
Informatics in Education, 2019, Vol. 18, No. 1, 69–104
© 2019 Vilnius University
DOI: 10.15388/infedu.2019.04

69

Lesson Planning by Computational Thinking Skills
in Italian Pre-service Teachers

Lorella GABRIELE*, Francesca BERTACCHINI,
Assunta TAVERNISE, Leticia VACA-CÁRDENAS,
Pietro PANTANO, Eleonora BILOTTA
University of Calabria, Via P. Bucci, Cubo 17B, Arcavacata di Rende, Cosenza, Italy
e-mail: {lorella.gabriele, francesca.bertacchini, assunta.tavernise}@unical.it,
leticiavcec@yahoo.com, {pietro.pantano, eleonora.bilotta}@unical.it

Received: May 2018

Abstract. In the last years, a growing trend in different educational contexts focused on Compu-
tational Thinking (CT) skills acquisition for both in-service teachers and students. But very low
attention has been paid to pre-service teachers’ education in regards to CT skills. To solve this
issue, an empirical experimentation has been carried out with141 Italian pre-service teachers,
that attended at a programming course, with the following aims: 1) provide them the main coding
concepts by using Scratch 2.0; 2) offer practical advice on how to design educational applications
(apps) to be applied into school context; 3) assess their apps by applying an already existing meth-
odology, useful to give them feedback on their programming expertise and CT skills. Empirical
findings showed that most of the participants achieved a medium-high level of CT skills, combin-
ing both design and programming skills in their school internship. Moreover, they reported a sense
of greater self-esteem in teaching practice and a great emotional response from kids.

Keywords: computer uses in education, preservice teacher education, outcomes of education,
coding, digital literacy.

1. Introduction

In contemporary society, digital literacy fosters the acquisition of Computational
Thinking (CT) skills for everyone, allowing learners “to solving problems, designing
systems, and understanding human behaviour, by drawing on the concepts fundamen-
tal to computer science” (Wing, 2006, pp 33). Broadly speaking, these abilities are
also related to analytical thinking processes involved in modelling situations, designing
and implementing systems. Nonetheless, the definition of these skills is still ongoing
(Griffin, 2014). Similar approaches are adopted in the programming field (Tømte et al.,

* Corresponding author

L. Gabriele et al.70

2015, Kafai and Peppler, 2011), as well as in the Do-It-Yourself field (Guzzetti et al.,
2010; Bertacchini et al., 2013; Bertacchini et al., 2014; 2015; Bullock and Sator, 2015),
in Digital Fabrication (Buechley and Eisenberg, 2008; Bilotta, Bossio, Pantano, 2010),
and in Educational Robotics (Bilotta et al., 2009; Bertacchini et al., 2010; Gabriele
et al. 2012; Gabriele and Bilotta, 2013; Gabriele et al., 2017; Bertacchini, Bilotta, Pan-
tano, 2017), just to cite a few. In many countries, CT formal courses in educational
practice for both students and teachers have been carried out, investigating educational
implications and assessment (www.atc21s.org). Hence, programming activities have
been promoted for encouraging digital consumers to become educational “prosumers”
(mixing “producers” and “consumers”) (Bertacchini & Tavernise, 2014), thus entering
in touch both with social media studies (Bertacchini et al., 2018; Bertacchini et al.,
2018; Bilotta et al., 1995) and contemporary complexity and chaos science (Bilotta, La-
fusa, Pantano, 2003; Bilotta, Pantano, 2006; Bilotta, Pantano, Stranges, 2006; Bilotta
et al., 2007; Bilotta, Stranges, Pantano, 2007; Bertacchini et al., 2007; Adamo et al.,
2010; Bilotta, Pantano, Vena, 2011; Bertacchini et al., 2015).

In this respect, it is quite interesting to discuss the Italian Digital Literacy Educa-
tional Reform and the pre-service teachers’ educational context.

In this work, the course on programming realized with preservice teachers, has been
introduced into a curriculum that is not yet complete or that needs adjustments (Po-
lenghi and Triani, 2014). Despite this, in 2014 the Italian Ministry of Education passed
a law, according to which it is necessary that teachers of all levels learn to program in
order to teach students the activities of Coding (Declaration N° 002937, September
23rd, 2014). Thus the need arose to make all pre-service teachers educated in High Or-
der Thinking Skills or HOT Skills, an acronym synonymous with Computational Skills
or CT (Heong et al., 2012).

Whereas several studies affirm that pre-service teachers’ technology-rich practices
can be very beneficial for the use of programming in a school context (Coutinho, 2009;
Lei, 2010; Vaca Cárdenas et al., 2015; Bertacchini et al., 2016; Vaca Cárdenas et al.,
2016; Bertacchini et al., 2013; Bertacchini et al., 2011), no Computer Science and Pro-
gramming course for the Italian Primary Teacher Education Degree” has been scheduled.
Digital literacy is instead acquired in an “Educational technology Lab course” by surfing
online learning environments, searching the internet, using digital learning materials and
Social Media and, finally, only a short introduction to Computational Thinking Skills.
But, different authors found significant divide between the contents of “Educational
technology lab course” and the use of these tools in real learning environments (Gunter,
2001; Angeli, 2004; Alì et al., 2006; Gill and Dalgarno, 2008; Chai et al., 2011; Tondeur
et al., 2012; Price et al., 2012; Tondeur et al., 2015; Baydas and Goktas, 2016; Blömeke
et al., 2016). The result is that pre-service teachers do not have a concrete education
on programming, also fostering the idea that this activity is mysterious and difficult, or
frustrating and boring (McInerney et al., 2009).

