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Abstract. In computer science education at school, computational thinking has been an emerging 
topic over the last decade. Even though, computational thinking is interpreted and integrated in 
classrooms in different ways, an identification process about what computational thinking is about 
has been in progress among computer science school-teachers and computer science education re-
searchers since Wing’s initial paper on the characteristics of computational thinking. On the other 
hand, the constructionist learning theory by Papert, based on constructivism and Piaget, has a long 
tradition in computer science education for describing the students’ learning process by hands-on 
activities. Our contribution, in this paper, is to present a new mapping tool which can be used to 
review classroom activities in terms of both computational thinking and constructionist learning. 
For the tool, we have reused existing definitions of computer science concepts and computational 
thinking concepts and combined these with our new constructionism matrix. The matrix’s most 
notable feature is its scale of learners’ autonomy. This scale represents the degree of choices 
learners have at each stage of development of their artefact. To develop the scale definitions, we 
trialed the mapping tool, coding twenty-one popular international computing activities for pu-
pils aged 5 to 11 (K-5). From our trial, we have shown that we can use the mapping tool, with a 
moderate to high degree of reliability across coders, to analyse classroom activities with regard to 
computational thinking and constructionism, however, further validation is needed to establish its 
usefulness. Despite a small number of activities (n = 21) being analysed with our mapping tool, 
our preliminary results showed several interesting findings. Firstly, that learner autonomy was low 
for defining the problem and developing their own design. Secondly that the activity type (such 
as lesson plan rather than online activity) or artefact created (such as physical artefact rather than 
onscreen activity or unplugged activity), rather than the computational thinking or computer sci-
ence concept being taught was related to learner autonomy. This provides some tentative evidence, 
which may seem obvious, that the learning context rather than the learning content is related to 
degree of constructionism of an activity and that computational thinking per se may not be related 
to constructionism. However, further work is needed on a larger number of activities to verify and 
validate this suggestion.

Keywords: computational thinking, constructionism, classroom activities, computer science edu-
cation.
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1. Introduction

As widely known, Wing stated in her refined definition of Computational Thinking (CT) 
(Wing, 2008), that CT is an approach for solving problems that draws on concepts fun-
damental to computing. Later, Aho (2012) described the term CT as including algorithm-
design and problem-solving techniques that can be used to solve common problems aris-
ing in computing. As Yadav et al. (Yadav, Gretter, Hambrusch, & Sands, 2017; Yadav, 
Zhou, Mayfield, Hambrusch, & Korb, 2011) reminded Wing’s initial paper (Wing, 2006) 
points out that CT involves three key elements Algorithms, Abstraction, and Automa-
tion. The term CT has been grown since then to a variety of interpretations. 

Turning to constructionism, Ackerman (2001) compared Piaget’s constructivism 
(Piaget & Duckworth, 1970) and Papert’s development of this in a constructionist way. 
Drawing the two views together as learning in a constructionism way ‘as Piaget and 
Papert do, that knowledge is actively constructed by a child in interaction with its world, 
then we are tempted to offer opportunities for kids to engage in hands-on explorations 
that fuel the constructive process.’ (p.1, Ackerman, 2001). Papert’s core message that 
the learner is ‘projecting out our inner feelings and ideas is a key to learning. Express-
ing ideas makes them tangible and shareable which, in turn, informs, i.e., shapes and 
sharpens these ideas, and helps us communicate with others through our expressions.’ 
(p.4, Ackermann, 2001) This means, that new insights are the sum of single experiences 
made by applying existing knowledge for enhancing it. 

Considering both parts discussed above, constructionism and computational think-
ing, this paper’s intentions are based on the combination of both for selecting and inves-
tigating classroom activities. To do this, we designed a matrix, where aspects from both, 
computational thinking and a constructionist learning approach, could be analysed. The 
matrix is designed to identify, categorize and examine classroom activities and encom-
passes three parts: Computer Science Concepts, Problem-Solving Concepts and Levels 
of Abstraction. This paper’s intention is to present an approach of a systematic explora-
tion of classroom activities in terms of constructionist learning and computational think-
ing. Therefore, we focused on the research questions as stated below. 

Considering a mapping tool, which was used to record and code classroom activities 
to start to investigate and compare activities for their computational thinking and con-
structionist attribute and student groups at age 5–11: 

Is our model applicable in investigating computational thinking classroom activi- ●
ties? 
Is our model applicable in assessing constructionism classroom activities? ●
In what way do classroom activities teach computational thinking in a construc- ●
tionist way? 

This paper is structured as follows. First, we describe the background of our work in 
literature and further describe an overview on computational thinking, constructionism 
and the combination of both parts. In the next section, we describe the methods we used 
to gather and assess the classroom activities. This includes a detailed description of the 
mapping tool we have developed. This is followed by a presentation of the results and a 
final discussion of this paper.
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2. Background

Computational Thinking (CT) has been widely discussed since Jeannette Wing pub-
lished her article “Computational Thinking” in 2006 (Wing, 2006). There have been 
several attempts to define this concept more precisely since then with the discussion 
converging to a handful of skills which characterize the thinking concepts associated 
with CT. These concepts include abstraction, decomposition, algorithmic thinking, 
generalization and evaluation. Algorithmic thinking education has a long tradition in 
constructionist education. Logo, Scratch and other programming tools invite creative 
learning of programming and algorithmic thinking. But CT is considered very broad, 
it covers not only programming and algorithmic skills, but also activities like problem 
formulation, system modelling and solution evaluation. In identifying an underpin-
ning theory, we first investigate the two parts of the title of our paper: 

Constructionism.  ●
Computational Thinking.  ●

Despite both topics have their own deep background, of which a description would 
go far beyond this paper’s scope and word length, the next two subsections will give a 
short overview and in particular connections to this work.

2.1. Constructionism

Ackerman (Ackermann, 2001) in her comparison of Piaget’s constructivism and Pa-
pert’s development of constructivism in a constructionist way, drew the two views 
together describing learning in a constructionism way as ‘that knowledge is actively 
constructed by the child in interaction with her world, then we are tempted to offer 
opportunities for kids to engage in hands-on explorations that fuel the constructive 
process.’ She further asserted Papert’s core message that the learner ‘projecting out 
our inner feelings and ideas. is a key to learning. Expressing ideas makes them tan-
gible and shareable which, in turn, informs, i.e., shapes and sharpens these ideas, 
and helps us communicate with others through our expressions.’ (p. 1, Ackerman, 
2001). Similar to Piaget, Papert identifies learning by constructing and reconstructing 
knowledge through experience. In particular, Papert’s constructionism sets a focus 
from learning in situations ‘rather than looking at them from a distance, that con-
nectedness rather than separation are powerful means of gaining understanding’ (p. 
8, Ackerman, 2001). This means, that new insights are the sum of single experiences 
made by applying existing knowledge for enhancing it. Therefore, ‘hands-on activi-
ties are the best for the classroom applications of constructivism, critical thinking and 
learning (p. 2, Ackermann, 2001)

In our study we emphasize on examining learners’ meaning-making while construct-
ing an external artefact, as a consequence of the learners’ prior learning and sense-mak-
ing in mind. However, what that something is, and what degree of autonomy is associ-
ated with the process of making is a focus of our study along with the relationship of 
constructionism and computational thinking. 
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2.2. Computational Thinking

