
Informatics in Education, 2019, Vol. 18, No. 1, 17–39
© 2019 Vilnius University
DOI: 10.15388/infedu.2019.02

17

Approaches to Assess Computational Thinking
Competences Based on Code Analysis in K-12
Education: A Systematic Mapping Study

Nathalia DA CRUZ ALVES,
Christiane GRESSE VON WANGENHEIM, Jean C.R. HAUCK
Department of Informatics and Statistics (INE) – Federal University of Santa Catarina (UFSC)
Florianópolis/SC, Brazil
e-mail: nathalia.alves@posgrad.ufsc.br, {c.wangenheim, jean.hauck}@ufsc.br

Received: September 2018

Abstract. As computing has become an integral part of our world, demand for teaching com-
putational thinking in K-12 has increased. One of its basic competences is programming, often
taught by learning activities without a predefined solution using block-based visual programming
languages. Automatic assessment tools can support teachers with their assessment and grading
as well as guide students throughout their learning process. Although being already widely used
in higher education, it remains unclear if such approaches exist for K-12 computing education.
Thus, in order to obtain an overview, we performed a systematic mapping study. We identified 14
approaches, focusing on the analysis of the code created by the students inferring computational
thinking competencies related to algorithms and programming. However, an evident lack of con-
sensus on the assessment criteria and instructional feedback indicates the need for further research
to support a wide application of computing education in K-12 schools.

Keywords: assessment, code analysis, block-based visual programming language, computa-
tional thinking, K-12 education.

1. Introduction

The digital age has transformed the world and workforce, making computing and IT
technologies part of our daily lives. In this context, it becomes imperative that citizens
have a clear understanding of the principles and practice of computer science (CSTA,
2016). Therefore, several initiatives have emerged around the world to popularize the
teaching of computing including it into K-12 education (Bocconi et al., 2016). Teaching
computing in school focuses on computational thinking, which refers to expressing solu-
tions as computational steps or algorithms that can be carried out by a computer (CSTA,
2016). It involves solving problems, designing systems, and understanding human be-

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck18

havior, by drawing on the concepts fundamental to computer science (Wing, 2006). Such
a competence is valuable well beyond the computing classroom, enabling students to
become computationally literate and fluent to fully engage with the core concepts of
computer science (Bocconi et al., 2016; CSTA, 2016).

Computing is typically taught by creating, testing and refining computer programs
(Shute et al., 2017; CSTA, 2016; Lye and Koh, 2014; Grover and Pea, 2013). In K-12
education, block-based visual programming languages, such as Scratch (https://
scratch.mit.edu), Blockly (https://developers.google.com/blockly/),
BYOB/Snap! (http://snap.berkeley.edu) or App Inventor (http://appinven-
tor.mit.edu/explore/) can be used to teach programming (Lye and Koh, 2014).
Typically, programming courses include hands-on programming activities to allow stu-
dents to practice and explore computing concepts as part of the learning process (Wing,
2006; Grover and Pea, 2013; Lye and Koh, 2014). This includes diverse types of pro-
gramming activities, including closed and open-ended problems for which a correct
solution exists (Kindborg and Scholz, 2006). Many computational thinking activities
also focus on creating solutions to real-world problems, where solutions are software
artifacts, such as games/animations or mobile apps (Monroy-Hernández and Resnick,
2008; Fee and Holland-Minkley, 2010). In such constructionist-based problem-based
learning environments, student learning centers on complex ill-structured, open-ended
problems for which no single correct answer exist (Gijselaers, 1996; Fortus et al., 2004;
Lye and Koh, 2014).

An essential part of the learning process is assessment and feedback (Hattie and Timper-
ley, 2007; Shute, 2008; Black and Wiliam, 1998). Assessment guides student learning and
provides feedback to both the student and the teacher (Ihantola et al., 2010; Stegeman
et al., 2016). For effective learning, students need to know their level of performance on a
task, how their own performance relates to good performance and what to do to close the
gap between those (Sadler, 1989). Formative feedback, thus, consists of informing the stu-
dent with the intention to modify her/his thinking or behavior for the purpose of improving
learning (Shute, 2008). Summative assessment aims to provide students with information
concerning what they learned and how well they mastered the course concepts (Merrill
et al., 1992; Keuning et al., 2016). Assessment also helps teachers to determine the extent
to which the learning goals are being met (Ihantola et al., 2010).

Despite the many efforts aimed at dealing with the assessment of computational think-
ing (Grover and Pea, 2013; Grover et al., 2015), so far there is no consensus nor stan-
dardization on strategies for assessing computational thinking (Brennan and Resnick,
2012; Grover et al., 2014). There seems to be missing a clear definition of which as-
sessment type to use, such as standardized multiple-choice or performance assessments
based on the analysis of the code developed by the students. In this context, performance
assessment seems to have a number of advantages over traditional assessments due to
its capacity to assess higher-order thinking (Torrance, 1995; Ward and Lee, 2002). Thus,
analyzing the student’s code with respect to certain qualities may allow to assess the stu-
dent’s ability to program and, thus, to infer computational thinking competencies (Liang
et al., 2009; Moreno-León et al., 2017). Yet, whereas the assessment of well-structured
programming assignments with a single correct answer is straightforward (Funke, 2012),
assessing complex, ill-structured problems for which no single correct solution exist is

Approaches to Assess Computational Thinking Competences Based on Code... 19

more challenging (Eseryel et al., 2013; Guindon, 1988). In this context, the assessment
can be based on the assumption that certain measurable attributes can be extracted from
the code, evaluating whether the students’ programs show that they have learned what
is expected by using rubrics. Rubrics use descriptive measures to separate levels of per-
formance on the achievement of learning outcomes by delineating the various criteria
associated with learning activities, and indicators describing each level to rate students’
performance (Whittaker et al., 2001; McCauley, 2003). When used in order to assess
programming activities, a rubric typically maps a score to the ability of the student to
develop a software artifact indirectly inferring the achievement of computational thinking
competencies (Srikant and Aggarwal, 2013). Grades are determined by converting rubric
scores to grades. Thus, the created outcome is assessed and a performance level for each
criterion is assigned as well as a grade in order to provide instructional feedback.

Rubrics can be used manually to assess programming activities, yet being a time-
consuming activity representing considerable effort (Keuning et al., 2016), which may
also hinder scalability of computing education (Eseryel et al., 2013; Romli et al., 2010;
Ala-Mutka, 2005). Furthermore, due to a critical shortage of K-12 computing teachers
(Grover et al., 2015), many non-computing teachers introduce computing in an inter-
disciplinary way into their classes, facing challenges also with respect to assessment
(DeLuca and Klinger, 2010; Popham, 2009; Cateté et al., 2016; Bocconi et al., 2016).
This may further complicate the situation leaving the manual assessment error prone due
to inconsistency, fatigue, or favoritism (Zen et al., 2011).

In this context, the adoption of automatic assessment approaches can be beneficial
easing the teacher’s workload by enabling them to focus on the manual assessment of
complex, subjective aspects such as creativity and/or leaving more time for other activi-
ties with students (Ala-Mutka and Järvinen, 2004). It can also help to ensure consistency
and accuracy of assessment results as well as eliminate bias (Ala-Mutka, 2005; Romli
et al., 2010). Students can use this feedback to improve their programs and programming
competencies. It can provide instant real-time instructional feedback in a continuous
way throughout the learning activity, allowing them to make progress without a teacher
by their side (Douce et al., 2005; Koh et al., 2014a; Wilcox, 2016; Yadav et al., 2015).
Thus, automating the assessment can be beneficial for both students and teachers, im-
proving computing education, even more in the context of online learning and MOOCs
(Vujosevic-Janicic et al., 2013).