To sum up, today, no specific educational program for pre-service teachers has been
arranged to teach them “how to teach” HOTSkills or CT skills, and to provide them a
satisfactory level of programming knowledge (Ertmer and Ottenbreit-Leftwich, 2010;
Masterman and Manton, 2011; Moreno-León et al., 2015).

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 71

To fill the gap that exists between the school education requirements in regards to
“digital literacy and programming activities” and the current pre-service teachers’ quali-
fications, some university courses need to be re-thought taking into consideration the
Italian Educational Reform (Declaration N° 002937, September 23rd, 2014). Therefore,
specific courses and laboratories for pre-service teachers should be implemented focus-
ing on “Introduction to Programming” to provide them with an understanding of the role
computation can play in solving problems and to help them feel justifiably confident of
their ability to write small programs that allow them to accomplish useful goals. This
educational path will support pre-service teachers in how to teach CT, how to include CT
skills into teaching, and how to assess these abilities.

Starting from the specific problem – lack of effective teaching practices for digital
literacy and programming – our work has the ambition to fill this gap by:

Proposing a methodology to implement a Programming Laboratory to teach to (i)
novices’ pre-service teachers how to develop an educational app.
Providing pre-service teachers with an educational methodology to use in their (ii)
daily curriculum with their pupils (teach how to teach).
Combining two assessment methods, both found in literature, to measure the un-(iii)
derstanding and the use of different Computational Thinking concepts (What), and
to detect the CT students’ level (How) to identify their strengths and weaknesses.

The article starts by dealing with some key research carried on CT and Programming,
looking at Scratch and its use in educational context methodologies found in literature
to assess the apps (Section 2). Section 3 deals with the purpose of this work, the sample,
the educational guidelines to implement the laboratory and the assessment methodology.
Results are showed in Section 4 and discussed in Section 5. Finally, conclusions and
further work are outlined in Section 6.

2. Previous Research

2.1. CT and Programming

According to both the International Society for Technology in Education (ISTE) and the
Computer Science Teachers Association (CSTA), CT skills include: problem formula-
tion, logical organization and data analysis, data representation through abstractions, cre-
ation of computational automatic solutions, and problem generalization. As a result, they
are a necessary prerequisite in digital society (Wing, 2006), and are critical to success
(Lye and Koh, 2014). In fact, they imply a new and fundamental way of thinking (Curzon
at al., 2014), involving thinking about a problem, coding, designing, analysing and ap-
plying some solutions to other contexts (Faraco and Gabriele, 2007; Barr et al., 2016).

Federici, Gola, Brau, Zuncheddu (2015) highlighted how different countries included
in their curricula computing, coding and Information Technology and how most teachers
are not confident in this paradigm. These authors developed a new approach that allows
teachers to approach coding without being necessarily experts.

L. Gabriele et al.72

Regarding CT Skills acquisition, various methods could be used to assess the ac-
quired level of CT concepts in order to detect differences and advancements among
students of various ages. As an example, the Progression of Early Computational
Thinking model (Seiter and Foreman, 2013) could be considered useful to establish
age-appropriate curricula, and to define lesson plans aligned with students’ cognitive
development stage.

Another method used to assess CT has been developed by Denner et al. (2012). It
uses final products (e.g., games or models) to map students’ computational thinking
skill progression as marks of their higher level thinking, as they proceed through the
curriculum. A similar approach was adopted by Repenning (2011) with Computational
Thinking Pattern Analysis (CTPA).

 “Dr. Scratch” developed by Moreno et al. (2015) carries out an automatic assess-
ment of users’ applications. As Repenning et al. (2015, p. 22) asserts, “the ability to
automatically detect computational thinking patterns by analyzing student creations can
give educators and learners greater insight into what concepts are understood and what
concepts still need to be learned.”

In regards to the arrangement of proper laboratories to teach CT skills at University
level, various works introduce the general setting or qualitative results (McInerney
et al., 2009; Vaca-Cardenas et al., 2015; Tavernise et al., 2015). Indeed, pre-service
teachers’ University education on CT skills is fundamental for teaching in the elemen-
tary school, where children can efficiently implement computer games using customiz-
able software developed for their level of experience (Baytak and Land, 2011). Fur-
thermore, they can be acquainted with the following CT dimensions: computational
concepts (concepts that programmer uses), computational practices (problem-solving
practices that occur in the process of programming), and computational perspectives
(students’ understanding of their own learning, their relationships to others, and the
technological context) (Brennan and Resnick, 2012).

Many studies involved the use Scratch with pre-service teachers programming
courses. Bell, Frey, Vasserman (2014) reported the experience carried out by pre-ser-
vice teachers, in a programming camp, as instructional team. They explored ways to
incorporate Scratch into their daily curriculum, gradually acquiring skills in designing
lessons into specific programming activities. Quan (2014) presented how students and
pre-service teachers used computer projects into their lesson plans of second language
teaching/learning for elementary, middle, or high school students. An and Lee (2014)
describe an education course developed for pre-service teachers to allow them to under-
stand and use computational thinking in their classrooms. Bean et al. (2015) underlined
the benefit obtained applying their methodology, which improved learners’ self-effica-
cy. Indeed, as Du Toit (2015) highlights, Information and Communication Technology
(ICT) course for initial teachers is focused on computer literacy, but does not model
effective teaching practices. Nevertheless, many other countries provide little or negli-
gible teacher training related to ICT in education. For example, evidence from Europe
shows that 70% and 65% of students in Lithuania and Romania, respectively, are taught
by teachers for whom it is compulsory to participate in ICT training, compared to just
13% or fewer percentages of students in Luxembourg, Austria and Italy (European
Commission 2013).