Computational thinking has become a popular term in computer science education 
with, definitions varying depending on perspective (Tedre & Denning, 2016). Previous 
works present at least three types of approaches to defining CT: it is a set of skills to 
help solve problems (Wing, 2006), it is a thought process (Aho, 2012), or it is a prob-
lem-solving process (Voogt, Fisser, Good, Mishra, & Yadav, 2015). As widely known, 
Wing (2008) stated in her refined definition of CT that it is an approach for solving 
problems that draws on concepts fundamental to computing. Later, Aho (2012, p. 832) 
described the term CT as including “algorithm-design and problem-solving techniques 
that can be used to solve common problems arising in computing”. As Yadav et al. 
(2017, 2011) reminded Wing’s initial paper (Wing, 2006) points out that CT involves 
three key elements Algorithms, Abstraction, and Automation. The term CT has been 
grown since then to a variety of interpretations. Settle and Perković (2010), who pro-
posed seven principles for CT across the curriculum, added that CT also involves 
computation, communication, coordination, recollection, evaluation, and design. For 
Lee et al. (2011) CT involves defining, understanding, and abstraction. Barr et al. 
(2011) suggested that CT involves the design of solutions, implementation of designs, 
testing, running analysing, reflecting, abstraction, creativity, and group problem solv-
ing. Grover et al. (Grover, 2013; Grover & Pea, 2018) stated that CT should include 
among others abstraction, information processing, structured problem-solving decom-
position as modularization, iterative recursive thinking, and efficiency. Again, for Lee 
et al. (2011) CT involves defining, understanding, and solving problems, reasoning at 
multiple levels of abstraction, understanding and applying automation, and analysing 
the appropriateness of the abstractions made. According to Brennan & Resnick (2012), 
CT involves three dimensions such as computational concepts (the concepts designers 
employ as they program), computational practices (the processes of construction), and 
computational perspectives (the perspectives designers form about the world around 
them and about themselves). 

2.3. Constructionism in Computational Thinking

Considering both parts discussed above, constructionism and computational thinking, 
this papers’s intentions are based on the combination of both for selecting and evaluating 
classroom activities. Therefore, we designed a matrix, where aspects from both, compu-
tational thinking and a constructionist learning approach, can be analysed. The matrix is 
designed to identify, categorize and evaluate such classroom activities and encompasses 
three parts:

Computer Science Concepts.1. 
Computational Thinking Concepts.2. 
Levels of Abstraction matrix.3. 
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Below we are discussing these three dimensions in detail.

Computer Science Concepts
From the viewpoint of computer science education, teaching and learning of computer 
science (CS) concepts is more important than learning how to use computer systems. 
Dagienė, Sentance and Stupurienė (2017) categorized in their paper “Developing a Two-
Dimensional Categorization System for Educational Tasks in Informatics” the CS con-
cepts in following 5 categories:

ALP: Algorithms and Programming. ●
DDS: Data, Data Structures and Representation. ●
CPH: Computer, Processes and Hardware. ●
C&N: Communications and Networks. ●
ISS: Interactions, systems and society. ●

Since CS tasks often involve more than one concept, a task may be assigned to more 
than one category.

Computational Thinking Concepts (CT)
Computational Thinking Skills are considered separately from CS concepts. Computa-
tional thinking originates from solving CS tasks, but the essence of these thinking skills 
can be applied also in all other disciplines. Based on the work of Selby and Woollard 
(2013), Dagiene et al. (2017) categorized also the Computational Thinking Skills into 
5 categories:

ABS: Abstraction. ●
ALT: Algorithmic Thinking. ●
DEC: Decomposition. ●
EVA: Evaluation. ●
GEN: Generalisation. ●

Simple definitions of each of these concepts are (Selby, 2013; Standl, 2017):
Abstraction: ●  ignoring unnecessary detail. When abstracting a problem in a way 
that helps to solve it, if we had to keep all the details in our heads, we could 
never get anything done. As we have described above, abstraction is mentioned 
a CT concept and some have identified it as a core element (Grover and Pea, 
2018).
Algorithmic Thinking:  ● considering the sequence of steps. This includes a design 
of an algorithm to develop the step-by-step instructions for solving the problem. 
Starting from what already is known and working outward from there by making 
a plan how to approach to solve the problem. 
Decomposition: ●  breaking a problem down into parts. Decomposition involves 
finding structure in the problem and determining how the various components 
will fit together in the final solution. Doing decomposition well makes it easier to 
modify the solution later by changing individual components, and also enables the 
reuse of components in solutions to other problems. 
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Evaluation:  ● comparing alternatives and how does the solution work in practice 
and are there alternatives? Trying to give the problem different inputs to look how 
the solution works.
Generalisation: ●  creating things that can be reused in more than one scenario. Is 
the solution to similar problems also applicable and what is needed to do so? How 
can the solution be generalized and automated? Which parts turned at the evalua-
tion out to be not necessary?

Levels of abstraction (LOA) matrix 
The degree of autonomy of learners to make choices about their constructed artefacts 
was viewed as an important aspect to capture in order to evaluate the opportunity for 
learners to engage in constructionist learning in computational thinking activities. Three 
frameworks have been combined and further developed to create a levels of abstraction 
matrix which provide an opportunity to evaluate autonomy for the different ‘levels’ or 
‘stages’ for a programming project. The work that we build upon is the Levels Of Ab-
straction (LOA) framework (Perrenet et al., 2005; Perrenet & Kaasenbrood 2006), the 
Abstraction Transition (AT) Taxonomy (Cutts et al., 2012) and the Use -Modify- Cre-
ate approach (Lee et al., 2011). A levels of abstraction (LOA) model (Perrenet et al., 
2005; Perrenet & Kaasenbrood 2006) has been suggested to support novice university 
students in thinking about algorithms in programming of: problem, object, program 
and execution. This model has been situated for high school learners by renaming the 
object level as algorithm (Armoni 2013) and with younger K-5 learners by renaming 
levels as: task for problem; design for object; code for program and running the code 
for execution (Waite et al., 2016, Waite et al., 2017). Cutt’s et al. (2012) investigated 
novice undergraduate ‘talk’ of programming activities in response to peer instruction 
questions and proposed the three leveled Abstraction Transition Taxonomy of English, 
CS speak and Code, where English is used to define the goal, ‘CS Speak’ for the techni-
cal description and code to accomplishes the goal. The Use, Modify, Create approach 
has been suggested as a learning framework, where learners first use products created 
by other which are not ‘theirs’, move on to modify products and finally create their 
‘own’ products (Lee et al., 2011).

3. Method

3.1. Developing the Mapping Tool

A mapping tool was required to provide a means to classify and evaluate CT and con-
structionism. As shown in Fig. 1, the tool incorporated three distinct parts: 

Computer science concepts. ●
Computation thinking categorization. ●
Constructionism matrix.  ●
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3.2. Computer Science (CS) Concepts

In this paper we adopted the computer science concept categorization of school comput-
ing as proposed by Dagienė et al. (2017) as that of: 

Algorithms and Programming.1. 
Data, Data Structures and Representation.2. 
Computer Processes and Hardware.3. 
Communications and Networking.4. 
Interactions, Systems and Society.5. 

In addition, as guidance from Dagienė et al. (2017) was adhered that for practical 
purposes, a precise definition of each category is required, and this can be achieved by 
the usage of keywords as shown in Table 1. 

Apart from assisting in the categorization of tasks, keywords are helpful to teachers 
who wish to find tasks that assist in introducing, teaching or formative assessing a spe-
cific computing topic (Dagienė and Sentance 2016; Yang and Park 2014).

3.3. Computational Thinking (CT): Skills Level

Next, we adopted the categorization of computational thinking as suggested by Selby 
and Woolard (2013). This categorisation has been adopted by Computing At School 
in the UK in developing guidance for teachers on computational thinking (Csizmadia 
et al.,  2015). Similarly, this approach was adopted by both Giordano et al. (2015) and 
Dagienė et al. (2017) in design of a framework for classifying computational thinking 
skills and computing concepts. 