As a result, automated grading and assessment tools for programming exercises
are already in use in many ways in higher education (Ala-Mutka, 2005; Ihantola et al.,
2010; Striewe and Goedicke, 2014). They typically involve static and/or dynamic code
analysis. Static code analysis examines source code without executing the program. It is
used for programming style assessment, syntax and semantics errors detection, software
metrics, structural or non-structural similarity analysis, keyword detection or plagiarism
detection, etc. (Truong et al., 2004; Song et al., 1997; Fonte et al., 2013). Dynamic
approaches focus on the execution of the program through a set of predefined test cas-
es, comparing the generated output with the expected output (provided by test cases).
The main aim of dynamic analysis is to uncover execution errors and to evaluate the
correctness of a program (Hollingsworth, 1960; Reek, 1989; Cheang et al., 2003). And,
although there exist already a variety of reviews and comparisons of automated systems

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck20

for assessing programs, they are targeted on text-based programming languages (such as
Java, C/C++, etc.) in the context of higher education (Ala-Mutka, 2005; Ihantola et al.,
2010; Romli et al., 2010; Striewe and Goedicke, 2014; Keuning et al., 2016).

Thus, the question that remains is which approaches exist and what are their charac-
teristics to support the assessment and grading of computational thinking competencies,
specifically on the concept of algorithms and programming, based on the analysis of
code developed with block-based visual programming languages in K-12 education.

2. Related Work

Considering the importance of (automated) support for the assessment of practical pro-
gramming activities in computing education, there exist several reviews of automated
assessment approaches. These reviews analyze various aspects, such as feedback gener-
ation, implementation aspects as well as the impact of such tools on learning and teach-
ing (Ala-Mutka, 2005; Ihantola et al., 2010; Romli et al., 2010; Caiza and Del Alamo,
2013; Striewe and Goedicke, 2014; Keuning et al., 2016). Ala-Mutka (2005) presents
an overview on several automatic assessment techniques and approaches, addressing the
aspect on grading as well as the instructional feedback provided by the tools. Ihantola
et al. (2010) present a systematic review of assessment tools for programming activi-
ties. The approaches are discussed from both a technical and pedagogical point of view.
Romli et al. (2010) describe how educators taught programming in higher education as
well as indicating preferences of dynamic or static analysis. Caiza and Del Alamo (2013)
analyze key features related to the implementation of approaches for automatic grading,
including logical architecture, deployment architecture, evaluation metrics to display
on how the approach can establish a grade, and technologies used by the approaches.
Striewe and Goedicke (2014) present the relation of technical results of the automated
analysis in object-oriented programming with didactic benefits and the generation of
feedback. Keuning et al. (2016) review the generation of automatic feedback. They also
analyze the nature, the techniques used to generate feedback, the adaptability of tools
for teachers to create activities and influence feedback, and synthesize findings about the
quality and effectiveness of the assessment provided by the tools.

However, these existing reviews focus on approaches to assess code created with
text-based programming languages in the context of teaching computing in higher edu-
cation. Differently, the objective of this article is to provide an in-depth analysis of ex-
isting approaches for the assessment of programming activities with block-based visual
programming languages in the context of K-12 education.

3. Definition and Execution of the Systematic Mapping Study

In order to elicit the state of the art on approaches to assess computer programs developed
by students using block-based visual programming languages in K-12 education, we per-
formed a systematic mapping following the procedure defined by Petersen et al. (2008).

Approaches to Assess Computational Thinking Competences Based on Code... 21

3.1. Definition of the Review Protocol

Research Question. Which approaches exist to assess (and grade) programming ac-
tivities based on code created with block-based visual programming languages in the
context of K-12 education?

We refined this research question into the following analysis questions:
Program analysis ●
AQ1: Which approaches exist and what are their characteristics?
AQ2: Which programming concepts related to computational thinking are

analyzed?
AQ3: How are these programming concepts related to computational thinking

analyzed?
Instructional feedback and assessment ●
AQ4: If, and how a score is generated?
AQ5: If, and in which manner instructional feedback is presented?
Automation of assessment ●
AQ6: If, and how the approach has been automated?

Data source. We examined all published English-language articles that are available
on Scopus being the largest abstract and citation database of peer-reviewed literature,
including publications from ACM, Elsevier, IEEE and Springer with free access through
the Capes Portal1.

Inclusion/exclusion criteria. We consider only peer-reviewed English-language arti-
cles that present an approach to the assessment of algorithms and programming concepts
based on the analysis of the code. We only consider research focusing on approaches
for block-based visual programming languages. And, although our primary focus is on
K-12 education, we include also approaches that cover concepts commonly addressed in
K-12, but which might have been used on other educational stages (such as higher edu-
cation). We consider articles that have been published during the last 21 years, between
January 1997 (the following year in which the first block-based programming language
was created) and August 2018.

We exclude approaches that analyze code written with text-based programming
languages, assess algorithms and programming concepts/practices based on other
sources than the code developed by the student, such as tests, questionnaires, inter-
views, etc., or perform code analysis outside an educational context, e.g., software
quality assessment.

Quality criteria. We consider only articles that present substantial information on the
presented approach in order to enable the extraction of relevant information regarding
the analysis questions.

1 A web portal for access to scientific knowledge worldwide, managed by the Brazilian Ministry on
Education for authorized institutions, including universities, government agencies and private companies
(www.periodicos.capes.gov.br).

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck22

Definition of search string: In accordance with our research objective, we define the
search string by identifying core concepts considering also synonyms as indicated in
Table 1. The term “code analysis” is chosen, as it expresses the main concept to be
searched. The terms “static analysis”, “grading” and “assessment” are commonly used
in the educational context for this kind of code analysis. The term “visual program-
ming” is chosen to restrict the search focusing on visual programming languages. We
also include the names of prominent visual programming languages used in K-12 as
synonyms.

Using these keywords, the search string has been calibrated and adapted in confor-
mance with the specific syntax of the data source as presented in Table 2.

3.2. Execution of the Search

The search has been executed in August 2018 by the first author and revised by the co-
authors. In the first analysis stage, we quickly reviewed titles, abstracts and keywords to
identify papers that matched the exclusion criteria, resulting in 36 potentially relevant
articles based on the search results. In the second selection step, we analyzed the com-
plete text of the pre-selected articles in order to check their accordance to the inclusion/
exclusion criteria. All authors participated in the selection process and discussed the se-
lection of papers until a consensus was reached. Table 3 presents the number of articles
found and selected per stage of the selection process.

Table 1
Keywords

Core concepts Synonyms

Code analysis Static analysis, grading, assessment
Visual programming Visual language, scratch, app inventor, snap, blockly

Table 2
Search string

Repository Search string

Scopus ((“code analysis” OR “static analysis” OR grading OR assessment)
AND (“visual language” OR scratch OR “app inventor” OR snap OR
blockly) AND PUBYEAR > 1996)

Table 3
Number of articles per selection stage

Initial search results Search results analyzed Selected after 1° stage Selected after 2° stage

2550 2550 36 23

Approaches to Assess Computational Thinking Competences Based on Code... 23

Many articles encountered in the searches are outside of the focus of our research
question aiming at other forms of assessment such as tests (Weintrop and Wilensky,
2015) or other kinds of performance results. Several articles that analyze other issues
such as, for example, the way novice students program using visual programming
languages (Aivaloglou and Hermans, 2016) or common errors in Scratch programs
(Techapalokul, 2017) have also been left out. Other articles have been excluded as they
describe approaches to program comprehension (e.g., Zhang et al., 2013; Kechao et al.,
2012), rather than the assessment of students’ performance. We discovered a large num-
ber of articles presenting approaches for the assessment of code created with text-based
programming languages (e.g. Kechao et al., 2012), not considering block-based visual
programming languages, which, thus, have been excluded. Articles that present an ap-
proach for evaluating other topics that do not include algorithms and programming,
e.g., joyfulness and innovation of contents, were also excluded (Hwang et al., 2016).
Complete articles or work in progress that meet all inclusion criteria, but do not present
sufficient information with respect to the analysis question have been excluded due the
quality criterion (e.g., Grover et al., 2016; Chen et al., 2017). In total, we identified 23
relevant articles with respect to our research question (Table 4).