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 73

2.2. Scratch: An Easy and Powerful Visual Programming Language

In the last years, different easy-to-use visual programming languages for novice pro-
grammers were developed, among which Scratch, created by the Lifelong Kindergarten
Group at the MIT Media Lab (Maloney et al., 2008).

Scratch projects are composed of many little components called sprites; each sprite
can be controlled by scripts. At the same time, each sprite has also one or more clothes
to depict its visual status, and sound. Scratch 2.0 has a simple interface with a unique
window with four panels; one panel has the command palate with buttons to select
categories meanwhile the middle panel shows the scripts for the current sprite, with
folder tabs to view and edit the costumes – images and sounds owned by that sprite.
The panel on the upper right is the stage, where the action takes place. A button on
the bar below the stage allows the stage to be displayed in full screen mode to show a
finished project. The bottom-right panel shows thumbnails of all sprites in the project,
with the currently selected sprite highlighted. Scratch is tinkerable: “tinkerability en-
courages hands-on learning and supports a bottom-up approach to write scripts where
small chunks of code are assembled and tested, then combined into larger units” (Ma-
loney et al., 2010).

By using a drag and drop approach, novices can easily build a program, dragging
command blocks from a palette into the scripting panel and assembling them to create
“stacks” of blocks (Maloney et al., 2010). However, in programming with Scratch,
novices must understand some key building blocks categories. Blocks such as State-
ments, Boolean expressions, Conditions, Loops, Variables, Threads and Events, can
be snap together only if they are syntactically appropriate. Moreover, certain blocks
(e.g., conditions and loops) can be dynamically resized, to accommodate any number
of nested blocks.

According to the international literature, Scratch software can be considered an at-
tractive support for acquiring the skills linked to CT (Maloney et al., 2008; Maloney
et al., 2010), providing both students and teachers with a chance to learn by doing (Vaca
Cárdenas et al., 2014; Tan and Kim, 2015).

Numerous papers confirm that the training and the educational activities based
on Scratch “coding” can allow a fruitful production of digital contents (Wilson and
Moffat 2010) as well as students’ creative development through learning activities
(Kobsiripat, 2015; Korkmaz, 2016) at different school levels, from elementary (Klaus-
Tycho Foerster, 2016) to middle school students (Wolz et al., 2011; Armoni, Meer-
baum-Salant and Ben-Ari, 2015) and in adults (Chiu, 2014).

Moreover, Scratch promotes a friendly opportunity to coding due to the “remixing”
approach. This characteristic refers to the possibility to use already available project
on the Scratch Community, edit it, both modifying a part of the code and combining
source materials, just giving credit to the original developer of the project (Monroy-
Hernández, 2012).

L. Gabriele et al.74

2.3. Designing Educational Apps with Pre-service Teachers

While Italian teachers have an excellent pedagogical knowledge base, their role and
skills in this rapidly evolving society, tied with the adoption of new technologies in the
school has become a reasonable area of concern. In fact, it is not clear:

How to provide pre-service teachers with CT skills?a.
How to evaluate their acquisition?b.
How it is possible to develop CT in the teaching practice?c.

Furthermore, how to provide feedback to teachers has not yet been investigated. This
point is very important for the education of pre-service teachers as it is about evaluating
their programs, evaluating the acquired skills, and then considering a plan of CT further
improvements.

The present work addresses these needs directly, by adopting an approach that al-
lowed us to design first the teaching materials and then to evaluating teachers’ products
and skills acquisition.

The present work addresses these questions directly, by adopting an approach that
allowed us to first design the teaching materials by using Scratch and then to evaluate
teachers’ products and skills acquisition.

The design of the app took place before doing an analysis of curricular contents,
translating them into applications, which were then adopted in schools, linking the con-
tents with the training results of children and pre-service teachers. The app design has
been done through the following steps:

Analysis of curricular contents that are usually provided to children in primary 1.
school.
Choice of contents.2.
Application design.3.
Adoption of apps in schools, linking the contents with the educational outcomes 4.
both of children and pre-service teachers.

From the experimentation carried out in an empirical way, we realized that the
products developed by the pre-service work and become really tools of knowledge for
children if we carefully evaluate the steps of production of the programs, such as the
cognitive articulation that led to the construction of the specific application. That is,
if we evaluate the mental process carried out by the pre-service teachers in writing the
various programs through the use of Scratch software. In this way, as several studies
have shown, the results of understanding the programming processes implemented in the
development of applications can directly give feedback on the effective construction of
applications for educational purposes.

Therefore, the app design was evaluated by analysing the programs minutely, but
specifically we evaluated:

The representation of the contents that the pre-service teachers have deployed in a.
the applications and the quality and the didactic effectiveness of the applications;
to achieve this goal, preservice-teachers must be able to create the agents of the
application and be able to articulate events and phenomena in a system of tempo-
ral representation of events.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 75

The levels of interaction that the pre-services have created to allow the subjects to b.
interact with the knowledge bases represented in the first design step. Also for this
purpose, the programming levels are certainly not simple. We expect advanced
acquisition of major programming concepts to lead to high levels of interaction
because pre-service teachers are able to develop many games and exercises to al-
low students to manipulate the concepts they are dealing with.
Kids ‘learning assessment, by evaluating the performance of the various exer-c.
cises / games proposed by the pre-service teachers.