Fig. 1. Dimensions of the mapping tool.
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Table 2 summarizes the five categories of computational thinking: 
Abstraction.  ●
Algorithmic Thinking.  ●
Decomposition.  ●
Evaluation.  ●
Generalization.  ●

In classifying classroom activities, classifiers needed to know how to identify 
whether a particular CT skill might be used to solve a given task (Table 2). 

One of the difficulties encountered when classifying tasks was that the classi-
fier had to presume how an individual learner solves a specific task. This presump-
tion could differ from the way that either the task setter or other classifiers might 
solve the task. In practical terms, there may be more than one computational thinking 
skill associated with each task. Therefore, we followed the guidance suggested by 
Dagienė et al. (2017) of recording a maximum of three computational thinking skills 
per task.

Table 1
Computer Science (CS) Concept Categories and Keywords (Adapted from Dagienė et al. (2017))

CS Concept 
Categories

Code Keywords

Algorithms and 
Programming

APL Algorithm; Binary search; Boolean algebra; Breadth-first search; Brute-
force search; Bubble sort; Code; Coding; Computational complexity; 
Constants; Constraints; Debugging; Depth-first search; Dijkstra’s 
algorithm; Dynamic programming; Divide and conquer; Encapsulation; 
Function; Greedy algorithm; Heuristic; IF conditions; Inheritance; 
Iteration; Kruskal’s algorithm; Logic gates; Loops; Maximum 
flow problem; Objects; Operations AND, OR, NOT; Optimization; 
Parameters; Prim’s algorithm; Procedure; Program; Programming 
Language; Program execution; Quick sort; Recursion; RSA algorithm; 
Shortest path; Selection; Sequence; Sorting; Steps; Traveling salesman 
problem; Variables
Steps, sequence, algorithm, code, program 

Data,  Data 
Structures and 
Representation

DDS Array; Attributes; Biconnected graph; Binary and hexadecimal 
representations; Binary tree; Character encoding; Databases; Data; 
Data mining; Eulerian path; Finite-state machine; Flowcharts; Fractals; 
Graph; Hash table; Integer; Information; Linked list; List; Queue; 
Record; Stack; String

Computer Processes 
and Hardware

CPH Cloud computing; Deadlock; Fetch-execute cycle; Grid computing; 
Image processing; Interpreter; Memory; Multithreading; Operating 
system; Parallel processing; Peripherals; Priorities; RAID array; 
Registers; Scheduling; Sound processing; Translator; Turing machine

Communications 
 and Networking

C&N Client/server; Computer network; Cryptography; Cryptology; 
E-commerce; Encryption; Parity; Protocols; Security; Topologies

Interactions, 
Systems and Society

ISS Classification; Computer use; Design; Ethics; Graphical User Interface; 
Human Computer Interaction (HCI); Legal issues; Robotics; Social 
issues;
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3.4. Developing the Constructionism Matrix 

To evaluate classroom activities for their ‘degree’ of constructionism a new construc-
tionism matrix was devised. The matrix will be evaluated as part of this paper.

Waite et al. (2016) suggested that the LOA model might be mapped to the AT taxon-
omy, with Problem being matched to English, and object to CS speak and Program and 
Execution to Code. We have combined the Program and Execution level, as our focus 
is on the autonomy of learners at each level, and they can have no influence on how the 
code runs. Therefore, we suggest a modified LOA suitable for K-12 of: 

Problem or task (English). ●
Object, algorithm or design (CS Speak). ●
Program or code and Execution or running the code (Code). ●

Each of these levels provide the first dimension of our constructionism matrix to 
which we have added a dimension of Use, Modify, Create (UMC) (Lee et al. 2011). 
As shown in Table 3, for each of these dimensions’ descriptions of learner ownership 
and autonomy were added for each intersection of modified LOA and UMC matrix. An 
iterative process was undertaken to develop these descriptions. As classroom activi-
ties were coded, the scale was reviewed and adapted to enable differences between the 
activities to be highlighted and then further subdivided to a 1 to 5 scale to describe a 
gradation of learner autonomy in the construction process. Our final constructionism 
matrix is shown in Table 3.

Table 2
CT Skills and ways to identify them (adapted from Dagienė et al. (2017))

CT skills Code How to identify the use of this skill

Abstraction ABS Removing any unnecessary detail
Identifying key elements in the problem
Choosing an appropriate representation of a system

Algorithmic Thinking ALT Thinking in terms of sequences
Thinking in terms of rules
Creating an algorithm
Executing an algorithm

Decomposition DEC Breaking down tasks into sub-tasks
Thinking about problems in terms of their component parts
Making decisions about dividing into sub-tasks with integration in mind

Evaluation EVA Find an appropriate solution
Finding the best solution
Deciding whether the solution is fit for purpose
Deciding whether the solution is the most efficient one

Generalization GEN Identify patterns, similarities and connections
Solving new problems based on solutions to similar problems
Utilizing the general solution, i.e. induction
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As the mapping tool was used further attributes were added, these included:
Type of artefact made (Physical computing, onscreen, unplugged, concept).  ●
Type of resource (Lesson plan, game etc). ●
Cost (Paid, for free). ●
Activity/Approach URL and description. ●
Target age range (see Table 4). ●

Table 3
Constructionism Matrix

Sc
al

e Adapted LOA
Problem or Task (English) Design/Object/Algorithm 

(CS Speak)
Code/Program/Running the 
code (Code)

Use/Modify/
Create

1 No independence e.g. the 
teacher or activity states 
the problem, a copy task 
activity

No independence using a 
pre-existing design, or no 
design

No independence, copying pre-
defined code

Use

2 Limited independence, can 
only change superficial 
aspects of the problem 
e.g. adding extra questions 
to a quiz, changing the 
characters of an animation 
(broadly a minimal remix)

Limited independence, can 
only change some aspects 
of the design, objects, 
algorithm, for example 
reordering sequence of 
events, changing the data 
used

Limited independence, can 
only change some elements of 
the modelled or pre-defined or 
example code

Modify

3 Moderate independence, 
can change a broader range 
of characteristics of the 
problem but limited to the 
genre and context of the

Moderate independence, 
can change a broader 
range of characteristics 
of the design but changes 
are within the genre and 
context of the original 
exemplified design.

Moderate independence, can 
change a broader range of 
characteristics of the code 
but limited to the genre and 
context of the task and also 
to the hardware and software 
defined by the task or teacher.

Modify

4 Increasing independence, 
cannot change the ‘Genre’ 
but has full control of the 
context e.g. must be a quiz, 
or a physical computing 
problem but can be any 
context.

Increasing independence, 
cannot change the design 
approach to be used, but 
can adapt the objects, 
algorithm etc. to meet 
needs of the problem

Increasing independence, li-
mited by type of hardware 
and software to be used, but 
could choose a different input 
type or type of microcontroller 
or different block based pro-
gramming language.

Modify

5 Full pupil independence 
the pupil has full control 
over the problem to be 
considered e.g can be a quiz, 
game, physical product, 
unplugged etc.

