Programming Languages (BBPL) have become a vital tool for an initial 
approach to software development both for students and professionals. Statistics pro-
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vided by relevant BBPLs platforms count users and products in millions: as of 2019, 
Scratch repository hosts over 37 million projects created by over 35 million registered 
users2; App Inventor counts over 8.3 million users who have created over 34 million 
mobile apps3. 

The need to assess learners’ software products has led to the onset of research into 
the analysis of code written in BBPLs, in particular with the goal of assessing Compu-
tational Thinking learning (Fronza and Pahl, 2018) by assessing the development of CT 
concepts, practices, and perspectives (Brennan and Resnick 2012) (Fronza et al., 2017). 
Nevertheless, there are not many methods to analyze BBPL projects, and most of them 
have been designed for Scratch. Of note is the project called Dr. Scratch, which analy-
ses a Scratch project to assign a Computational Thinking (CT) score and detects bad 
programming habits or potential errors (Moreno-León et al., 2015). Another project 
called Ninja Code Village (Ota et al., 2016) automatically assesses CT concepts in 
Scratch. 

One research challenge into this area is the definition of the appropriate set of met-
rics that need to be extracted for quality assessment. As shown in Table 1, some effort 
has been spent on mapping the metrics that are used in professional programming to 
the BBPLs environment (Hermans and Aivaloglou, 2016). S. Grover (2017) described 
several difficulties novice programmers exhibit in introductory setting, such as assign-
ing meaningful names to variables. J. Waite (2017) explored code smells in BBPLs. 
The same goal was pursued by F. Hermans and E. Aivaloglou (2016) for the specific 
case of Scratch. 

Research and practitioner literature on Software Engineering offers different ap- and practitioner literature on Software Engineering offers different ap-
proaches to evaluate the complexity of a software product. Examples of standard met-
rics used in a professional setting are Cyclomatic Complexity and the Halstead suite of 
metrics; however, they use source code characteristics like conditions, decisions, and 
operators that are hard to replicate in a BBPL context. Moreover, it is necessary to un-

2 https://scratch.mit.edu/statistics/
3 http://ai2.appinventor.mit.edu/stats

Table 1 
Quality metrics for BBPLs

Metric Definition Ref.

Names Percentage of components that have not been renamed (Waite, 2017)
Superfluous stuff Code blocks left lying around (Waite, 2017)
Duplication Similar computations or events occur in multiple places in 

the program (i.e., it could be implemented more elegantly, for 
example by using a loop) 

(Waite, 2017), 
(Hermans and 
Aivaloglou, 2016)

Long method A group of blocks grows very large, which implies lack of 
decomposition and design 

(Waite, 2017)

(Hermans and 
Aivaloglou, 2016)

Variables Variables have a meaningful name (Grover, 2017)
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derstand the conditions intrinsic to BBPL that can as well provide additional insights for 
the understanding of the complexity of a piece of software.

An approach to understanding the effectiveness of the educational process of trainee 
developers is to understand the complexity of the products they create. The term soft-
ware complexity has been defined in several ways by different people. Basili (1980) de-
fined complexity as a measure of resources expended by a system while interacting with 
a piece of software to perform a given task. The interacting system can be a computer or 
a programmer. In the first case, complexity describes the execution time and amount of 
storage needed to perform the computation. In the latter case, complexity is defined in 
terms of the difficulty of performing tasks such as coding, debugging, testing, or modify-
ing the software (Kearney et al.,1986). 

Software complexity metrics provide a quantified expression of the inherent char-
acteristics of software (Kevrekidis et al., 2009), such as reliability (Lew et al., 1988), 
maintainability (Kevrekidis et al., 2009) and numerous other quality factors of software 
systems. Increased software complexity means that maintaining and modifying will take 
longer, will cost more, and will result in more errors. 

Although software complexity cannot be eliminated, it can be controlled with the use 
of a meaningful complexity metric to provide continuous feedback throughout a soft-
ware project to help control the development process. For this reason, with the increased 
usage and sophistication of software applications, many programmers are looking at 
ways of minimizing the complexity associated with software and thereby reduce the 
maintenance costs associated with them. Therefore, many software complexity metrics 
have been proposed over the time (De Silva et al., 2012). 