From here on, a discussion follows on how to evaluate applications in the education
sector. Good levels of teacher programming are also required for the implementation of
learning assessment systems. But this is truly a challenge because it allows not only an
assessment of the content you want to acquire, but also a measure of the performance of
children in the use of the application.

From this analysis, we will choose some of the most appropriate methods to meet the
needs of the pre-service teachers.

By analyzing which assessment methods best fit the needs of the pre-service teacher
population and adopting some of them, we can provide a method that may be followed
later. The second motivation on how to provide practical feedback to pre-service teach-
ers on the achieved results. Knowledge of the level of programming achieved will enable
them to better manage their future development.

In the following paragraph, we will present a non-exhaustive overview of the evalu-
ation methods and those that seemed to us the most useful to provide effective feedback
to teachers. Please, note that the choice was made based on the simplicity of the adopted
methods and the clarity of the results obtained. The focus was to provide teachers with
practical self-assessment tools. We will illustrate how these different methods are used
(or in what contexts they are appropriate), and how they differ from each other to show
that the two particular valuations methods we have chosen (i.e., Denner, Werner, Ortiz,
2012; Moreno et al., 2015) are better fit with the than other methods for the purposes
mentioned above. In this way, it will be possible to assess how appropriate their use is
for the reported study.

2.4. Evaluating Methods

Different assessment methods are present in literature (Maloney, Peppler, Kafai, Resnick
& Rusk, 2008; Denner, Werner, Ortiz, 2012; Brennan and Resnick, 2012; Meerbaum-
Salant, Armoni, (Moti) Ben-Ari, 2013; Moreno et al., 2015; Repenning, 2011; Koh,
2014). Some of these methods (Maloney, Peppler, Kafai, Resnick & Rusk, 2008;
Denner, Werner, Ortiz, 2012) aim at identifying which programming language concepts
are employed by learners to develop an application. If the student correctly uses some
commands or blocks, it means he/she has acquired the mental model underlying the use
of functional blocks. In 2008, Maloney, Peppler, Kafai, Resnick, & Rusk analysing the
use of Scratch commands by novice learners, stated that the use of certain blocks in a
given project is a proof that the related programming concept has been learnt. The au-

L. Gabriele et al.76

thors evaluated the presence of the following functions of a coding language: User Inter-
action; Loops; Conditional Statements; Communications and Synchronization; Boolean
Logic Variables; Random Numbers.

A similar method has been developed by Denner, Werner, Ortiz (2012). The authors
note that learners’ apps differ in their complexity, according to different users’ mental
models and cognitive profile. The authors provided a list of all commands and blocks,
clustering them into three main categories of programming concepts that can be learned
by using Scratch. In turn, each of these categories are organized in 17 subcategories:
the first category, Programming concepts, is intended as the internal management of
the program, through local and global variables, the use of parallelism functions and
of conditional character interactions, the structure of the events happening in the apps,
user interaction. The second category, Code organization and documentation, is con-
cerned to the items related to the name given to the variables and to the general com-
ments given by the user to the code. The third category, Designing for usability, takes
into account the character features and its own main goal and functionality. Scores of 1
or 0 are assigned if each item is present or not in the developed program. Brennan and
Resnick (2012) developed a more sophisticated approach. This method does not assess
learners’ basic programming concepts embodied into the programs. Instead, it evaluates
any changes occurred in different versions of an app. Subsequently, authors interviewed
the learners. From this, a complex evaluation model came out, with three steps: Ap-
proach #1 – Project Analysis: the collection of the releases of a project (how a project
evolved over time), the analysis of the Scratchers’ portfolio (online community) and a
deep examination of a single final project. Approach #2 – Artefact-Based Interviews: to
assess the development of computational thinking, interviewing the learners directly.
Approach #3 – Design Scenarios: to test the conceptual understanding of how externally
selected projects influenced the app under examination.

Meerbaum-Salant, Armoni, (Moti) Ben-Ari’s (2013) evaluation method uses quan-
titative tools, integrated with a qualitative analysis based on observations carried out in
educational settings. In particular, the authors, combining the revised Bloom’s Observed
Learning Outcome taxonomy, developed a new taxonomy composed by three super-
categories – unistructural, multistructural, and relational. Each super category contains
three sub-categories – understanding, applying, and creating. “Understanding is inter-
preted as the ability to summarize, explain, exemplify and classify Computer Science
concepts (among which are programming constructs), and to compare them. Applying
is interpreted as the ability to execute algorithms or code: to track them and recognize
their goals. Creating is interpreted as the ability to plan and produce programs or algo-
rithms” (Meerbaum-Salant, Armoni, (Moti) Ben-Ari, 2013, p. 72).