Full pupil independence the 
pupil has full control over 
the design to be considered 
can choose format and 
approach to be taken

Full pupil independence the 
pupil has full control over 
the hardware, software and 
implementation choices

Create

6 Levels 1 and 2 seen in a unit 
of work

Levels 1 and 2 seen in a 
unit of work

Levels 1 and 2 seen in a unit 
of work

Use/Modify

7 Levels 1, 2 and 3 seen in a 
unit of work

Levels 1, 2 and 3 seen in a 
unit of work

Levels 1, 2 and 3 seen in a unit 
of work

Use/Modify

9 Not Applicable Not Applicable Not Applicable
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3.5. Selection of Activities

To select activities, where information was available of the popularity of classroom 
activities this data was used to inform choices. In the United Kingdom (UK), a review 
of computer science education identified teachers’ most popular suppliers of resources 
(Royal Society, 2017). To select material provided by the most popular supplier, Bare-
foot, we contacted them and asked which were the most popular and used these. Also, 
resources from a spread of K-5 ages was selected from this resource set, the rational 
for selection is shown in Table 5. For some providers’ material is only available with 
payment, here the materials were not included as there would be no means to then 
share and compare the approach taken with readers of the research. Our study is not 
rigorous in sampling, but our intention was to trial the approach for review of materi-
als to suggest next steps for a more complete review. In Table 5 we list all activities 
involved in our analysis.

Table 5
Selection of Activities for analysis

N
r Activity Short Name Type Paid /free Selection criteria (e.g., popularity, used prior studies, 
enforced by educational stakeholders

1 CWCodyRoby Game Free Developed as an unplugged resource for teaching 
programming concepts, intially for Code Week Italy 
and has been adopted by CodeEU for Code Week

2 BfCrazyCharacters Lesson 
plan

Free Top 10 of resources according to Royal Society report. 
Funded by DfE for resources for primary teachers 
to teacher new computing curriculum. Selected 
as specifically about teaching algorithms using an 
unplugged approach

3 BfBeeBotBasics Lesson 
plan

Free Top 10 of resources according to Royal Society report. 
Funded by DfE for resources for primary teachers 
to teacher new computing curriculum. Selected 
as specifically about teaching programming using 
programmable toys

Continued on next page

Table 4
Target Age Range

Years old US grades English year groups

5–6 K-1 Key Stage 1 Years 1–2
7–11 2–5 Key Stage 2 Years 3–6
12–14 6–8 Key Stage 3 Year 7–9
15–16 9–10 Key Stage 4 Years 10–11
17–18 11–12 Key Stage 5 Years 12–13
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Table 5 – Continued from previous page
N

r Activity Short Name Type Paid /free Selection criteria (e.g., popularity, used prior studies, 
enforced by educational stakeholders

4 BfVikingRaid Lesson 
plan

Free Top 10 of resources according to Royal Society report. 
Funded by DfE for resources for primary teachers 
to teacher new computing curriculum. Selected as 
specifically about teaching programming using online 
programming language focused on teaching sequence 
and repetition

5 BfMathsQuiz Lesson 
plan

Free Top 10 of resources according to Royal Society report. 
Funded by DfE for resources for primary teachers 
to teacher new computing curriculum. Selected as 
specifically about teaching programming using online 
programming language focused on teaching selection 
and variables

6 BfNetworks Lesson 
plan

Free Top 10 of resources according to Royal Society report. 
Funded by DfE for resources for primary teachers 
to teacher new computing curriculum. Selected as 
specifically about teaching networks

7 CIScratchJnr Lesson 
plan

Free Top 20 of resources according to Royal Society report. 
Very popular resource created by a CAS master teacher, 
teacher trainer. This item selected as it is for programming 
with youngest age groups with scratch jnr

8 CIJamSandwich Lesson 
plan

Free Top 20 of resources according to Royal Society report. 
Very popular resource created by a CAS master teacher, 
teacher trainer. This item selected as it is for teaching 
algorithms – very popular.

9 CICrumble Lesson 
plan

Free Top 20 of resources according to Royal Society report. 
Very popular resource created by a CAS master 
teacher, teacher trainer. This item selected as it is for 
teaching physical computing with a programmable 
microcontroller

10 CIInternet Lesson 
plan

Free Top 20 of resources according to Royal Society report. 
Very popular resource created by a CAS master teacher, 
teacher trainer. This item selected as it is for teaching 
using search in an unplugged way

11 CIMagicCarpet Lesson 
plan

Free Top 20 of resources according to Royal Society report. 
Very popular resource created by a CAS master teacher, 
teacher trainer. This item selected as it is for teaching 
programming.

12 SWWeAreDetectivesYr3 Lesson 
Plan

Free sample Top 10 of resources according to Royal Society report. 
Funded by a private education publisher. A popular and 
free sample.

13 SWLearnToCodeYr5 Lesson 
Plan

Free sample Top 10 of resources according to Royal Society report. 
Funded by a private education publisher. A popular and 
free sample.

14 SWLearnToCodeYr5 Lesson 
Plan

Free sample Top 10 of resources according to Royal Society report. 
Funded by a private education publisher. A popular and 
free sample.

Continued on next page
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Table 5 – Continued from previous page

N
r Activity Short Name Type Paid /free Selection criteria (e.g., popularity, used prior studies, 

enforced by educational stakeholders

15 CodeMonkeyPupilActiv Online 
activity

Free (1–30 
challenges) 
Paid

This game is recommended for primary school in 
Lithuania according the project “Informatics in primary 
education“ https://informatika.ugdome.lt/en/
about-project/ 
CodeMonkey Awarded Best Coding & Computational 
Thinking Solution

16 ScratchJnrLessonPlan Lesson 
plan

Free This tool is recommended for primary school in 
Lithuania according the project “Informatics in primary 
education“ https://informatika.ugdome.lt/en/
about-project/

17 SJnrAnimatePlayground Lesson 
plan

Free https://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=8363498 
https://dl.acm.org/citation.cfm?id=2532751

18 LightBotIntro Online 
activity

Free According  
https://venturebeat.com/2014/06/03/12-

games-that-teach-kids-to-code/  and  
https://dl.acm.org/citation.cfm?id=3017728

19 KodableFuzzyJava Lesson 
plan

Free It focuses on excellent instruction with group and 
independent practice activities that build creativity, 
communication, and collaboration. 

20 KodableGoogleForms Lesson 
plan

Free It focuses on excellent instruction with group and 
independent practice activities that build creativity, 
communication, and collaboration.
Their goal is to reach all students and see computer sci-
ence become part of a complete elementary education

21 CodeORGFrozen Online 
activity

Free Code.org provides sequences of videos and puzzles 
where users control characters from popular games like 
Rovio’s Angry Birds or movies like Disney’s Frozen 
with drag-and-drop programming. 

22 KhanIntroJS Online 
activity

Free According Khan Academy answer about the most 
popular course

23 Lesson 
plan

Free Hour of Code

To supplement the UK’s top resources, a number of other popular resources were 
selected. One activity (CodeMonkey) was chosen because this game-based environment 
was awarded as the Best Coding and Computational Thinking Solution1 in 2018. This 
classroom activity is recommended in informatics educational content in primary educa-
tion in Lithuania as a tool that engages student to learn informatics concepts by practice 
not only during informatics lessons, but also during other subjects such as math, etc. 
(firstly, students solve problem without computer (e.g. measure the distance) and then 

1 https://www.playcodemonkey.com/blog/2018/06/20/codemonkey-awarded-best-coding-
computational-thinking-solution/
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repeat the same task using CodeMonkey tool as depicted in Fig. 2). Other activities are 
applied or recommended as classroom activities in primary or middle school in Lithu-
ania as tools to teach computer science concepts or programming. Several activities 
were the most popular during the Hour of code2 (Code Event) in 2015. In addition, some 
resources (Scratch, Khan Academy, Code.org) are mentioned as the best free resources 
for teaching youngsters to code.3

3.6. Using the Mapping Tool.

Three researchers, including two of the authors used the mapping tool to review ac-
tivities. One researcher, one of the authors, reviewed all activities and then a second 
researcher double blind coded each activity. Therefore, each activity was independently 
coded twice. The results were copied into SPSS for Inter reliability evaluation using 
Cohen’s kappa (Cohen, 2011). 