Kaur and Verna (2016) provided a review of the various complexity metrics that can 
be retrieved in the existing literature. Among these metrics, Cyclomatic Complexity 
(CC) and Halstead’s metrics have been widely used in Software Engineering to estimate 
maintenance effort and guide software testing, by identifying complicated and hard to 
maintain modules (Kafura and Reddy, 1987) (Moreno-León et al., 2016).

The Cyclomatic Complexity (CC) metric was introduced by Thomas J. McCabe in 
1976 to measure the maximum number of linearly independent paths through a control 
flow graph (McCabe, 1976), and is considered as an indicator of testability and main-(McCabe, 1976), and is considered as an indicator of testability and main-, and is considered as an indicator of testability and main-
tainability of a program (Ammar et al., 2001). Halstead’s metrics identify specific prop-
erties of a program that can be measured and the relationships between them to assess 
software complexity (Halstead, 1977). These metrics have been compared in the last 
decades, with reported consistency between them (Henry et al., 1981) (Moreno-León 
et al., 2016). Finally, a simple yet expressive metric is Lines of Code (LOC), as it evalu-
ates the size of a software product in terms of the number of executable lines of code, 
excluding comments and blank lines.

To understand the importance of the evaluation of the software product in an indus-
trial or productive context, international standards like ISO/IEC 25010 define Quality 
in use as “the degree to which a product or system can be used by specific users to 
meet their needs to achieve specific goals with effectiveness, efficiency, freedom from 
risk and satisfaction in specific contexts of use”. For End-User Software Engineering 
(EUSE), this means a perspective of quality from a standpoint in which the point of 
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view is of the user in the role of “end-user”, as this dimension of quality is observable 
only when the final product is used in real-world execution conditions. Quality in use 
represents the point of view of the final customer concerning the quality of the prod-
uct. Moreover, the subjective appreciation of the end-user influences the evaluation of 
the quality in use. ISO/IEC 25010 defines two dimensions of quality: in the context 
of EUSE, internal and external quality characteristics may define a view of “quality” 
from a standpoint in which the point of view is of the user in her/his role of “devel-
oper”, making this perspective of high interest for our analysis. As ISO 25010 sheds 
light on strategies to evaluate relevant quality characteristics of the software product, 
it opens the door for proposing measuring strategies as it does not recommend how to 
track quality attributes concretely. No additional literature resources were found to lay 
the foundation on how to relate standardized software quality attributes to the context 
of BBPLs. 

3. When: a Proposed Metric to Complement the Structural/Complexity Metrics

Evaluating the accomplishment of the educational process of a trainee requires a quanti-valuating the accomplishment of the educational process of a trainee requires a quanti-
tative way to observe and assess the produced results. Understanding BBPL-originated 
software products implies the challenge of evaluating the quality of source artifacts 
without having traditional source code. The source artifacts are blocks that are sorted 
and matched to follow a flow, execute a sentence, or evaluate a condition; therefore, we 
need to take an approach that differs from traditional source code metrics. Structurally, 
as proposed by Cyclomatic Complexity or Halstead’s metrics, we can evaluate the pres-
ence of conditions, decisions, or operators. However, it is necessary to be open to ad-
ditional characteristics, intrinsic to BBPLs, that can shed additional light on the quality 
of the final software piece. 

3.1. Events

In a common language definition, one can understand an event as “something that hap-
pens”. This definition holds for traditional source code programming languages and BB-
PLs. Events are situations that occur during the flow of execution of a piece of software, 
and that can be caught or detected by a specific block of code called Event Listener to 
eventually drive or impact the flow of execution of the program. 

3.2. Event Listeners

A relevant source artifact present in BBPLs is the event listener. Event listeners are lines 
of code that are placed to detect if a particular event has happened. Typically, an action 
or event handler is associated with the event, to indicate the action that shall be triggered 
in the case that the event is detected. 
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Depending on the programming language used, event listeners can be easily em-
bedded into software code. Taking an example in HTML and JavaScript, we can see 
how web browser or web document events allow the JavaScript language to implicitly 
register different event handlers on elements in an HTML document. The event listener 
onClick awaits the user’s click on the button to trigger the execution of the method 
“execute_something()”.