Other automatic assessment tools, such as the Computational Thinking Pattern Anal-
ysis (CTPA) (Repenning, 2011; Koh, 2014) and the open-source web application, de-
veloped by Moreno et al. (2015) are very interesting and easy to apply by non- expert.
The CTPA is a learning data tool useful to measure student-learning skills and repre-
sents their achievements semantically through a phenomenological analysis in real-time.
The outcomes of CTPA can be used to provide valid and useful educational feedback
to educators and learners to measure and track student-learning outcomes. Dr. Scratch

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 77

(Moreno et al., 2015) is a free/open-source web application developed to easily and
automatically analyse Scratch projects, as well as to obtain feedback that can be used to
improve programming skills. Dr. Scratch allows an automatic confirmation of the pres-
ence of 7 parameters (Abstraction, Parallelism, Logic, Synchronization, Flow control,
User interactivity, Data representation), assigning a score from 1 to 3 to each parameter.
Basic, Developing or Proficiency (Master) level is attributed to the app project, depend-
ing on the total final score. The ITCH system developed by Johnson (2016) is devoted to
automated testing of small Scratch programs. However, it is not aimed at projects such
as games, where continuous control is needed to navigate through the project. ITCH can
aid students in the final development of more complex and creative assignments. Table 1
summarizes, in chronological order, the main features of the methods.

Table 1
App assessment methodologies

Assessment Criteria Used in the context such as

Maloney, Peppler,
Kafai, Resnick, Rusk
(2008)

Evaluation of the following parameters:
User Interaction•	
Loops•	
Conditional Statements •	
Communications and Synchrony •	
Boolean Logic, Variables•	
Random Numbers•	

Computer Clubhouse
(South Central Los Angeles)
with youth ages 8–18

Ericson, McKlin
(2012)

Use of a pre and post questionnaire to evaluate which
computing concepts students learned

Georgia Tech’s camps reach
a large range of students with
4th –12th grade

Denner, Werner, Ortiz
(2012)

Three main categories and 17 subcategories.
Programming Concepts that foresee:1.

Parallelism•	
Use of random•	
Variables•	
Conditional character interaction •	
Conditions or events•	

Code organization and documentation that foresee: 2.
Extraneous rules •	
Character names•	
Variable names •	
Rule names •	
Rule comments used •	
Rule grouping •	
Rule boxes•	

Designing for usability Incorporates that takes 3.
account of:

Themes•	
Character appearance•	
Linking of stages•	
Play Instructions clear•	
Goal, Clear Functionality•	

Scores 1 or 0 are given according to the presence or
the absence of each item

Voluntary after-school program
focused on computer game
programming with students
that attended 6th grade

Continued on next pagt

L. Gabriele et al.78

Table 1 – continued from previous page

Assessment Criteria Used in the context such as

Brennan and Resnick
(2012)

Tree assessment approaches:
Approach #1 – Project Analysis, Collection of all
releases of a program
Approach #2 – Artefact-Based Interviews
Approach #3 – Design Scenarios

Useful to assess the
development of computational
thinking in young people who
are engaging in design activities
with Scratch

Meerbaum-Salant,
Armoni,
(Moti) Ben-Ari
(2013)

Three super-categories:
unistructural•	
multistructural•	
relational•	

Each super-category contains three sub-categories –
understanding, applying, and creating

Used with middle-school
students during normal school
hours and were taught by
middle school teachers

Repenning (2011)
Koh (2014)

Learning data tool useful to measure student-learning
skills and represents their achievements semantically
through a phenomenological analysis in real-time

Used with middle school and
college student

Moreno et al. (2015) Automatic confirmation of the presence of the
following 7 parameters:

Abstraction •	
Parallelism •	
Logic •	
Synchronization •	
Flow control •	
User interactivity •	
Data representation•	

Scores are from 1 to 3 for each parameter. The total
assign the label of Basic, Developing or Proficiency
(Master) level to the app

Used with students aged
between 10 and 14

Johnson (2016) Automatic testing system for projects in the Scratch
programming language

Used with university’s pre-
major Computer Science course
to assess only small projects

From the presented review of apps evaluation methods, we can say that all methods
are excellent for assessing programs, as they make account for different aspects of the
complex programming processes each learner exhibits while programming. As our sam-
ple of pre-service teachers are beginners, with no prior knowledge about programming
concepts, we chose to adopt two different methodologies to assess the apps because the
first one, developed by Denner et al. (2012), allows to identify “What” CT concepts
(see Table 6) were learned by novice programmers; the second one, implemented by
Moreno et al. (2015), allows to evaluate the competence level so “How” those CT con-
cepts (see Table 7) were mastered by pre-service teachers.

Furthermore, meetings with pre-service teachers have also been made in order to
give them feedback on their work, with the aim to allow a deeper analysis of their pro-
gramming skills. By combining these two methods, we were able: 1) to measure the
understanding and the use of different Computational Thinking concepts, explained di-
rectly by the learners in order to solve problems or particular events or variables they
want to implement, and 2) to detect the CT students’ level of understanding in order to
identify their strengths and weaknesses.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 79

3. Methodology

3.1. Purpose of the Study

This research aimed at the investigation of the CT skills gained by 141 pre-service teach-
ers, who were novice programmers, after a laboratory on Scratch software.

We used two different methodologies to assess the Scratch projects (see section 2.3)
in order to detect:

The a. CT Skills learned (What), analysing the apps through Denner’s criteria
(Denner et al., 2012).
Theb. competence level of CT skills (How), using Dr. Scratch Software (Moreno
et al., 2015).

Firstly, the work was guided by the following research questions:
 1. What are the programming concepts that pre-service teachers gained in develop-
ing an app?
 2. What is the level of acquisition of CT skills?
 3. How pre-service teachers perceived themselves as regards their programming
knowledge level at the end of the laboratory?

3.2. Participants

This study targeted 141 pre-service teachers (undergraduates) (F = 128; M = 13) en-
rolled at the, the curriculum for “Primary Teacher Education” (5-year Combined De-
gree courses. Students obtain a qualifications of Teaching for Early Childhood and
Primary), at the University of Calabria (Italy).