4. Results 

We report on descriptive statistics for the coding of activities: 57% (n = 12) of the activi-
ties were for 7 to 11 year olds, 23% (n = 5) for 5 to 6 year olds, 2 were for any age from 
5 years, 1 was for any age between 5 and 11 and 1 activity for students from 10 years 
onwards. Therefore, all activities were judged to be suitable for some set of pupils in the 
K-5 (primary age range in England). 

Over 75% of the activities selected were lesson plans (n = 16), the remainder were 
online activities (n = 4) except for one board game. Two thirds of the activities origi-
nated from England (n = 14), 29% from the US (n = 6) and one from Italy. Nearly 
30% of the activities employed Scratch (n = 6), 15% ScratchJr (n = 3), there were 2 
route-based programming languages where the student moved an onscreen character 

2 https://blogs.sas.com/content/sascp/2015/12/07/our-favorite-hour-of-code-resour-
ces-for-csedweek15/

3 https://codakid.com/top-5-free-kids-coding-websites-of-all-time/

   

Fig. 2. Students solve problem without computers and then solve it with computers, dis-
cusses about coding with CodeMonkey (Taurage “Saltinis” Progymnasium, Lithuania).



Integrating the Constructionist Learning Theory with Computational Thinking ... 55

or programmable toy with direction keys and there was one activity for each of the 
programming languages of blocky, CoffeeScript, Python, Java and a physical com-
puting software called Crumble. There was also one activity that used Google Forms 
and 6 activities which used no programming language or specific software to make 
something. 

In order to give a % for each concept type we have taken the average number of 
coded activities for each concept and present this as a percentage out of the 21 activi-
ties as shown in Table 6. On average, the most popular CS concept taught in the sample 
of activities codes was ALP (Algorithms and Programming) with 90% of the activities 
coded to this concept. No activities were coded to Computer Processes and Hardware 
concept. For CT concepts, the most popular coded concept was ALT (Algorithms) with, 
83% of the activities coded as teaching this concept, the second most popular CT is DEC 
(decomposition) with 45% of activities coded for this. The most frequent artefact type 
coded was concept at 79%, followed by 64% for on screen artefact types.

As shown in Table 7, the majority of activities were coded at level 1 scale for Prob-
lem or Task level at 52% and 61% for coders, followed by 24% to 29% at level 2 and 9% 

Table 6
CS concept, CT concept and artefact type counts by coder and % out of 21 activities

CS concepts CT concepts Artefact type
ALP DDS CPH C&N ISS ABS ALT DEC EVA GEN Physical OnScreen UnPlugged Concept

Coder 1 19 2 0   2   3   4 19   9   9   1   2 13 10 16
Coder 2 19 1 0   2   4   5 16 10   7   3   2 14   7 17
Average 19 1.5 0   2   3.5   4.5 17.5   9.5   8   2   2 13.5   8.5 16.5
% 90% 7% 0% 10% 17% 21% 83% 45% 10% 10% 10% 64% 40% 79%

Table 7
Percentage and count (n) of coded activities by constructionism scale

Adapted LOA Scale Problem or Task 
(English)

Design/Object/
Algorithm (CS Speak)

Code/Program/Running 
the code (Code)

Coder 1 Coder 2 Coder 1 Coder 2 Coder 1 Coder 2

1 61% (13) 52% (11) 24%(5) 14% (3)   9%(2)   5% (1)
2   5% (1)   0 28%(6) 33% (7) 52%(11) 48%(10)
1 to 2 19% (4) 29% (6) 24% (5) 38%(8)   5% (1) 13%(3)
2 or 1 to 2 24% (5) 29% (6) 53% (11) 71%(15) 57% (12) 61%(13)
3   5% (1)   0   5% (1)   5% (1)   5% (1)   0
1 to 3   5% (1)   9%(2)   0   5 (22%)   0   5% (1)
3 or 1 to 3 10% (2)   9%(2)   5% (1)   5%(1)   5%(1)   5% (1)
4   0   0   0   0   0   0
5   0   5% (1)JS   0   0   0   5% (1)JS
4 or 5   0   5% (1)   0   0   0   5%(1)
coded as not applicable   5% (1)   5% (1) 19% (4) 10%(2) 29%(6) 24%(5)
n 21 21 21 21 21 21
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to 10% for level 3 with only 1 activity assigned a 4 or 5 level. The majority of designs 
where at scale 2 at 53% to 71%, with 14% to 24% at level 1 and only 5% at level 3. 
As with the design level, the majority of activities were rated at a level 2 scale for the 
code dimension at 57% and 61% with between 5% and 9% at level 1, and one activity 
assigned a level 5. For the coding dimension a quarter, 24% to 29% were not assigned a 
level (for example as they were unplugged activities).

Cohen’s κ was run to determine if there was agreement between the authors coding 
of activities. Inter-reliability, agreement was almost perfect on artefact type (κ = 0.82, 
p < 0.005) and computer science concepts (κ = .868, p < 0.005). For CT concepts the 
agreement was less but was still a substantial agreement (κ = .74175, p < 0.005) and for 
the Constructionism matrix agreement was moderate (κ = .51, p < 0.005). 
Summary Dimensions: To simplify reporting of the constructionism scale we have 
combined the ‘1 to 2’ response with the 2 response and the ‘1 to 3 response’ with the 3 
response for each of the dimensions. We have also removed the 4 and 5 scale responses 
as there was only 1 activity coded at the 5 scale by one coder, and the second coder 
placed this same activity as 3, so we have classified this as an outlier and will further 
consider this case in discussion. In doing this we have created Summary Dimensions 
with scales of 1, 2 and 3.

We used the Mann-Whitney U statistic to investigate whether there was any statis-
tically significant relationships between the constructionism scale and its CS concept 
or CT concept. Here the cases,  were the coding of each activity by each researcher 
therefore the maximum population was 42 for these tests. The null hypothesis was that 
for each CT and CS concept there was no statistically significant difference between 
whether an activity was coded for a particular constructionism scale. The null hypoth-
esis for all CS and CT concepts could not be rejected as all tests showed no statistically 
significant difference. The test statistics and cross tabulation are available on request 
from the authors. 

Similarly, we performed the same statistic on the artefact types reported by the 
coders. As there was only one board game we removed this from the test and used 
a Mann-Whitney U to compare lesson plans online student activities for each of the 
dimensions of the constructionism matrix. The null hypothesis for these tests was that 
there would be no statistically significant differences in the grading of the construction-
ism scale for lesson plan based resources or online student resources. There were two 
statistically significant differences, for the Design level (p = 0.018, n = 25, U-54.5, r 
= 3.98) and the Code level (p = .048, n = 29, U = 37. R = .398) both of medium effect 
size, meaning we reject the null hypothesis. A cross tabulation of the data is shown in 
Table 8 and shows that the scale of autonomy was recorded at a higher level for lesson 
plans than for online resources. This may be significant in that it is may not be the CS 
or CT concept that is having a bearing on the constructionism aspect of a task, more 
what type of activity it was. 

We also compared the constructionism matrix scales to different types of artefacts 
created by activities. This data is available on request from the authors. The null hy-
pothesis was that there would be no difference in the reported autonomy of students for 
whether the artefact was of a particular type or not. A Kruskal Wallis with bonferroni 
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correction pairwise test showed ‘unplugged compared to physical’ (p = 0.013, n = 17. 
U = 5.678, r = .694) and ‘on screen compared to physical’ (p = 0.016, U = 5.328, n = 29, 
r = .517) had a statistically significant differences at the problem level both with large 
effect size, but no statistically significant difference for the others. However, caution 
is urged as there were only 2 activities creating this artefact type, each coded by a dif-
ferent coder. A cross tabulation (Table 9) showed that physical activities had a higher 
autonomy scale than non-physical for the problem dimension. This indicates that the 
type of artefact may be having a bearing on the degree of constructionism of a task, 
rather than the CT or CS concepts.