<button onClick=”execute_something()”>Click here</button>

In the following example in the Java language, let myButton be an arbitrary button 
visible in the user interface. The method setOnClickListener registers an event in-
terface to the button, while the OnClickListener method actually “listens” (awaits) 
for the button to be clicked. The lines of code enclosed by the method onClick handle 
the event, that is, define what shall be executed when is myButton pressed.

myButton.setOnClickListener(new View.OnClickListener() {
    public void onClick(View v) {
    }
});

In BBPLs, where lines of code are not evident, event listeners are represented in the 
form of blocks whose function is to “listen” or await for a specific execution circum-
stance to happen, and once such circumstance occurs, detect it so that a decision is made 
and an action is executed. Control flow palettes typically expose several events for the 
developer to leverage, and those blocks can be dragged and dropped always showing an 
enclosing structure to embed the series of instructions that are to be executed should the 
event happens during the execution of the program. Examples of events that are typically 
caught are “When a Button is Clicked” (Fig. 1), “When a Sprite is Dragged”, or “When 
a Sprite is touching a border”, etc.

Event listeners can be roughly compared with conditions: conditions are logically 
evaluated according to an input and depending on the result (i.e., a TRUE or FALSE 
Boolean value), a decision is made, and an execution flow is followed. Similarly, event 
listeners do not necessarily calculate and evaluate a Boolean value but catch the pres-
ence of a certain execution circumstance and consequently trigger an action or impact 
an execution flow. 

Fig. 1. Scratch event listener.
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3.3. Event Listeners

We propose to leverage the presence of relevant event listeners to define an additional 
indicator of complexity specifically thought for BBPLs. Although event listeners are 
common in web and mobile programming, little research has been done to analyze the 
presence of event listeners to relate them to a software metric. For example, in the con-
text of web programming, Watanabe et al. (2015) counted the number of JavaScript 
mouse event listeners to calculate a metric that identifies how focus navigation has been 
implemented on the web.

The metric proposed by this work is called “When” and represents the total number 
of When event listener blocks present in the collection of source blocks of the software 
piece. In Scratch, a When block is a graphic representation of an event listener that waits 
for an individual situation to occur to trigger an action. Those events can be relevant to 
GUI interaction (e.g., “When the user hits a key”) or to interaction between elements of 
the process flow (“When a sprite touches a border”). 

We believe that, in the context of BBPLs, the count of When blocks might pro-
vide an indication of the increasing difficulty in modifying and understanding the 
code (i.e., complexity), since the presence of an event listener implies the necessity 
of evaluating a condition within the execution context, in a similar manner in which 
internal source blocks or source code conditions are evaluated and thus decisions 
are made. Traditional source code metrics like Cyclomatic Complexity or Halstead’s 
metrics are not sensitive to event-listening and may leave out relevant complexity 
conditions given by the presence of event listener instructions. Furthermore, focusing 
our study on BBPLs positions our analysis in a development environment in which 
we believe that a direct way to associate functionality to user interface elements is via 
event handlers. 

4. Case Study

The goal of our case study is isolating the independent value that the evaluation of event 
listening blocks may deliver to the complete understanding of the complexity of a BBPL-
generated software piece. Therefore, we can formulate our hypothesis as follows:

Hypothesis: The value delivered by the evaluation of the code block “When” 
provides an additional insight that does correlate to complex-
ity and size metrics.

To acquire the numerical data to confirm or reject our hypothesis, we retrieved a 
collection of Scratch projects and ran several evaluations where we calculated When 
and other metrics to relate the presence of When blocks to the structural/complexity 
metric. 
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4.1. Data Extraction

For data extraction, we used Hairball, an open-source, static analysis tool to extract 
metrics from Scratch projects (Boe et al., 2013). The tool is programmed in Python and 
provides plug-ins to perform different types of analysis4. In our case, we have used the 
metrics and blocks plug-ins to extract the following metrics:

Total number of blocks (using  ● blocks.BlockCounts);
Cyclomatic complexity ●  (using metrics.CyclomaticComplexity) of a Scratch 
project, which equals the number of decision points in the code plus one. Deci-
sion points are: if %s then %s, if %s then %s else %s, repeat until, wait until, %s 
and %s, %s or %s;
Halstead’s Vocabulary  ● and Length (using metrics.Halstead) calculation is based 
on the number of distinct operators (n2), the number of distinct operands (n1), the 
total number of operators (N2) and the total number of operands (N1) in a pro-
gram (Moreno-León et al., 2016) (Ruan et al., 2017). For example, in the case 
of the code snippets shown in Fig. 2 we have that: n1 = 4, N1 = 4, n2 = 3, N2 = 4. 
Operands: when %s do, set %s to, %s – %s, get %s; Operators: tick, global time 
(*2), 1. Based on these numbers, following the guidelines of (Moreno-León et al., 
2016), we take into account only Vocabulary and Length, which are calculated as 
follows: Vocabulary: n = n1 + n2; Length: N = N1 + N2.
When (using  ● blocks.BlockCounts): total number of “When” blocks (e.g., when a 
button is clicked).

4.2. Study Sample

The study sample consists of 80 randomly selected Scratch projects. Part of these proj-
ects have been retrieved online from a public Scratch source code repository5. Another 
part of the sample consists of projects that were collected by the authors when teaching 
Scratch in elementary and middle schools. The type and purpose of those projects are 
very diverse; some of them are simple animations, while others imply intensive user 
interaction and complex execution flows. 

4 https://github.com/ucsb-cs-education/hairball
5 https://github.com/LLK/Scratch_1.4/tree/master/Projects

Fig. 2. App Inventor code snippet.
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5. Results 

Table 2 shows the descriptive statistics of the analyzed projects for the different metrics 
listed in Section 4.1.

Table 3 shows the correlations between each of the considered metrics. The values 
settling around 1, as well as the obtained p-values show that the proposed metric When 
has a positive, significant, and robust correlation with Cyclomatic Complexity, Length, 
and Vocabulary. The correlation indicates that the proposed metric When is in line with 
other, classic software engineering complexity metrics. As reported in the existing lit-
erature (Moreno-León et al., 2016), Halstead’s metrics and Cyclomatic Complexity also 
have a positive, significant strong correlation; the same happens between Halstead’s 
Vocabulary and Length.

Fig. 3 shows the scatter plot of the metrics When and Cyclomatic Complexity, togeth-
er with the best fitting line. The coefficient of determination is r2 = .81 (p-value < 0.05), 
which indicates that, in a project, 81% of the variance of When metric can be predicted 
from Cyclomatic Complexity.

Fig. 4, which shows the scatter plot of the metrics When and Halstead’s Vocabulary 
with the best fitting line, depicts a similar situation. In this case r2 = .60 (p-value < 0.05), 
which states a lower accuracy of the linear model than the prior one. The scatter plot of 
the metrics When and Halstead’s Length with the best fitting line (r2 = .73, p-value < 0.05) 
shown in Fig. 5 illustrates a similar behavior. 

The results detailed so far show that more complex projects (i.e., having higher 
CC, Vocabulary, and Length) also have higher values of When metric. However, we 

Table 2 
Metrics extracted from the Scratch projects in the study sample: descriptive statistics

Min 1st qu. Median Mean 3rd qu. Max

Total number of blocks   9.00 30.75   64.00 145.60 129.00 1566.00
Cyclomatic complexity   1.00   4.00   11.00   29.44   21.50   389.00
Halstead length 13.00 64.75 116.50 270.30 254.50 2805.00
Halstead vocabulary 11.00 30.50   46.00   60.31   75.25   340.00
When   1.00   4.00     8.00   22.90   21.00   177.00

Table 3
Correlation between metrics

Cyclomatic 
Complexity

Halstead 
Length

Halstead 
Vocabulary

When

Cyclomatic Complexity 1 0.89** 0.64** 0.90**
Halstead Length 1 0.84** 0.86**
Halstead Vocabulary 1 0.78**
When 1
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Fig. 3. Scatter plot of the metrics When and Cyclomatic Complexity, with best-fitting line.