All relevant articles encountered in the search were published within the last nine
years as shown in Fig. 1.

Table 4
Relevant articles found in the search

ID Reference Article title

 1 (Kwon and Sohn, 2016a) A Method for Measuring of Block-based Programming Code Quality
 2 (Kwon and Sohn, 2016b) A Framework for Measurement of Block-based Programming Language
 3 (Franklin et al., 2013) Assessment of Computer Science Learning in a Scratch-Based Outreach

Program
 4 (Boe et al., 2013) Hairball Lint-inspired Static Analysis of Scratch Projects
 5 (Moreno and Robles, 2014) Automatic detection of bad programming habits in scratch A preliminary

study
 6 (Moreno-León and Robles,

2015)
Dr. Scratch – A web tool to automatically evaluate scratch projects

 7 (Moreno-León et al., 2016) Comparing Computational Thinking Development Assessment Scores
with Software Complexity Metrics

 8 (Moreno-León et al., 2017) On the Automatic Assessment of Computational Thinking Skills – A
Comparison with Human Experts

 9 (Koh et al., 2014a) Real time assessment of computational thinking
10 (Koh et al., 2014b) Early validation of computational thinking pattern analysis
11 (Koh et al., 2010) Towards the Automatic Recognition of Computational Thinking for

Adaptive Visual Language Learning
12 (Basawapatna et al., 2011) Recognizing Computational Thinking Patterns
13 (Johnson, 2016) ITCH Individual testing of computer homework for scratch assignments
14 (Seiter and Foreman, 2013) Modeling the Learning Progressions of Computational Thinking of Primary

Grade Students

Continued on next page

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck24

Table 4 - continued from previous page

ID Reference Article title

15 (Ota et al., 2016) Ninja code village for scratch – Function samples function analyser and
automatic assessment of computational thinking concepts

16 (Werner et al., 2012) The Fairy Performance Assessment Measuring
17 (Denner et al., 2012) Computer games created by middle school girls: Can they be used to

measure understanding of computer science concepts?
18 (Wolz et al., 2011) Scrape: A tool for visualizing the code of scratch programs
19 (Maiorana et al., 2015) Quizly – A live coding assessment platform for App Inventor
20 (Ball and Garcia, 2016) Autograding and Feedback for Snap!: A Visual Programming Language.
21 (Ball, 2017) Autograding for Snap!
22 (Gresse von Wangenheim

et al., 2018)
CodeMaster – Automatic Assessment and Grading of App Inventor and
Snap! Programs

23 (Funke et al., 2017) Analysis of Scratch Projects of an Introductory Programming Course for
Primary School Students

4. Data Analysis

To answer the research question, we present our findings with respect to each of the
analysis questions.

4.1. Which Approaches Exist and what are their Characteristics?

We found 23 relevant articles describing 14 different approaches, as some of them pres-
ent the same approach just from a different perspective. Most approaches have been
developed to assess code created with Scratch. The approaches also differ with respect to
the type of programming activity for which they are designed as shown in Table 5.

Fig. 1. Amount of publications presenting approaches on code analysis
of visual programming languages in the educational context per year.

Approaches to Assess Computational Thinking Competences Based on Code... 25

Table 5
Overview of the characteristics of the approaches encountered

ID Name of the approach Block-based visual
programming language

Type of programming activity
Open-ended
well-structured
problem with a
correct solution
known in advance

Open-ended
ill-structured
problem without
a correct solution
known in advance

1 and 2 Approach by Kwon and
Sohn

Visual programming
language in general

x

3 and 4 Hairball Scratch x
5, 6, 7 and 8 Dr. Scratch Scratch x
9, 10, 11 and 12 CTP/PBS/REACT AgentSheets x
13 ITCH Scratch x
14 PECT Scratch x
15 Ninja Code Village Scratch x
16 Fairy Assessment Alice x
17 Approach by Denner,

Werner and Ortiz
Stagecast Creator x

18 Scrape Scratch x
19 Quizly App Inventor x
20 and 21 Lambda Snap! x
22 CodeMaster App Inventor and Snap! x
23 Approach by Funke, Gel-

dreich and Hubwieser
Scratch x

4.2. Which Programming Concepts Related to Computational Thinking
are Analyzed?

All approaches carry out a code analysis aiming at measuring the competence of pro-
gramming concepts as a way of assessing computational thinking. Performing a prod-
uct-oriented analysis, analyzing the code itself, the approaches look for indicators of
concepts of algorithms and programming related to computational thinking practices.
In accordance to the CSTA K-12 computer science framework (CSTA, 2016), most ap-
proaches analyze four of the five subconcepts related to the core concept algorithms
and programming: control, algorithms, variables and modularity (Table 6). None of
the approaches explores the subconcept program development. Thus, although, not di-
rectly measuring all the dimensions of computational thinking, these approaches intend
to assess computational thinking indirectly by measuring algorithms and programming
concepts through the presence of specific algorithms and program commands. Other
approaches, such as CTP (Koh et al., 2014b), analyze computational thinking patterns,
including generation, collision, transportation, diffusion and hill climbing.

Some approaches also outline the manual analysis of elements related to the content
of the program developed, such as creativity and aesthetics (Kwon and Sohn, 2016b;
Werner et al., 2012). The functionality of the program is analyzed only by dynamic

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck26

code analysis or manual approaches. Two approaches (Kwon and Sohn, 2016b; Denner
et al., 2012) analyze the completeness level by analyzing if the program has several
functions, or in case of games, several levels. Ninja Code Village (Ota et al., 2016) also
analyzes if there are general-purpose functions in the code, for example, if, in a game,
a “jump” function has been implemented. Three approaches analyze code organization
or documentation, e.g., meaningful naming for variables or creating procedures to orga-
nize the code (Denner et al., 2012; Gresse von Wangenheim et al., 2018; Funke et al.,
2017). Only two (manual) approaches analyze elements related to usability (Denner
et al., 2012; Funke et al., 2017).

Some approaches also analyze specific competences regarding the characteristics of
the programming language and/or program type, such as computational thinking pat-
terns in games (Koh et al., 2014b). However, just based on the code created it may not

Table 6
Overview on the analyzed elements

Approach Analyzed elements
In relation to the
CSTA K-12 curri-
culum framework

 Additional elements

A
lg

or
ith

m
s

Va
ria

bl
es

C
on

tro
l

M
od

ul
ar

ity

D
ev

el
op

m
en

t o
f p

ro
gr

am
s

D
es

ig
n

te
ch

ni
qu

e

C
re

at
iv

ity

A
es

th
et

ic
s

Fu
nc

tio
na

lit
y

C
om

pl
et

en
es

s l
ev

el

In
iti

al
iz

at
io

n

C
om

pu
ta

tio
na

l T
hi

nk
in

g
Pa

tte
rn

s

Fu
nc

tio
n

de
te

ct
io

n

C
od

e
or

ga
ni

za
tio

n
an

d
do

cu
m

en
ta

tio
n

U
sa

bi
lit

y
de

si
gn

Approach by Kwon and Sohn x x x x x x x x x
Hairball x x x
Dr.Scratch x x x x
CTP/PBS/REACT x x x x
ITCH x x x x x
PECT x x x x x
Ninja Code Village x x x x x
Fairy Assessment x x x x x
Approach by Denner, Werner and Ortiz x x x x x x x x x
Scrape x x x x x
Quizly x x x x x
Lambda x x x x x
CodeMaster x x x x x
Approach by Funke, Geldreich and
Hubwieser

x x x x x x x

Approaches to Assess Computational Thinking Competences Based on Code... 27

possible to analyze fundamental practices, such as recognition and definition of com-
putational problems (Brennan and Resnick, 2012). The assessment of other complex
aspects, such as creativity is also difficult to automate, reflected by the fact that no au-
tomated approach with respect to this criterion has been encountered. To evaluate these
topics other complementary forms of evaluation should be used, such as, artifact-based
interviews and design scenarios (Brennan and Resnick, 2012).