Participants, aged between 18 and 40 (M = 26; SD = 5.93), freely formed 40 groups
(5 groups = two participants; 13 groups = three participants; 18 groups = four partici-
pants; 4 groups = five participants).

In this degree course, pre-service teachers usually develop projects in team for differ-
ent disciplines. In some cases, teams reflect students’ preferences or demographic need
(residence location). Hence, the different number of participants in each group reflects
the social dynamics already existing, and the choice of the researchers not to interfere
with these spontaneous dynamics. However, each group have a common goal, but each
individual is stimulated to explore this goal according to his or her own context, teaching
situations, individual beliefs, and so on.

An initial demographic survey collected information on age, sex and schooling.
Sample self-evaluated their Digital Literacy background and their level of familiarity
with technologies. Results showed that a very high percentage of participants had a
humanistic high school background (see Table 2) that do not foresee a compulsory use
of technology. Therefore, the majority of participants (93%) had a very low level of
digital literacy.

L. Gabriele et al.80

At the end of the research, the students were asked to answer to the following ques-
tion: “How do you perceive your own Programming knowledge after the Laboratory
experience? Please, choose among “None knowledge”, “Beginner”, “Expert”.

A survey of the pre-service teachers on self-esteem on the acquired skills, personal
satisfaction and their improved pedagogical knowledge after CT skills acquisition was
administered (see Table 3).

A four-point Likert items was used where respondents can choose among “Very
good”, “Good”, “Fair” and “Poor”.

3.3. Didactic Guidelines to Implement the Laboratory

Research had a duration of 10 months and consisted of four steps. A detailed description
of the planned research activities is showed in Table 4.

In the first step, the experimental research plan was set up (i.e. activities to carry out,
methodology to adopt) and the lecture material was arranged (power point presentations,
introductory videos of the software, booklets, ad-hoc built apps as examples). This step
had a duration of four months.

In the second step, we started with a pilot research that involved a small sample of
participants in order to test the arranged material and to improve the experimentation, if
the case. This step had a duration of three months.

Table 2
Participants’ school background

Italian secondary school N° of participants % of participants

High School Diploma in Classical studies 79 56%
High School Diploma in Scientific studies 10 7%
High School Diploma in Foreign Languages 11 8%
High School Diploma in Pedagogical studies 45 29%

Table 3

Self- esteem on the acquired skills

Pre-service teachers career development

Q1 Personal satisfaction
Q2 Personal development
Q3 Pedagogical knowledge improved after CT skills acquisition
Q4 High capability to design educational stuff after CT skills acquisition

Pre-service teachers teaching CT skills

Q5 Expertise improvement in teaching elements of CT to children
Q6 Children’s motivation increase knowledge acquisition through technology

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 81

In the third step, an eight weeks’ laboratory on programming with Scratch 2.0 was
carried out. First, participants had to follow theoretical lectures on programming with
Scratch 2.0 (four face-to-face lessons, two-hours each). Then, they had to design and
develop an educational app. This step had a duration of two months. In the fourth step,
the collected data was analysed (one month).

As above mentioned, during the third step the laboratory on programming with
Scratch 2.0 was carried out. The laboratory activities had three phases (see Table 5):

Decision-making phase.1)
Implementation phase. 2)
Follow-up phase. 3)

In the decision-making phase, a brainstorming allowed the exploration and elabora-
tion of the focus of the designed app; the feasibility of the project and its main objec-
tives were analysed. User requirements were defined with the support of the official
document “Italian National suggestions for the curricula” (www.indicazioninazi-
onali.it/documenti_Indicazioni_nazionali/indicazioni_nazionali_in-

fanzia_primo_ciclo.pdf). User requirements definition included: age of the final
user; attended classroom; users’ prerequisites (knowledge background).

Table 4
Planned timeTable of the laboratory

Lectures Lectures Overview Didactic Material

Week 1
Laboratory activities overview:
research aim and Scratch
introduction

General overview on Laboratory
activities: rules and setting
Scratch introduction: functionalities
and application on Scratch 2.0
Guidelines on how to create an app

Power point presentations:
Programming introduction-
General concepts: What is an algo--
rithm? Structured programming
Scratch and its functionalities-
Example of an app developed with -
Scratch

Video:
Step by step analysis of an app--
lication made with Scratch

Week 2
Focus group

Students were given instructions on
how to work in a team and how to
develop the application.

Booklet with the instructions on how
to work.

Week 3
Coding

Students were given instructions on
how to create a didactic app (game,
story, etc.).
Instructors explained them how to
make the report and the app user’s
manual.

Week 4–8
Designing and implementation
of the didactic app

Students worked in groups with the
instructors support.

L. Gabriele et al.82

In the implementation phase, participants developed the app projects using Scratch
software. Afterwards, the results were evaluated according to the list of requirements
defined in the decision-making phase.

At last, the follow-up phase foresaw the writing of a report and a handbook app
(guide on how to use the app) that provides instructions and help for end-users.