To investigate if there was any statistically significant difference in coders assign-
ment of scales for each of the constructionism dimensions we performed the pair statis-
tic of the Wilcoxon Signed Rank test, see Table 10. The null hypothesis was that there 
would be no statistically significant difference in scale assignment across the problem 
and design, design and code and problem and code dimensions. There was a statistically 
significant evidence to reject the null hypothesis, indicating that there was a relationship 
between coders allocation of scales across the dimensions. In our population coders 
rated the design scale as higher than the problem scale with moderate effect size, and the 
code scale higher than the design and the code scale higher than the problem. This indi-
cates that our coders rated activities as being more ‘constructionist in the dimensions’ of 
coding, then design and then lowest in problem.

Table 8
Cross Tabulation of activity types by constructionism matrix dimensions  

showing % of type and (n)

Problem Design Code
1 2 3 1 2 3 1 2 3

Activity 
Type

Lesson 
Plan

61%(19) 29%(9)   10% (3) 14%(4) 82%(23)     4%(1) 4% (1) 92%(21)     4%(1)

Online 
Student 
Activity

71%(5) 29%(2)     0 57%(4) 43%(3)     0 33%(2) 67%(4)     0

Board 
Game

  0   0 100%(1)   0   0 100%(1)   0   0 100%(1)

Table 9
Cross Tabulation of artefact types by constructionism matrix dimensions for both coders. 

Showing % of type and (n) using Summary Dimensions

Problem Design Code
1 2 3 1 2 3 1 2 3

Artefact 
type

Unplugged 75%(9) 17%(2)   8%(1) 12.5%(1) 75%(6) 12.5%(1) 25%(1)   50% (2) 25%(1)
Onscreen 65%(15) 31%(7)   4%(1) 29%(7) 67%(16)   4%(1)   9%(2)   86%(19)   5%(1)
Physical   0 50%(2) 50%(2)   0 100% (4)   0   0 100% (4)   0
Concept 65%(19) 21%(6) 14%(4) 19%(5) 73%(19)   8%(2) 10%(2)   80%(16) 10%(2)
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5. Discussion

To organize our discussion, we start by outlining limitations of our study, we then dis-
cuss our findings for each computational thinking concept and overall for the construc-
tionism matrix and finish by reflecting on the research questions.

5.1. Limitations

An initial point to note was the difficulty in creating a method for examining the degree 
to which constructionism is incorporated in activities, a matrix has been suggested, but 
this requires further validation as a useful approach. When creating the matrix there 
was discussion of what were the most important features of a constructionist activ-
ity. According Papert (1980), important is learning experience that engage students in 
constructive activities that are meaningful to them. Furthermore, activities should be 
accessible to students with different styles of thinking and learning. Harel stressed that 
“students become deeply involved and gain deeper understanding… through the pro-
cess of constructing, programming, and explaining their own representations” (Kafai, 
1994, p. 24). Our focus led to the attribute of learner autonomy in creating artefacts at 
each of the main stages of a product development. Here an adapted levels of abstrac-
tion framework was suggested with dimensions of problem, design and code. A scale 
of autonomy from levels 1 to 5 was suggested with 1 representing the least amount of 
learner control of the artefact being created to 5 representing the learners having com-
plete choice over what to make and how. 

During the process of review of activities, it appeared that the scale criteria de-
scription was not sufficient to distinguish between the sample of activities. Some 
coders rated activities at ‘1 to 2’ or ‘1 to 3’, this was because the activities, rather than 
being a single small activity were a unit of work across several lessons, or within a 
single lesson there was a ‘graduation’ of pupil autonomy. This ‘graduation’ may have 
been over the course of the lesson as different ‘tasks’ occurred, such as an initial 

Table 10
Comparing the changes in coders rating of scale across the constructionism matrix dimen-

sions using the Wilcoxon Signed Rank test.

Test statistics Comparing constructionism scales
Problem to Design Design to Code Problem to Code

Increase in scale 12 (sum of ranks 90)   4 (sum of ranks 10) 14 (119)
Decrease in scale   2 (sum of ranks 15)   0 (sum of ranks 0)   2 (17)
Tied 20 26 14
n 34 30 30
p p = 0.008 p = 0.046 p = .003
Z -2.673 -2.00 -3.00
r   -.46   -.37   -.55



Integrating the Constructionist Learning Theory with Computational Thinking ... 59

closely controlled task, followed by a task where there was more student control or it 
could be that over several lessons pupils were moved from use to modify (Lee et al. 
2011a).

In order to deal with this added requirement, two extra levels were added to the 
scale of ranges of ‘1 to 2’ or ‘1 to 3’ as coding value options. However, a % or degree 
of each level may have been more useful. Within the qualitative data of ‘Justification 
of coding’ variable’ one coder said “I was loathing to allocate a level 2, as this only 
occurred in the final 20th challenge and up to this point there had been absolutely no 
student autonomy at all “(Coder 2)

However, during reporting on the data, these two extra ‘range’ scales were merged 
back in with their respective highest level, this was because of the small number of 
activities which were surveyed and the need for broader groups for statistical analysis. 
In further work, a larger sample of activities is needed, and the more granular levels can 
then be used to draw out clearer distinctions between activities.

Selection of activities to sample was problematical. In the UK there are a large 
number of resources available for educators to select from and recent surveys which 
have reported on the most popular (Royal Society, 2017). However, in other countries 
the task of finding resources to evaluate was not so easy. In other countries teachers 
can use resources that are internationally available, such as the code.org materials 
but in some countries, teachers are more likely to create their own activities and that 
these are not then shared. For these countries, a generic set of activities were cre-
ated to represent these countries resources. Whether or not these are representative 
of what is being actually used in class in difficult to assess. Similarly, in the UK, it is 
not clear as to whether teachers are using resources in their published form or if they 
are adapting them, in a recent survey of 207 teachers (data not yet published) 40% of 
teachers reported they created their own resources, including adapting resources from 
over 70 specifically named resource sets. The most popular three resource mentioned 
in this survey was the Barefoot materials (Berry et al. 2015) with 34% of the teachers 
mentioning using these resources followed by and 16% mentioning Code It and 13% 
Switched on, of which we have reviewed sample material in our survey here. Although, 
teachers may choose popular computer science or computational thinking activities 
sometimes the diversity of activities depends on policies, curriculum, grades, etc. For 
example, robotics has become very popular in secondary schools in Finland; computer 
science equipment is provided by the States and the local communities in Germany; 
programming with Scratch is advocated in primary schools in Ireland; learning objec-
tives include programming skills and knowledge of computer hardware in required 
in secondary schools in Lithuania; a course that includes programming with Scratch 
or Kodu is available in Portugal computer science education (7th–8th grade) (Passey, 
2017). Teaching of computer science integrated to other educational subjects is started 
in primary school in Lithuania in 2017. In some cases, teachers use computer science 
activities as a way to demonstrate how the same problem or task of real life could be 
solved by using computers. For example, students may solve problems during math-
ematics lesson, on their own or in pairs and at the end of the lesson solve the same 
problem using a particular tool, such as Scratch, code.org or Codemonkey. This gives 
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opportunity for students to understand the problem at a deeper level, practice solving 
it in different ways and can promote discussion between students. 