4.3. How are these Programming Concepts Related to
Computational Thinking Analyzed?

The approaches analyze code in different ways, including automated static or dynamic
code analysis or manual code analysis. The majority of the encountered approaches uses
static code analysis (Table 7). This is also related to the fact that the type of analysis de-
pends on the type of programming activity. Only in case of open-ended well-structured
problems with a solution known in advance, it is possible to compare the students’ pro-
gram code with representations of correct implementations for the given problem, thus
allowing dynamic code analyses.

All approaches that focus on the analysis of activities with open-ended ill-structured
problems are based on static code analysis, detecting the presence of command blocks.
This allows identifying which and how often each command is used. In order to mea-
sure computational thinking competences, static approaches analyze the code in order to
detect the presence of specific program commands/constructs inferring from their pres-
ence the learning of algorithms and programming concepts. For example, to measure
competence with respect to the subconcept control, that specifies the order in which

Table 7
Overview on analysis types

Approach Automated analysis Manual
analysis Static analysis Dynamic analysis

Approach by Kwon and Sohn x
Hairball x
Dr.Scratch x
CTP/PBS/REACT x
ITCH x x
PECT x
Ninja code village x
Fairy Assessment x
Approach by Denner, Werner and Ortiz x
Scrape x
Quizly x
Lambda x x
CodeMaster x
Approach by Funke, Geldreich and Hubwieser x

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck28

instructions are executed, they check if the student used a loop command in the program.
This type of approach assumes that the presence of a specific command block indicates
a conceptual encounter (Brennan and Resnick, 2012).

Based on the identified quantities of certain commands, further analyses are per-
formed, for example, calculating sums, averages and percentages. The results of the
analysis are presented in various forms, including charts with different degrees of detail.
For example, the Scrape tool (Wolz et al., 2011) presents general information about
the program, the percentage of each command present in the project as well as the ex-
act number of times each command was used per category. Some approaches present
the results of the static analysis on a more abstract level beyond the quantification of
commands (Moreno-León and Robles, 2015; Ota et al., 2016; Gresse von Wangenheim
et al., 2018). An example is the Dr. Scratch tool (Moreno-León and Robles, 2015) that
analyzes concepts such as abstraction, logic and parallelism providing a score for each
concept based on a rubric.

Programming activities with open-ended well-structured problems can also be as-
sessed adopting static code analysis, typically by comparing the students’ code with
the representation of the correct solution pre-defined by the instructor. In this case,
the analysis is carried out by checking if a certain set of commands is present in the
student’s program (e.g., (Koh et al., 2014a)). Yet, this approach requires that for each
programming exercise the teacher or the instructional designer previously programs a
model solution.

Some approaches adopt a dynamic code analysis (e.g., (Maiorana et al., 2015)). In
this case, tests are run in order to determine if the solution of the student is correct based
on the output produced by the program. However, adopting this approach requires at
least the predefinition of the requirements and/or test cases for the programming ac-
tivity. Another disadvantage of this kind of black-box testing is that it examines the
functionality of a program without analyzing its internal structure. Thus, a solution that
generates a correct result may be considered correct, even when not using the intended
programming constructs, e.g., repeating the same command several times instead of
using a loop construct. In addition to these basic types of analysis, ITCH (Johnson,
2016) adopts a hybrid approach combining dynamic analysis (through custom tests)
and static analysis for open-ended well-structured problems with a correct solution
known in advance.

Several approaches rely on manual code analysis for either type of activity (with or
without a solution known in advance) typically using rubrics. An example is the Fairy
Assessment approach (Werner et al., 2012) using a rubric to assess the code for open-
ended well-structured problem. The PECT approach presents a rubric to perform manual
analysis for open-ended ill-structured problems (Seiter and Foreman, 2013).

4.4. How do the Approaches Provide Instructional Feedback?

The assessment of the students’ computational thinking competence is done by using
different forms of grading. Some approaches use a dichotomous scoring attribute, as-
sessing the correctness of a program as a whole, e.g., indicating if it is right or wrong.

Approaches to Assess Computational Thinking Competences Based on Code... 29

An example is Quizly (Maiorana et al., 2015) that tests the program of the student and,
then shows a message indicating if the program is correct or incorrect as well as the
error occurred.

Several approaches divide the program or competencies into areas and assign a poly-
tomous score for each area. Therefore, a single program can receive different scores for
each area (Boe et al., 2013). An example is Hairball (Boe et al., 2013), which labels
each area as (i) correct, when the concept was implemented correctly, (ii) semantically
incorrect, when the concept was implemented in a way that does not always work as
intended, (iii) incorrect, when it was implemented incorrectly, or (iv) incomplete, when
only a subset of the blocks needed for a concept was used.

Some approaches provide a composite score based on each of these polytomous
scores. An example is Dr.Scratch (Moreno-León and Robles, 2015) that analyzes sev-
en areas and assigns a polytomous score to each area. In this case, it is assumed that
the use of blocks of greater complexity, such as, “if then, else” implies higher perfor-
mance levels than using blocks of less complexity such as “if then”. A final score is as-

Table 8
Overview on the assignment of scores

Approach Type of scoring Does not
assign a
score

Not identified
Dichotomous
scoring

Polytomous
scoring

Composite score

Approach by Kwon and
Sohn

x (general
formula)

Hairball x (for 4
components)

Dr.Scratch x (for 7
components)

x (sum of poly-
tomous scores)

CTP/PBS/REACT x (for 9
components)

x (general
formula)

ITCH x (reporting
of results)

PECT x (for 24 mul-
ti-dimensional
components)

Ninja code village x (for 8
components)

Fairy Assessment x (formula for
each activity)

Approach by Denner,
Werner and Ortiz

x

Scrape x (statistical
data)

Quizly x
Lambda x
CodeMaster x (for 15

components)
x (sum of poly-
tomous scores)

Approach by Funke, Gel-
dreich and Hubwieser

x

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck30

signed to the student’s program based on the sum of the polytomous scores. This final
composite score indicates a general assessment on a 3-point ordinal scale (basic, de-
veloping, master). The composite score is also represented through a mascot, adopting
gamification elements in the assessment (Moreno-León and Robles, 2015). The tool
also creates a customized certificate that can be saved and printed by the student. Simi-
lar, CodeMaster (Gresse von Wangenheim et al., 2018) assigns a polytomous score
based on either its App Inventor or Snap! Rubric. A total score is calculated through
the sum of the partial scores, and based on the total score a numerical grade and a ninja
badge is assigned.

Another way of assigning a composite score is based on a weighted sum of the in-
dividual scores for each area or considering different variables. The approach presented
by Kwon and Sohn (2016a) evaluates several criteria for distinct areas, each one with
different weights. The CTP approach (Koh et al., 2014b) assigns a total score to the pro-
gram based on primitives related to computational thinking patterns.