Summing up, each workgroup in developing their app has to follow specific meth-
odological guidelines:

To choose a topic of a subject area (i.e. mathematics, science, foreign language). 1)
To develop a user-centred app, taking in consideration the user requirements. 2)
To use a storyboard to design the app. 3)
To implement the topic with a high level of interactivity, by using for example 4)
interactive whiteboard or the webcam.
To test the app with the end-users.5)

3.4. Assessment Method Adopted to Evaluate Reports and Apps

Two kinds of the collected data were analysed:
The Report elaborated by each team. 1)
The apps source files.2)

Table 5
Procedure laboratory phases

Laboratory phases

Decision-making phase1)
A focus group session was carried out in order to:

Identify each team members’ role•	
Define the educational objective•	
Define the user requirements (children age related to skills) •	
Design the app functions•	

Implementation phase2)
This phase is subdivided into a development step and a testing step (the app was tested
with end-users in a didactic context, in order to verify if is really user-centred)

Follow-up phase: Report and handbook (guide) app3)
In the report, each workgroup had to:

List of the roles in the team•	
Describe the App educational objectives of the app•	
Report about User requirements •	
End-users (children) age and possible skills•	
Outline of the decision tree realized during the work by using a diagram•	

Each group had to assembly a user handbook (guide) app to explain the app function
with images and text in order to allow to other people to run the app correctly and
eventually to use the handbook app in educational context

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 83

The following key information were extracted from the report: the main topics of the
implemented app, the targeted age of the final user chosen by participants. Moreover, the
presence in the report of the following characteristics was assessed:

The problem formulation and the didactic objective of the app (Goals). 1)
The user requirements consideration. 2)
A clear explanation of the steps to follow in order to run the app correctly. This 3)
information was included in the handbook app.

Regarding the app source files, they were analysed to detect the CT Skills learned
(What) according to Denner’s (Denner et al. 2012) and the level of acquisition of CT
concepts (How) (Moreno et al. 2015).

Denner’s criteria (see Table 6) define the categories of programming concepts that
can be learned by using Scratch: Programming concepts; Code organization; Designing
for usability (17 subcategories identify the three categories).

Table 6
CT skills assessment: categories and definitions for Scratch’s projects

(Source: Authors adapted schema created by Denner et al., 2012)

Categories and definitions for scratch’s projects assessment
Category Definition

PROGRAMMING CONCEPTS

Sequence1. Are the blocks in a systematic order to execute the program correctly?
User interaction (e.g. Keyboard 2.
input)

Using blocks such as ask and wait prompts users to type in an answer

Iteration (Loops)3. Using loops forever and repeat to create iterations.
Variables4. Variables can be created within Scratch and then be used within

programs.
Conditional statements5. Using if, forever if and if-else to check for conditions.
List (arrays)6. Allows for storing and accessing lists of strings and numbers.
Coordination and synchronization 7.
(Parallelism)

Using blocks such as wait, broadcast and when I receive to coordinate
the actions of multiple sprites.

Random numbers8. Pick Random is used to select random integers within any given range
Boolean logic9. Using and, or, not. True or false.

CODE ORGANIZATION

Extraneous blocks10. Are there scripts, any blocks that are no initialized when the program
is run?

Sprite names (the default is 11.
overridden)

Are the sprite names rewrote or are used the default names?

Variables names12. Are the variables given meaningful names when set up?

DESIGNING FOR USABILITY

Functionality13. There are few or no faults in the programming.
Sprite customization14. Is the sprite used a predefined sprite available in the library of the

program or it has been customized by the developer?
Stage customization15. Is the stage used a predefined stage available in the library of the

program or it has been customized by the developer?
Clear instructions16. Has the student defined how the game is supposed to run?
App originality17. Students create their own app according with the goal?

L. Gabriele et al.84

With reference to the score, 1 point was attributed to the presence of a subcategory
in the project, and 0 to the absence, for a maximum of 17 points.
For individuating the acquired competence level of CT skills (how), we used Dr.
Scratch demo software (Moreno et al., 2015). It allows an automatic confirmation of the
presence of the following seven parameters:

 1) Abstraction and problem decomposition: the ability of abstraction and decom-
position of problems helps to break a problem into smaller parts that are easier
to understand, program and debug (http://www.drscratch.org/learn/Ab-
straction/). For example, the character behaviour is controlled by different
programs and each of these programs (decomposition of problems) deal with a
particular issue.
 2) Parallelism: is the possibility that different things happen simultaneously. Ex-
ample: two characters execute an action while a character does several things at
once.
 3) Logic: permits to get dynamic projects; so that, they perform differently depend-
ing on the situation.
 4) Synchronization: instructions associated to synchronization allow the characters
to organize things to happen in the order we want. For example, “wait” ca be used
to synchronize two characters to maintain a conversation, or “Wait until, when
backdrop change to, broadcast and wait”.
 5) Flow control: means instructions related to algorithmic concepts of “flow con-
trol” to control the behaviour of the characters.

Table 7
Competence level for each CT concepts (source: Moreno et al., 2015)

CT Concept Competence Level
Null
(0)

Basic
(1 point)

Developing
(2 points)

Proficiency
(3 points)

Abstraction and
problem decompo-
sition

- More than one script
and sprite

Definition of blocks Use of clones

Parallelism - Two scripts on green
flag.

Two scripts on key
pressed, on sprite clicked
on the same sprite

Two scripts on when I receive
message, create clone, two scripts
with conditionals. Two scripts on
when background change to.

Local thinking - If If else Logic operations

Synchronization - Wait Broadcast, when I receive
message, stop all, stop
program, stop

Wait until, when background
change to, broadcast and wait

Flow control - Sequence of blocks Repeat, forever Repeat until

User interactivity - Green flag Key pressed, sprite
clicked, ask and wait,
mouse blocks.