Similarly, there was debate as to whether to include activities in which no physical 
‘artefact’ was constructed rather than learners ‘constructed conceptual understanding’. 
For one activity, a board game, the learners constructed their learning, as they ‘used’ 
other games, but then went on to create their own version, very much transitioning 
through a use, modify, create approach (Lee et al. 2011). This transition from using to 
making seemed to be the salient point in which constructivism (Piaget 1970) switches 
to constructionism (Papert 1970) and as long as activities supported this transition 
then they could be included as they provided a constructed artefact. Therefore, activi-
ties such as a Bebras task (Dagienė &. Sentance 2016) would not be included, as they 
support development of a CT concept but do not include an element of then making 
or constructing of an adapted or brand-new version of a task. This is a problematical 
issue as a teacher could use a Bebras task as a starting point and then adapt this con-
text into a constructionist activity. How teachers are using activities in practice was 
not captured by our survey of materials. But our approach could be used as a starting 
point to further investigate teachers transition of resources from constructivist to con-
structionist activities. 

In the case of creating Bebras tasks, Dagienė et al. (2016) mentioned a construction-
ist and deconstructionist learning ways. Constructionist way of learning is the creation 
of computer science task and deconstructionist way of learning is that a computer sci-
ence concept is analysed and deconstructed in its main aspects (discovering why it is 
computer science).

Our review was of single activities rather than of sets of activities sitting with a 
progression of development of knowledge, skills and understanding. This is a limitation 
of our study. Similarly, some coders had considered the use of a construct such as a pro-
cedure or function was sufficient to warrant generalisation could be assigned, whereas 
for other coders, only if learners had themselves generalised rather than copied or used 
someone else’s generalisation could that attribute be assigned to an activity. There are 
opportunities to review the progression of the constructionism matrix and CT concepts 
through time. For example, the Solo taxonomy (Biggs, 1982) starts with the learner hav-
ing no experience of a concept and moves to them being able to apply the concept in 
new and novel scenarios. There is opportunity to map this taxonomy, or other similar to 
the constructionism matrix.

5.2. Computational Thinking Concepts & Constructionism 

In order to answering our research questions, we first summarise our findings by com-
putational thinking concepts. For each concept we draw out key results related to con-
cept allocation and the data from the use of the constructionism matrix and relate these 
to literature. 
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ALT – Algorithmic Thinking
Despite having no statistically significant statistics related to our data for the algorith-
mic thinking CT concept, there are interesting features of the descriptive data. ALT 
was our most popular CT concept coded for the 21 activities; 16 to 19 activities were 
coded as teaching this concept by our coders. Considering whether there might be spe-
cific reasons why algorithmic thinking might be particularly suited to constructionism 
then we turn our attention ideas on progression for this concept and the work by Rich, 
Strickland, Binkowski, Moran, & Franklin (2017) who suggested a learning trajectory 
for developing sequence. Rich et al. grouped initial learning about sequence into ev-
eryday activities related to ordering and precision, suggesting that learners transitioned 
from understanding the world around them for a particular concept to then applying 
this in a programming context with an intermediate phase of computational thinking. 
An example of a goal on this trajectory is “During this trajectory they need to learn that 
programs are made by assembling instructions from a limited set” (page 187). Whether 
this objective is more effectively met through CodeMonkey activities with no choice of 
the problem, the design or the code (as there is only one possible solution to a puzzle), 
or with Lightbot, with similar restrictions or through a more open exploration of a 
ScratchJr activity to draw a square, which still is a level 1 problem, but which allows 
learners to select the character that draws the square and the learner can choose where 
exactly to start, how big the square might be and can embellish this activity in next 
steps, so this becomes a level 2 design and code activity has not been evidenced by our 
study. However, we have now provided a means by which different activities can be 
coded and compared quantitatively.

DEC – Decomposition
Just less than half of our activities were assigned to the decomposition concept (de-
pendent on coder per Table 6). These were relatively evenly split between level 1 and 
level 2 on the problem dimension with a couple of activities at level 3. Why decompo-
sition might have lower pupil autonomy at the design level is interesting, whether this 
is because design is lacking as a clear and identified step may be a contributing factor. 
A recent review of resources for teaching computing, concluded that there was a lack 
of resources with design (Falkner & Vivian, 2015) and a study matching learning goals 
against research cited design as the most unmatched goal (Rich, Strickland & Franklin, 
2017). We did not specifically ask coders to reflect on this, however one coder noted that 
‘Design element was STRONG’ (coder 2) in activity 16 but non-existent in the puzzle-
based activities which have a predetermined problem and solution algorithm. In under-
taking design students are required to break their problem down into parts (decompose 
it), they need to consider the level of detail that is appropriate (and so are also abstract-
ing) and order these items (and so are practising algorithmic thinking). Considering how 
students are experiencing design they may be copy an existing design, or working in a 
more constructionism way by creating their own, perhaps activities could be improved 
by increasing the element of independent design by learners in the same way that they 
are required to do when they are undertaking other subjects such as when learning to 
write (Waite, Curzon, Marsh, Sentance, Hawden- Bennett, 2018).
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ABS – Abstraction
Only 4 to 5 activities were identified as teaching abstraction and the inter reliability 
was moderate (κ = .696, p = 0.001), yet abstraction is seen by many as the cornerstone 
of computational thinking. Wing wrote “The abstraction process, deciding what details 
we need to highlight and what details we can ignore, underlies computational thinking” 
(Wing 2008, p. 3718). The activities which have abstraction coded for them are predomi-
nantly at level 1 for problem and level 2 for design and code.

In our study we have developed upon a particular use of abstraction through our 
constructionism matrix and the levels of abstraction, where the dimensions of our ma-
trix represent levels of detail for different purposes of an activity, the problem, design 
and code, however that does not relate to how activities engaged with the teaching and 
learning of abstraction. 

In looking at our coded activities, as with decomposition, learners are using abstrac-
tions as they are given a problem by their teacher or an online system, this is coded 
at scale 1 and what we saw for most of our small sample. If learners then follow a 
predefined design (as with the puzzle activities) they are using an abstraction and if 
they are copying or figuring out a pre-defined code solution, again they are using an 
abstraction at scale 1. 

Despite learners using abstractions, few of our activities were coded with this con-
cept. Perhaps this is because the concept is hidden from both the teacher and the learner, 
and only when a specific process of abstraction is mentioned would it be coded? We have 
2 activities coded level 2 for design and 1 for level 3 at code and design. This is for activ-
ity 16, a ScratchJr which the coder justifies her allocation for by saying 

‘The design element is STRONG. I wish I could have given this a 
much higher score – maybe this needs to be reflected – but the genre 
was fixed, and the language used. I allocated more CT aspects as kids 
were deciding on their own designs so abstracting and decompos-
ing as they were designing. I am not sure they did generalisations – 
maybe because they were doing repeats ... need to discuss more about 
how we allocated each of the CT concepts – need a clearer definition.’ 
(Coder 2) 

However, for this same activity coder 1 disagreed and only gave the activity a 
level 2 for design and coding and did not allocate decomposition or abstraction as 
concepts taught. 

The comments made by coder 2 implies a constructionism approach was being taken, 
as learners were ‘deciding on their own designs’ however, whether this means that learn-
ers will make more progress rather than using someone else’s is yet to be robustly evi-
denced for this age group of learners.