The assessment of the approaches is intended to be used in a summative and/or for-
mative way. Few approaches provide feedback by explicitly giving suggestions or tips
on how to improve the code (Table 9).

Feedback is customized according to the results of the code analysis and involves
suggestions on good practices or modifications that can be made in order to achieve a
higher score and to close the gap between what is considered good performance. None
of the articles report in detail how this feedback is generated. However, it can be in-
ferred that approaches, which perform a static code analysis create this feedback based
on the results of the code analysis. On the other hand, feedback given by approaches
using dynamic code analysis is based on the response obtained by the execution of the
program.

Table 9
Overview on types of assessment and instructional feedback

Approach Assessment Provides explicit suggestions or
tips on how to improve the code Summative Formative

Approach by Kwon and Sohn x
Hairball x x x
Dr.Scratch x x x
CTP/PBS/REACT x (in real time)
ITCH x
PECT x
Ninja code village x x
Fairy Assessment x
Approach by Denner, Werner and Ortiz x
Scrape
Quizly x x
Lambda x
CodeMaster x x
Approach by Funke, Geldreich and
Hubwieser

x

Approaches to Assess Computational Thinking Competences Based on Code... 31

Some approaches also provide tips that can be consulted at any time. Dr.Scratch
(Moreno-León and Robles, 2015) provides a generic explanation on how to achieve the
highest score for each of the evaluated areas. Similar, CodeMaster (Gresse von Wan-
genheim et al., 2018) presents the rubric used to assess the program. Quizly (Maiorana
et al., 2015), along with the task description, provides a link to a tutorial on how to
solve exercises.

4.5. Have the Approaches been Automated?

Only a few approaches are automated through software tools (Table 10). Most auto-
mated approaches perform a static code analysis. Few approaches use dynamic code
analysis to assess the student’s solution (Johnson, 2016; Maiorana et al., 2015; Ball,
2017). These software tools seem to be typically targeted at teachers and/or students,
with few exceptions providing also features for administrators or institutional represen-
tatives (Maiorana et al., 2015).

In general, details about the implementation of the tools are not presented in the en-
countered literature, with few exceptions. Hairball (Boe et al., 2013) was developed as a
set of scripts in Python using the object orientation paradigm, so that it can be extended
and adapted to evaluate specific tasks. Dr. Scratch (Moreno-León and Robles, 2015)

Table 10
Overview on tool aspects

Approach User categories Access platform License Language

Approach by Kwon
and Sohn

Teacher Not identified Not informed English

Hairball Teacher Python scripts Free English
Dr.Scratch Student, Teacher and

Institution
Web application Free Spanish, English,

Portuguese
CTP/PBS/REACT Teacher Web application Not informed English
ITCH Student Python scripts Not informed English
PECT Teacher Rubric (not automated) Not informed English
Ninja code village Student and Teacher Web application Free English, Japanese
Fairy Assessment Teacher Rubric (not automated) Not informed English
Approach by Den-ner,
Werner, Ortiz

Teacher Rubric (not automated) Not informed English

Scrape Teacher Desktop application Free English
Quizly Student, Teacher and

Administrator
Web application Free English

Lambda Student and
Teacher

Web application Free English

CodeMaster Student, Teacher and
Administrator

Web application Free English,
Portuguese

Approach by Funke,
Geldreich, Hubwieser

Teacher Rubric (not automated) Not informed English

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck32

was implemented based on Hairball. It has been implemented in the Python language
developing plug-ins from Hairball. CodeMaster separates the analysis/assessment and
presentation into different modules. The backend system was implemented in Java 8,
running on an Apache Tomcat 8 application server using a MySQL 5.7 database. The
front-end component was implemented in the JavaScript using the Bootstrap library
with an additional custom layout (Gresse von Wangenheim et al., 2018).

The access to the tools is either in the form of scripts, web, or desktop application. As
a web application, Dr. Scratch, for example, allows the user to simply inform the Scratch
project’s URL or to upload the exported Scratch file to run the assessment.

Although, it was not possible to get detailed license information on all tools, we were
able to access a free implementation of several tools (Table 10). Most tools are available
in English only, with few exceptions providing internationalization and localization for
several languages, such as Japanese, Spanish, Portuguese, etc., thus, facilitating a wide-
spread adoption in different countries.

5. Discussion

Considering the importance of automated support for the assessment of programming
activities in order to widely implement the teaching of computing in K-12 education, so
far, only very few approaches exist. Most of the approaches focus on analyzing Scratch
code, being currently one of the most widely used block-based visual programming
languages, popular in several countries. For other block-based visual programming lan-
guages, very few solutions have been encountered. The approaches are intended to be
used for formative and/or summative assessment in computing education. We encoun-
tered approaches for different types of programming activities including open-ended
well-structured problems with a pre-defined correct or best solution as well as open-
ended ill-structured problems in problem-based learning contexts.

Although the majority of the approaches aims at supporting the assessment and grad-
ing process of the teacher, some tools are also intended to be used by the students direct-
ly to monitor and guide their learning progress. Examples are Dr.Scratch (Moreno-León
and Robles, 2015), CodeMaster (Gresse von Wangenheim et al., 2018) and CTP (Koh
et al., 2014a) that even provides real-time feedback during the programming activity.
The approaches typically provide feedback in form of a score based on the analysis of
the code, including dichotomous or polytomous scores for single areas/concepts as well
as composite scores providing a general result. Few approaches provide suggestions
or tips on how to improve the code (in addition to a single score) in order to guide the
learning process. Only two approaches (Moreno-León and Robles, 2015; Gresse von
Wangenheim et al., 2018) use a kind of gamification by presenting the level of experi-
ence in a playful way with mascots.

For the assessment, the approaches use static, dynamic or manual code analysis to
analyze the code created by the student. The advantage of static code analysis approach-
es measuring certain code qualities is that they do not require a pre-defined correct best
solution, being an alternative for the assessment of ill-structured activities in problem-

Approaches to Assess Computational Thinking Competences Based on Code... 33

based learning contexts. However, the inexistence of a pre-defined solution for such
ill-structured activities limits their analysis with respect to certain qualities, not allowing
the validation of the correctness of the code. Yet, on the other hand, in order to stimu-
late the development of higher order thinking, ill-structured problems are important in
computing education. Dynamic code analysis approaches can be applied for the assess-
ment of open-ended well-structured problems for which a pre-defined solution exist.
However, a disadvantage, as they do not consider the internal code structure, is that they
may consider a program correct (when generating the expected output), even when the
expected programming commands were not used.

By focusing on performance-based assessments based on the analysis of the code
created by the students, the approaches infer an assessment of computational thinking
concepts and practices, specifically related to the concept of algorithms and program-
ming, based on the code. This explains the strong emphasis of the analysis of program-
ming-related competences, assessing mostly algorithm and programming sub-concepts,
such as, algorithms, variables, control and modularity by the majority of the approaches
as part of computational thinking competences. Additional elements such as usability,
code organization, documentation, aesthetics or creativity are assessed only by manual
approaches. This current limitation of this kind of assessment based exclusively on the
analysis of the code, also indicates the need for alternative assessment methods, such
as observation or interviews in order to be able to provide a more comprehensive as-
sessment, especially when regarding computational thinking practices and perspectives
(Brennan and Resnick, 2012). In this respect, approaches based on code analysis can
be considered one means for the assessment of computational thinking that especially,
when automated, free the teacher to focus on complementary assessment methods, rather
than being considered the only way of assessment.