Fig. 4. Scatter plot of the metrics When and Halstead’s Vocabulary, with best-fitting line.
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are interested in focusing on projects having low complexity: the goal of the When 
metric, indeed, is to provide an easier indication of complexity, which might be es-
pecially useful for novices. For this reason, we are interested in checking if the same 
results hold for projects having lower complexity. As a rule of thumb6, CC should 
always be lower than 20; thus, we selected only the 57 projects in our data set having 
CC ≤ 20, and we repeated the above-presented analysis. Table 4 and Table 5 show 
the descriptive statistics and the correlations between each of the extracted metrics, 
respectively. 

6 https://www.c-sharpcorner.com/article/3-tips-to-reduce-cyclomatic-complexity-in-
c-sharp/

Fig. 5. Scatter plot of the metrics When and Halstead’s Length, with best-fitting line.

Table 4 
Metrics extracted from the Scratch projects in the study sample:  

descriptive statistics (when CC <= 20)

Min 1st qu. Median Mean 3rd qu. Max

Total number of blocks   9.00 26.00 40.00 49.47   70.00 138.00
Cyclomatic complexity   1.00   4.00   6.00   7.98   12.00   20.00
Halstead length 13.00 56.00 80.00 95.75 130.00 256.00
Halstead vocabulary 11.00 24.00 34.00 37.61   48.00   90.00
When   1.00   3.00   5.00   6.37     9.00   28.00
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The analysis of the projects having CC ≤ 20 reveals that the proposed metric When 
still has a positive, strong and significant correlation with Cyclomatic Complexity, while 
the correlation with Length and Vocabulary is lower respect to the previous data set (Ta-
ble 2). The scatter plot in Fig. 6 indicates that, in a project, 64% of the variance of When 
metric can be predicted from CC because the coefficient of determination is r2 = .64 
(p-value < 0.05). This value is lower than before (i.e., when considering the entire data 
set), but still suggests that When can be considered as an indicator of complexity also for 
those projects having lower complexity. 

The situation changes in Fig. 7 and Fig. 8, where the coefficients of determination are 
r2 = 0.30 (p-value < 0.05) and r2 = .20 (p-value < 0.05), respectively. This suggests that 
When cannot be predicted from Vocabulary or Length.

Table 5
Correlation between metrics (when CC <= 20)

Cyclomatic 
Complexity

Halstead 
Length

Halstead 
Vocabulary

When

Cyclomatic Complexity 1 0.69** 0.66** 0.80**
Halstead Length 1 0.90** 0.56**
Halstead Vocabulary 1 0.45**
When 1

Fig. 6. Scatter plot of the metrics When and Cyclomatic Complexity,  
with best-fitting line (projects having CC <= 20).
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Fig. 7. Scatter plot of the metrics When and Halstead’s Vocabulary,  
with best-fitting line (projects having CC <= 20).

Fig. 8. Scatter plot of the metrics When and Halstead’s Length, 
with best-fitting line (projects having CC <= 20).
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6. Discussion 

The quantitative analysis shows a positive, strong and significant correlation between 
the When count with respect to Cyclomatic Complexity, which grants significant level 
of reliability to predict one metric using the other. The analysis showed as well that 
Halstead metrics Vocabulary and Length cannot be associated (that is, predicted) by the 
presence and count of When event listeners. 

Those assertions can be analyzed in a twofold way.  On the one hand, the Cyclo-
matic Complexity is a metric that indicates a level of elaboration that is observable 
through the number of branches or possible ways that the flow of execution may take 
to reach the end of a piece of code. On the other hand, the analyzed Halstead metrics, 
Vocabulary and Length, are instead indicators of the size and operands of a computer 
program. The two approaches provide very distinct insights in terms of Software En-
gineering metrics.

 As an event listener, When associates its behavior to the evaluation of “something 
that happens” and triggers the execution of a set of instructions. With this approach, it is 
easier to understand the stronger association it has with the Cyclomatic Complexity, that 
denotes the unfolding of different branches based on conditionals, and its loose tie with 
metrics that relate to size.

Our hypothesis claims that “the value delivered by the evaluation of the code block 
When provides an additional insight that does correlate to complexity and size metrics”. 
Our data analysis confirms that the When count metric can be an efficient aid to predict 
Cyclomatic Complexity. It is worthy of discussion that When can be calculated more 
straightforwardly: the Cyclomatic Complexity metric is calculated following a formula 
that evaluates the decision points of the code and its eventual branching. The When 
metric, instead, is calculated more directly, as it only associates the count of When event 
listeners present in the analyzed set of blocks. 