GEN – Generalisation
This concept was assigned the fewest times from all of the CT concepts, only 1 to 3 activi-
ties were coded as GEN and the inter-reliability was not reported by SPSS as there were 
no agreements and numbers were small. Even where it was assigned there was a lack of 
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certainty of the allocation, one coder remarked in the justification notes about Activity 18 
(Lightbot) ‘‘Although this teaches procedures – is this generalisation or is it decomposi-
tion? As the purpose is not to reuse for a logical reason but to reduce code blocks used.’’ 
(Coder 2) The same coder raised the same question about Activity 19’ I am not sure they 
did generalisations – maybe because they were doing repeats ... need to discuss more 
about how we allocated each of the CT concepts – need a clearer definition.’’ Coder 2)

Again, this was raised for another activity: 

‘If we are considering repeats as decomposition then this is used, I 
am assuming then as it moves to functions then we can say that gen-
eralisation is used HOWEVER the level of use of these is very low. 
On solo it’s really just first level as using what is provided – maybe 
unistructural, whether we think this use of a procedure, that someone 
else made, is generalisation I am really not sure. It will be interest-
ing to see what the other coders thought and whether the learning of 
generalisation here has been done in a constructionist manner at all.’’ 
(Coder 2)

Two issues are raised by these comments, firstly, is a function or procedure which 
is used solely to reduce the number of lines of code for something that can be repeated 
a generalisation, or a decomposition used within a repeat? Does generalisation need to 
be where we are “transferring a problem solving process to a wide variety of problems” 
CSTA & ISTE, 2011))? Has this confusion arisen as the term pattern has been associated 
with generalisation? This term may have been introduced to simplify language and as 
an instructional approach in a progression of learning for generalisation to encourage 
the spotting of patterns that might then become generalisations. However, during this 
progression reusing code to simplify code within a single solution, such as in the activity 
16,18 and 19 is this generalisation? Secondly, does using elements created by someone 
mean we are learning about the process involved in creating those elements? Particularly 
if the the underlying concept is NOT brought to a learner’s attention?

EVA – Evaluation 
Evaluation according to Bloom is the highest order thinking skill (Bloom, 1957) which 
learners encounter as they gradually spiral through a succeeding progression of more 
complex material. Of those activities assigned this concept, over half were rated as level 
1 (54%) and a third (31%) level 3 for the problem, nearly three quarters (72%) were rated 
level 2 for design and 82% at level 2 for coding. This is quite a wide spread, with some 
tendency to the higher levels for code and design. Perhaps implying that evaluation of the 
code was more prevalent than evaluation of a design. But this is a broad assumption which 
needs more careful analysis particularly around what we might mean by an activity having 
evaluation being assigned as teaching that CT concept. In our definition of evaluation, the 
following phrases were provided to help coders decide if evaluation was a skill USED in 
the activity ‘Find an appropriate solution’ Finding the best solution’ ‘Deciding whether 
the solution is fit for purpose’ ‘Deciding whether the solution is the most efficient one’. 
This list implies an order of progression. Surely the first of which must have been seen in 
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any activity that had some kind of solution. Therefor all activities, if they solved any kind 
of task or activity should have had an element of evaluation. It may be that coders dis-
counted this first example and only assigned where there was a ‘best solution’ considered, 
or if there was a design to which the solution to could be compared to decide if it was fit 
for purpose. There appears to be more work to be done in defining the rationale for assign-
ing a concept as being associated with an activity, perhaps as a grading of association.

Constructionism Matrix
Looking at the overall statistics for the constructionism matrix and its dimensions and 
autonomy scales, as shown in Table 7, there is as an overall pattern whereby autonomy 
for learners is most restricted at the problem stage with around half of activities coded 
at scale 1. Autonomy for learners is slightly better during design and code where scale 
2 was assigned for around half to three quarters of the time. What this indicates, for 
our sample, is that learners have little control over the context of the activities they are 
undertaking, they have some opportunity to start to modify the design and the code, but 
very few opportunities to be involved in a freer form create where they have control over 
what they might make it and how. Therefore, the level of constructionism might be con-
sidered to be low if we measure it based on student autonomy, learners are not moving 
to the point where they might feel ownership (Lee et al. 2011) as they are not yet making 
their own new artefacts. 

5.3. Research Questions

Is our model applicable in investigating computational thinking classroom activities? 
Having adopted Dagienė et all’s (2017) model, we were able to assign computational 
thinking concepts to classroom activities with a substantial agreement of coders and 
this provided a means by which we could then investigate potential correlations with 
constructionism. However, as outlined in Section 5.2 there were questions raised about 
assignment of some concepts, therefore further work is needed in this area.

Is our model applicable in assessing constructionism classroom activities?
Despite limitations, we were able to use our constructionism matrix and assign our au-
tonomy scale to activities with a moderate degree of agreement between coders. Follow-
ing on from our discussion in Section 5.2., further work is needed in this area to develop 
guidance for coders and to verify this approach as a way to view constructionism. How-
ever, our matrix provides a useful starting point.

In what way do classroom activities teach computational thinking in a constructionist 
way? 
In Section 5.2 we reviewed each computational thinking concept, reflected on our find-
ings and literature to suggest how the classroom activities investigated taught computa-
tional thinking in a constructivist way. Based on this there is still much to do to look at 
a wider range of activities and to particularly resolve the question of what as well as the 
autonomy scale needs to be considered to reflect constructionism in practice.
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6. Conclusion and Further Research

Our quantitative analysis should be viewed with much caution as our sample size was 
small at only 21 activities, and only 3 authors coded, each doing a mixture of 1st and 2nd 
coding. However, this small number of activities became 42 cases to review researchers 
views of the attributes of activities. Our approach for classification appears to have some 
reliability, as there was substantial agreement across the variables and coders. However, 
for some activities there was very different allocation of the constructionism scale, such 
as for the activity 22 the JavaScript onscreen activity which was the only activity to be 
awarded more than a scale of 3. It was allocated a 1–2 by one coder for all three dimen-
sions but a 5 for just the problem and coding and a 1 for design by the other coder. The 
rationale for this may be that the activity sat within an overall complete unit of work, 
which eventually might lead students to be given a chance to create a new artefact using 
any product, in any context, but within the activity reviewed this was not the case. This 
indicates an issue with how an instrument to measure the constructionist aspect of activ-
ity might scope the boundaries of an activity. 

Despite the limitations of our quantitative work, a number of interesting data results 
have been revealed. There are no differences between activities with each of the CT and 
CS concepts across the scales of each of our problem, design and code dimensions of our 
constructionism matrix. But there were differences for other aspects, including the activity 
type, such as lesson plan compared to onscreen student activity and also the artefact created 
such as a physical artefact compared to an onscreen activity or an unplugged activity. 

A resulting suggestion might be that CT & CS concepts are merely the content that 
is being delivered by a constructionism approach, the success of this approach is less 
impacted by the underlying material being delivered but more by the techniques applied 
to deliver it, such as through human (teacher) mediated activity as opposed to a symbolic 
(system) mediated (Kozulin, 2003) event, or through the creation of a physical artefact 
compared to an onscreen or unplugged artefact. 

In summary, the contribution of this paper is the presented mapping tool incorporat-
ing a new framework, called the constructionism matrix, for reviewing activities which 
are used in the teaching and learning of computing in terms of constructionism and 
computational thinking. We have identified limitations with our framework and with 
our trial, but from its development and using it with a small sample of lesson plan and 
online student activities (n=21) targeted at K-5 learners, we have been able to report the 
trial results of its first use, discuss problems encountered and suggest opportunities for 
improvement of both the mapping tool and the matrix. 

For further work, we suggest to further refine the constructionism matrix, by adding 
% of use of each scale and more closely defining the scope of the activities reviewed, it 
should then be used to survey a larger population of resources. Similarly, more work is 
needed to reflect on the depth of learning of CT & CS concepts perhaps in a similar scale 
as the student autonomy using Solo taxonomy or other more finely grained frameworks 
of a degree of learning. Our mapping tool will then have a combined framework, which 
might provide more insight into the potential relationship between constructionism and 
computational thinking. 
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