We also observed that there does not seem to exist a consensus on the concrete crite-
ria, rating scales, scores and levels of performance among the encountered approaches.
Few articles indicate the explicit use of rubrics as a basis for the assessment (Seiter and
Foreman, 2013; Werner et al., 2012; Moreno-León and Robles, 2015; Ota et al., 2016;
Gresse von Wangenheim et al., 2018). This confirms the findings by Grover and Pea
(2013) and Grover et al. (2015) that despite the many efforts aimed at dealing with the
issue of computational thinking assessment, so far there is no consensus on strategies for
assessing computational thinking concepts.

The approaches are designed for the context of teaching programming to novice stu-
dents, mostly focusing on K-12. Some approaches are also being applied in different
contexts including K-12 and higher education. However, with respect to K-12 education,
none of the approaches indicates a more exact specification of the educational stage for
which the approach has been developed. Yet, taking into consideration the large differenc-
es in child learning development stages in K-12 and, consequently the need for different
learning objectives for different stages, as for example refined by the CSTA curriculum
framework (CSTA, 2016), it seems essential to specify more clearly which educational
stage is addressed and/or to provide differentiated solution for different stages.

Only some approaches are automated. Yet, some do not provide a user-friendly ac-
cess, showing results only in a terminal that runs scripts, which may hinder their adop-

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck34

tion. Another factor that may hinder the widespread application of the tools in practice
is their availability in English only, with only few exceptions available in a few other
languages. Another shortcoming we observed is that these tools are provided as stand-
alone tools not integrated into programming environments and/or course management
systems in order to ease their adopting in existing educational contexts.

These results show that, although there exist some punctual solutions, there is still
a considerable gap not only for automated assessment tools, but also for the conceptual
definition of computational thinking assessment strategies with respect to the concept
of algorithms and programming. As a result of the mapping study several research
opportunities in this area can be identified, including the definition of well-defined
assessment criteria for a wide variety of block-based visual programming languages
especially for the assessment of open-ended ill-defined activities aiming at the devel-
opment of diverse types of applications (games, animations, apps, etc.). Observing
also the predominant focus on the assessment of programming concepts, the consid-
eration of other important criteria such as creativity could be important, as computing
education is considered not only to teach programming concepts, but also to contribute
to the learning of 21th century skills in general. Another improvement opportunity
seems to be the provision of better instructional feedback in a constructive way that
effectively guides the student to improve learning. We also observed a lack of differen-
tiation between different stages of K-12 education ranging from kindergarten to 12th
grade, with significant changes of learning needs at different educational stages. Thus,
another research opportunity would be the study of these changing needs and char-
acteristics with respect to different child learning development stages. Considering
also practical restrictions and a trend to MOOCs, the development and improvement
of automated solutions, which allow an easy and real-time assessment and feedback
to the students, could further improve the guidance of the students as well as reduce
the workload of the teachers, and, thus, help to scale up the application of computing
education in schools.

Threats to Validity. Systematic mappings may suffer from the common bias that posi-
tive outcomes are more likely to be published than negative ones. However, we consider
that the findings of the articles have only a minor influence on this systematic mapping
since we sought to characterize the approaches rather than to analyze their impact on
learning. Another risk is the omission of relevant studies. In order to mitigate this risk,
we carefully constructed the search string to be as inclusive as possible, considering
not only core concepts but also synonyms. The risk was further mitigated by the use of
multiple databases (indexed by Scopus) that cover the majority of scientific publications
in the field. Threats to study selection and data extraction were mitigated by providing
a detailed definition of the inclusion/exclusion criteria. We defined and documented a
rigid protocol for the study selection and the selection was conducted by all co-authors
together until consensus was achieved. Data extraction was hindered in some cases as
the relevant information has not always been reported explicitly and, thus, in some cases
had to be inferred. In these cases, the inference was made by the first author and care-
fully reviewed by the co-authors.

Approaches to Assess Computational Thinking Competences Based on Code... 35

6. Conclusions

In this article, we present the state of the art on approaches to assess computer programs
developed by students using block-based visual programming languages in K-12 educa-
tion. We identified 23 relevant articles, describing 14 different approaches. The majority
of the approaches focuses on the assessment of Scratch, Snap! or App Inventor programs,
with only singular solutions for other block-based programming languages. By focus-
ing on performance-based assessments based on the analysis of the code created by the
students, the approaches infer computational thinking competencies, specifically related
to the concept of algorithms and programming, using static, dynamic or manual code
analysis. Most approaches analyze concepts directly related to algorithms and program-
ming, while some approaches analyze also other topics such as design and creativity.
Eight approaches have been automated in order to support the teacher, while some also
provide feedback directly to the students. The approaches typically provide feedback in
form of a score based on the analysis of the code, including dichotomous or polytomous
scores for single areas/concepts as well as composite scores providing a general result.
Only few approaches explicitly provide suggestions or tips on how to improve the code
and/or use gamification elements, such as badges. As result of the analysis, a lack of con-
sensus on the assessment criteria and instructional feedback has become evident as well
as the need of such support to a wider variety of block-based programming languages.
We also observed a lack of contextualization of these approaches within the educational
setting, indicating for example on how the approaches can be completed by alterna-
tive assessment methods such as observations or interviews in order to provide a more
comprehensive feedback covering also concepts and practices that may be difficult to be
assessed automatically. These results indicate the need for further research in order to
support a wide application of computing education in K-12 schools.

Acknowledgments

This work was partially supported by the Brazilian Federal Agency Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and by the Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq) through M.Sc. grants.

References

Aivaloglou, E., Hermans, F. (2016). How kids code and how we know: An exploratory study on the Scratch
repository. In: Proc. of the 2016 ACM Conference on International Computing Education Research, New
York, NY, USA, 53–61.

Ala-Mutka, K.M. (2005). A survey of automated assessment approaches for programming assignments. Com-
puter Science Education, 15(2), 83–102.

Ala-Mutka, K.M., Järvinen, H.-M. (2004). Assessment process for programming assignments. In: Proc. of
IEEE Int. Conference on Advanced Learning Technologies, Joensuu, Finland, 181–185.

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck36

Ball, M. (2017). Autograding for Snap!. Hello World, 3, 26.
Ball, M.A., Garcia, D.D. (2016). Autograding and feedback for Snap!: A visual programming language. In:

Proc. of the 47th ACM Technical Symposium on Computing Science Education, Memphis, TN, USA,
692–692.

Basawapatna, A., Koh, K.H., Repenning, A., Webb, D.C., Marshall, K.S. (2011). Recognizing computational
thinking patterns. In: Proc. of the 42nd ACM Technical Symposium on Computer Science Education, Dal-
las, TX, USA, 245–250.

Black, P., Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy
& Practice, 5(1), 7–74.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., Punie, Y. (2016). Devel-
oping computational thinking in compulsory education – Implications for policy and practice. Technical
report, European Union Scientific and Technical Research Reports. EUR 28295 EN.

Boe, B., Hill, C., Len, M. (2013). Hairball: lint-inspired static analysis of scratch projects. In: Proc. of the 44th
ACM Technical Symposium on Computer Science Education. Denver, CO, USA, 215–220.

Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the development of computa-
tional thinking. In: Proc. of the 2012 Annual Meeting of the American Educational Research Association,
Vancouver, Canada.

Caiza, J.C., Del Alamo, J.M. (2013). Programming Assignments Automatic Grading: Review of Tools and
Implementations. In: Proc. Of the 7th International Technology, Education and Development Conference,
Valencia, Spain, 5691–5700.

Cateté, V., Snider, E., Barnes, T. (2016). Developing a Rubric for a Creative CS Principles Lab. In: Proc. of
the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Arequipa, Peru,
290–295.