Moreover, in the context of the user that develops software using BBPL, assuming a 
beginner, non-expert profile, it is expected that the inexperienced developer prefers a lin-
ear approach to the solution of problems, and that the presence of traditional conditions 
such as if shall be lower (Venables, 2009), posing an additional challenge to calculate 
Cyclomatic Complexity. Instead, event listeners are needed even in very simple Scratch 
projects to trigger actions, including the execution of the project itself (typically with 
the block “When the flag is clicked”). The absence of conditions challenges to evaluate 
the complexity of a project using conditional-based metrics like Cyclomatic Complexity 
since it will return systematically lower values on that metric. 

This opens the opportunity that, from a didactic and pedagogical point of view, eval-
uating When event listeners can shed light on understanding the complexity of projects 
developed by beginners or novice developers that do not have enough experience to 
structure or draw complex execution flows, yet can associate actions to events caught 
in the user interface or by the interaction of components within. In this way, instructors 
can leverage the calculation of this metric to understand how their educational strategies 
have an impact on a particular quality characteristic (i.e., complexity) of the software 
product developed by trainees. 
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7. Open Items and Conclusions

BBPL-originated programs can be complex even without the presence of multiple 
or nested conditions. Without source code, the evaluation of the complexity of such 
projects can be a hard and inefficient task. The presence of event listeners, difficult 
GUI blocks, and other BBPL-intrinsic conditions pose an additional challenge in un-
derstanding, developing, and maintaining pieces of software. Event listeners are found 
to be a relevant source of complexity for software pieces, however, they remain non-
visible to traditional source code metrics like Cyclomatic Complexity or Halstead’s 
metrics as they look for the presence of a particular code structure and take event 
listeners as a simple source code line, even though such line evaluates a condition and 
makes a decision.

Further analysis shall be done to determine if When can be useful to analyze the 
complexity of projects developed by beginners who do structure complex execution 
flows and that would eventually produce very linear projects with low Cyclomatic 
Complexity but more complex in terms of the events that are listened and handled. To 
this end, we recommend extending the analysis performed in this work associating to 
each project a metric that describes the level of expertise of the developer. In this way, 
it can be studied, discussed, and eventually confirmed if the presence of When blocks 
can relate effectively to evaluate the complexity of BBPL-based programs originated 
by novice developers.

As a means of future validation or reproducibility of this study, we recommend 
replicating the analysis proposed in this work using an alternative BBPL like App In-
ventor. App Inventor, like Scratch, is a BBPL framework that allows the development 
of mobile applications for the Android Operating System. App Inventor projects can as 
well be exported and eventually analyzed in Cyclomatic Complexity and event listener 
count (that is, When), to understand if the association found in Scratch projects holds 
as well in other BBPLs. 

In this paper, we proposed an approach to evaluate the complexity of software 
products developed by non-experts. We leveraged the presence of standard event lis-
tener block in BBPLs like Scratch, to propose a software metric called When, whose 
purpose is to shed light on the complexity of BBPL-originated programs taking as 
fundamental characteristic the number of event listeners present in the program. We 
evaluated the count of When event listeners and the impact of such blocks in evaluat-
ing the complexity of the complete software piece. A case study run in 80 Scratch 
projects showed a significant correlation between the When count with respect to 
Cyclomatic Complexity, in particular in structurally complex projects. Projects that 
return a high Cyclomatic Complexity metric deliver as well a high When metric, with 
the consideration that calculating When is more straightforward as the metric only 
associates a block count.

Evaluating software metrics in traditional source-code based computer programs 
can be a challenging yet insightful task, that permits us to understand a more precise 
panorama on how the software is developed, how logic is constructed and how com-
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plex the software product is. Extending this possibility to BBPLs is a precious resource 
since source code is not accessible, yet the logic is openly structured. Having a primary 
means to understand better the complexity of BBPL-based pieces of software opens 
as well the doors to have a better understanding on how non-expert profiles develop 
software, how the acquisition of software development competencies are growth, and 
how end-users create proficiency and attainment in the capacity of developing software 
autonomously. 
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