Cheang, B., Kurnia, A., Lim, A., Oon, W-C. (2003). On automated grading of programming assignments in an
academic institution. Computers & Education, 41(2), 121–131.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., Eltoukhy, M. (2017). Assessing elementary students’
computational thinking in everyday reasoning and robotics programming. Computers & Education, 109,
162–175.

CSTA (2016). K-12 Computer Science Framework. http://k12cs.org/wpcontent/uploads/2016/09/
K%E2%80%9312-Computer-Science-Framework.pdf

DeLuca, C., Klinger, D.A. (2010). Assessment literacy development: identifying gaps in teacher candidates’
learning. Assessment in Education: Principles, Policy & Practice, 17(4), 419–438.

Denner, J., Werner, L., Ortiz, E., (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts?. Computers & Education, 58(1), 240–249.

Douce, C., Livingstone, D., Orwell, J. (2005). Automatic test-based assessment of programming: A review.
Journal on Educational Resources in Computing, 5(3), no.4.

Eseryel, D., Ifenthaler, D., Xun, G. (2013). Validation study of a method for assessing complex ill-structured
problem solving by using causal representations. Educational Technology and Research, 61, 443–463.

Fee, S.B., Holland-Minkley, A.M. (2010). Teaching Computer Science through Problems, not Solutions. Com-
puter Science Education, 2, 129–144.

Fonte, D., da Cruz, D., Gançarski, A.L., Henriques, P.R. (2013). A fl exible dynamic system for automatic grad-A flexible dynamic system for automatic grad-
ing of programming exercises. In: Proc. of the 2nd Symposium on Languages, Applications and Technolo-
gies, Porto, Portugal, 129–144.

Fortus, D., Dershimer, C., Krajcik, J., Marx, R., Mamlok-Naaman, R. (2004). Design-based science and stu-
dent learning. Journal of Research in Science Teaching, 41(10), 1081–1110.

Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., Dreschler, G., Aldana, G., Almeida-Tanaka, P.,
Kiefer, B., Laird, C., Lopez, F., Pham, C., Suarez, J., Waite, R. (2013). Assessment of computer science
learning in a scratch-based outreach program. In: Proceeding of the 44th ACM technical symposium on
Computer science education, Denver, CO, USA, 371–376.

Funke, J. (2012). Complex problem solving. In: N.M. Seel (ed.), The Encyclopedia of the Sciences of Learn-
ing, New York: Springer; Jonassen, 3, 682–685.

Funke, A., Geldreich, K., Hubwieser, P. (2017). Analysis of Scratch projects of an introductory programming
course for primary school students. In: Proc. of IEEE Global Engineering Education Conference, Athens,
Greece, 2017.

Gijselaers, W.H. (1996). Connecting problem based practices with educational theory. In: L. Wilkerson, and
W.H. Gijselaers (eds.), Bringing Problem-Based Learning to Higher Education: Theory and Practice. San
Francisco: Jossey-Bass, 13–21.

Approaches to Assess Computational Thinking Competences Based on Code... 37

Gresse von Wangenheim, C., Hauck, J.C.R., Demetrio, M.F., Pelle, R., Alves, N. d. C., Barbosa, H., Azevedo,
L.F. (2018). CodeMaster – automatic assessment and grading of app inventor and Snap! programs. Infor-
matics in Education, 2018, 17(1), 117–150.

Grover, S., Bienkowski, M., Niekrasz, J., Hauswirth, M. (2016). Assessing problem-solving process at scale.
In: Proc. of the Third ACM Conference on Learning @ Scale. New York, NY, USA, 245–248.

Grover, S., Cooper, S., Pea, R. (2014). Assessing computational learning in K-12. In: Proc. of the 2014 Confer-
ence on Innovation & Technology in Computer Science Education, Uppsala, Sweden, 57–62.

Grover, S., Pea, R. (2013). Computational Thinking in K–12: A review of the state of the field. Educational
Researcher, 42(1), 38–43.

Grover, S., Pea, R., Cooper, S. (2015). Designing for deeper learning in a blended computer science course for
middle school students. Journal of Computer Science Education, 25(2), 199–237.

Guindon, R. (1988). Software design tasks as ill-structured problems, software design as an opportunistic
process. Microelectronics and Computer Technology Corporation, Austin, TX, USA.

Hattie, J., Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.
Hollingsworth, J. (1960). Automatic graders for programming classes. Communications of the ACM, 3(10),

528–529.
Hwang, G., Liang, Z., Wang, H. (2016). An online peer assessment-based programming approach to improving

students’ programming knowledge and skills. In: Proc. of the Int. Conference on Educational Innovation
through Technology, Tainan, Taiwan.

Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O. (2010). Review of recent systems for automatic assess-
ment of programming assignments. In: Proc. of the 10th Koli Calling International Conference on Comput-
ing Education Research, Koli, Finland, 86–93.

Johnson, D.E. (2016). ITCH: Individual Testing of Computer Homework for Scratch assignments. In: Proc.
of the 47th ACM Technical Symposium on Computing Science Education, Memphis, Tennessee, USA,
223–227.

Kechao, W., Tiantian, W., Xiaohong, S., Peijun, M. (2012). Overview of program comprehension. In: Proc. of
the Int. Conference Computer Science and Electronics Engineering, London, UK, 23–25.

Keuning, H., Jeuring, J., Heeren, B. (2016). Towards a systematic review of automated feedback generation
for programming exercises. In: Proc. of the ACM Conference on Innovation and Technology in Computer
Science Education, Arequipa, Peru, 41–46.

Kindborg, M., Scholz, R. (2006). MagicWords – A Programmable Learning Toy. In: Proc. of the Conference
on Interaction Design and Children, Tampere, Finland, 165–166

Koh, K.H., Basawapatna, A., Bennett, V., Repenning, A. (2010). Towards the automatic recognition of compu-
tational thinking. In: Proc. of the IEEE International Symposium on Visual Languages and Human-Centric
Computing, Madrid, Spain, 59–66.

Koh, K.H., Basawapatna, A., Nickerson, H., Repenning, A. (2014a). Real time assessment of computational
thinking. In: Proc. of the IEEE Symposium on Visual Languages and Human-Centric Computing, Mel-
bourne, Australia, 49–52.

Koh, K.H., Nickerson, H., Basawapatna, A., Repenning, A., (2014b). Early validation of computational think-
ing pattern analysis. In: Proc. of the Annual Conference on Innovation and Technology in Computer Sci-
ence Education, Uppsala, Sweden, 213–218.

Kwon, K.Y., Sohn, W-S. (2016a). A method for measuring of block-based programming code quality. Interna-
tional Journal of Software Engineering and its Applications, 10(9), 205–216.

Kwon, K.Y., Sohn, W.-S. (2016b). A framework for measurement of block-based programming language.
Asia-Pacific Proc. of Applied Science and Engineering for Better Human Life, 10, 125–128.

Liang, Y., Liu, Q., Xu, J., Wang, D. (2009). The recent development of automated programming assessment.
In: Proc. of Int. Conference on Computational Intelligence and Software Engineering, Wuhan, China.

Lye, S.Y., and Koh, J.H.L. (2014). Review on teaching and learning of computational thinking through pro-
gramming: What is next for K-12?. Computers in Human Behavior, 41, 51–61.

Maiorana, F., Giordano, D., Morelli, R., (2015). Quizly: A live coding assessment platform for App Inventor.
In: Proc. of IEEE Blocks and Beyond Workshop, Atlanta, GA, USA, 25–30.

McCauley, R. (2003). Rubrics as Assessment Guides. Newsletter ACM SIGCSE Bulletin, 35(4), 17–18.
Moreno, J., Robles, G. (2014). Automatic detection of bad programming habits in scratch: A preliminary study.

In: Proc. of Frontiers in Education Conference, Madrid, Spain.
Moreno-León, J., Robles, G. (2015). Dr. Scratch: a web tool to automatically evaluate Scratch projects. In:

Proc. of the 10th Workshop in Primary and Secondary Computing Education, London, UK, 132–133.

N. da Cruz Alves, C. Gresse von Wangenheim, J.C.R. Hauck38

Moreno-León, J., Robles, G., Román-González, M. (2016). Comparing computational thinking development
assessment scores with software complexity metrics. In: Proc. of IEEE Global Engineering Education
Conference, Abu Dhabi, UAE, 1040–1045.

Moreno-León, J., Román-González, M., Harteveld, C., Robles, G. (2017). On the automatic assessment of
computational thinking skills: A comparison with human experts. In: Proc. of the CHI Conference on Hu-
man Factors in Computing Systems, Denver, CO, USA, 2788–2795.

Merrill, D.C., Reiser, B.J., Ranney, M., Trafton, J.G. (1992). Effective tutoring techniques: A comparison of
human tutors and intelligent tutoring systems. Journal of Learning Sciences, 2(3), 277–305.

Monroy-Hernández, A., Resnick, M. (2008). Empowering kids to create and share programmable media. In-
teractions. 15(2), 50–53.

Ota, G., Morimoto, Y., Kato, H. (2016). Ninja code village for scratch: Function samples/function analyser
and automatic assessment of computational thinking concepts. In: Proc. of IEEE Symposium on Visual
Languages and Human-Centric Computing, Cambridge, UK.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M. (2008). Systematic mapping studies in software engineering.
In: Proc. of the 12th Int. Conference on Evaluation and Assessment in Software Engineering, Swindon,
UK, pp. 68–77.

Popham, W.J. (2009). Assessment literacy for teachers: Faddish or fundamental?. Theory into Practice, 48(1),
4–11.

Reek, K.A. (1989). The TRY system -or- how to avoid testing student programs. In: Proc. of the 20th SIGCSE
Technical Symposium on Computer Science Education, 112–116.

Romli, R., Sulaiman, S., Zamli, K.Z. (2010). Automatic programming assessment and test data generation
– a review on its approaches. In: Proc. of the Int. Symposium in Information Technology, Kuala Lumpur,
Malaysia, 1186–1192.

Sadler, D.R. (1989). Formative assessment and the design of instructional systems. Instructional Science,
18(2), 119–144.

Seiter, L., Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary
grade students. In: Proc. of the 9th Annual Int. ACM Conference on International Computing Education
Research, San Diego, CA, USA, 59–66.

Shute. V.J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.
Shute, V.J., Sun, C., Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research

Review, 22.
Srikant, S., Aggarwal, V. (2013). Automatic grading of computer programs: A machine learning approach. In:

Proc. of 12th Int. Conference on Machine Learning Applications, Miami, FL, USA.
Song, J.S., Hahn, S.H., Tak, K.Y., Kim, J.H. (1997). An intelligent tutoring system for introductory C language

course. Computers & Education, 28(2), 93–102.
Stegeman, M., Barendsen, E., Smetsers, S. (2016). Designing a rubric for feedback on code quality in pro-

gramming courses. In: Proc. of the 16th Koli Calling International Conference on Computing Education
Research, Koli, Finland, 160–164.

Striewe, M., Goedicke, M. (2014). A review of static analysis approaches for programming exercises. Com-
munications in Computer and Information Science, 439.

Techapalokul, P. (2017). Sniffing through millions of blocks for bad smells. In: Proc. of the ACM SIGCSE
Technical Symposium on Computer Science Education, NY, USA.

Torrance, H. (1995). Evaluating authentic assessment: Problems and possibilities in new approaches to as-
sessment. Buckingham: Open University Press.

Truong, N., Roe, P., Bancroft, P. (2004). Static analysis of students’ Java programs. In: Proc. of the 6th Aus-
tralasian Computing Education Conference, Dunedin, New Zealand.

Vujosevic-Janicic, M., Nikolic, M., Tosic, D., Kuncak, V. (2013). On software verification and graph simi-
larity for automated evaluation of students’ assignments. Information and Software Technology, 55(6),
1004–1016.

Ward, J.D., Lee, C.L. (2002). A review of problem-based learning. Journal of Family and Consumer Sciences
Education, 20(1), 16–26.

Weintrop, D., Wilensky, U. (2015). To block or not to block, that is the question: Students’ perceptions of
blocks-based programming. In: Proc. of the 14th Int. Conference on Interaction Design and Children,
Boston, MA, USA, 199–208.

Werner, L., Denner, J., Campe, S., Kawamoto, D.C., (2012). The Fairy performance assessment: Measuring
computational thinking in middle school. In: Proc. of ACM Technical Symposium on Computer Science
Education, Raleigh, NC, USA, 215–220.

Approaches to Assess Computational Thinking Competences Based on Code... 39

Whittaker, C.R., Salend, S.J., and Duhaney, D. (2001). Creating instructional rubrics for inclusive classrooms.
Teaching Exceptional Children, 34(2), 8–13.

Wilcox, C. (2016). Testing strategies for the automated grading of student programs. In: Proc. of the 47th ACM
Technical Symposium on Computing Science Education, Memphis, TE, USA, 437–442.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.
Wolz, U., Hallberg, C., Taylor, B. (2011). Scrape: A tool for visualizing the code of scratch programs. In: Proc.

of the 42nd ACM Technical Symposium on Computer Science Education, Dallas, TX, USA.
Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., Clayborn, L. (2015). Sowing the seeds: A landscape

study on assessment in secondary computer science education. In: Proc. of the CSTA Annual Conference,
Grapevine, TX, USA.

Zhang, Y., Surisetty, S., Scaffidi, C. (2013). Assisting comprehension of animation programs through interac-
tive code visualization. Journal of Visual Languages & Computing. 24(5), 313–326.

Zen, K., Iskandar, D.N.F.A., Linang, O. (2011). Using Latent Semantic Analysis for automated grading pro-
gramming assignments. In: Proc. of the Int. Conference on Semantic Technology and Information Re-
trieval, Kuala Lumpur, Malaysia, 82 –88.

N. da Cruz Alves is a master student of the Graduate Program in Computer Science
(PPGCC) at the Federal University of Santa Catarina (UFSC) and a research student at
the initiative Computing at Schools/INCoD/INE/UFSC.

C. Gresse von Wangenheim, is a professor at the Department of Informatics and Sta-
tistics (INE) of the Federal University of Santa Catarina (UFSC), Florianópolis, Brazil,
where she coordinates the Software Quality Group (GQS) focusing on scientific research,
development and transfer of software engineering models, methods and tools and soft-
ware engineering education in order to support the improvement of software quality and
productivity. She also coordinates the initiative Computing at Schools, which aims at
bringing computing education to schools in Brazil. She received the Dipl.-Inform. and
Dr. rer. nat. degrees in Computer Science from the Technical University of Kaiserslau-
tern (Germany), and the Dr. Eng. degree in Production Engineering from the Federal
University of Santa Catarina. She is also PMP – Project Management Professional and
MPS. BR Assessor and Implementor.

J.C.R. Hauck holds a PhD in Knowledge Engineering and a Master’s Degree in Com-
puter Science from the Federal University of Santa Catarina (UFSC) and a degree in
Computer Science from the University of Vale do Itajaí (UNIVALI). He held several
specialization courses in Software Engineering at Unisul, Univali, Uniplac, Uniasselvi,
Sociesc and Uniarp. He was a visiting researcher at the Regulated Software Research
Center – Dundalk Institute of Technology – Ireland. He is currently a Professor in the
Department of Informatics and Statistics at the Federal University of Santa Catarina.