When %s is >%s, video, audio

Data representation - Modifiers of sprites
properties

Operations on variables. Operations on lists

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 85

 6) User interactivity: instructions that can help the Scratch projects to be more in-
teractive. For ex-ample, the use of the keyboard or the mouse to move a character,
to answer questions.
 7) Data representation: Scratch projects need a set of information about the char-
acters to run appropriately. Each character has a number of attributes. In addition,
users can modify the attributes of the characters by using variables or lists to store
information.

In particular, the software (Moreno et al., 2015) assigns a score from 1 to 3 to each of
the above parameters. A Basic, a Developing or a Proficiency (Master) level is attributed
to the app project depending on the total final score (see the details in Table 7).

4. Findings

In this section, we present the findings and answer the research questions sketched in
section 3.1.

We analyse 40 Scratch applications on Elementary School topics, developed by pre-
service teachers. Each app deepened a specific topic (see Table 8) and the groups of
pre-service teachers developed their own apps taking into account the age, the attended
class, as well as the knowledge background of the final user.

The target age of the final users varied from three to seven years. In particular, 13
groups developed an app for final users aged between 3 and 5 years; 16 groups for a
target aged between 6 and 7; 7 groups for a target aged between 8 and 9; and 4 groups de-
veloped an app for a final user aged between 10 and 11 years. Fig. 1 concerns the “Wash
your teeth” app: (a and b) are some screenshots of the app and (c) concerns a photo of
children that interact with the application, while testing the app’s usability.

Table 8
Topics of the apps

Number of Apps Topic

 4 Recognize and name the colours
 6 Mathematics
 5 The alphabet (Italian and English)
12 English
 1 Days of the week
 3 Seasons and fruits
 1 Visual attention and reaction speed games
 3 Geography
 1 Music
 1 Sports
 1 Education
 1 Emotions
 1 Science

L. Gabriele et al.86

Fig. 2 show one of the script of Lucky wheel app. The app includes Flow control,
Data representation, Abstraction, User interactivity, Synchronization, Parallelism. Stu-
dents duplicated two scripts, used variables, and defined two sprite attributes.

 a) b) c)

Fig. 1. Three pictures related to the app “Wash your teeth“. a) shows how to correctly clean
teeth. b) shows an interactive game. By using an interactive whiteboard, children can clean
teeth with handling the toothbrush. c) shows another interactive game, children obtain a
point for each good element (toothbrush, toothpaste) collected.

Fig. 2. The script of Lucky wheel app.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 87

4.1. Results of CT Skills Learned by Novice Programmers:
Programming Concepts, Code Organization Designing for Usability

Analysing the report and the handbook (guide) app that each group delivered at the end
of Laboratory, we collected some useful evidences on the process of app design and
development.

We found that all teams started the work by clearly identifying the “Problem to solve”
(the topic that each app deepened): 97.5% of the teams detailed the Goal of the app (specific
knowledge to delivery through the app). All workgroups took into account the user require-
ments. They collected images, sounds, voice records, customized pictures and all the digital
materials useful to assembly the final app. At last, 80% of the teams fulfilled a complete
user handbook app, defining how the game is supposed to run, specifying and explaining all
the apps’ functionalities; hence, 95% of the apps were equipped with clear instructions.

4.2. What are the Programming Concepts that Pre-service Teachers Gained
in Developing an App?

The implemented forty applications were analysed to detect the CT Skills learned (What),
according to Denner’s (Denner et al. 2012) criteria.

Those criteria refer to Programming concepts, Code Organization and Design for
Usability. Table 9 shows all the results’ analysis.

Table 9
Results of CT skills learned by novice programmers:

programming concepts, Code Organization Designing for usability

Scratch’s projects assessment %

Programming Concepts
Sequence1.
User interaction (e.g. Keyboard input)2.
Iteration (Loops)3.
Variables4.
Conditional statements5.
List (arrays)6.
Coordination and synchronization (Parallelism)7.
Random numbers8.
Boolean logic9.

100
 88
 78
 20
 63
 0
 83
 8
 13

Code Organization
Extraneous blocks10.
Sprite names (the default is overridden)11.
Variables names12.

 5
 25
 20

Designing for Usability
Functionality13.
Sprite customization14.
Stage customization15.
Clear instructions16.
App originality17.

 97.5
 72.5
 82.5
 95
 97.5

L. Gabriele et al.88

In particular, as regards the “Programming concepts”, 100% of the projects used Se-
quences, 78% Loops and 88% User Interaction. The apps developed by different teams
had different programming complexity. In particular, Communication and Synchroniza-
tion commands were used significantly (83%). These commands have a critical role
when users build more structured and complex projects in Scratch, since they allow to
switch from a functionality to another. Moreover, Boolean operations (13%), Variables
(20%), and Random numbers (8%) are concepts that undoubtedly are difficult to learn
on their own. 63% of the apps had Conditional statements. These blocks are used, for
example, when the sprite has to move around and if it touches an object then it causes an
event, i.e., the sprites rebound borders or change stages.

Even though all these apps are runnable, only 5% of them include extraneous blocks
(any blocks that are no initialized when the program is run): these bugs do not
affect the general app functioning. For example, the app can run even if the programmer
forgot some unrunning blocks like the comments.

In 25% of the apps the default sprite name was changed; 20% of the projects in-
cluded variables, and all of them had meaningful variables names (name linked to the
functionality).

In their own reports, novice programmers stated that they tested many times their
own app with children, in order to develop a user-centred app, according the user re-
quirements. This statement is supported by the results’ analysis for the category “De-
signed for usability”.

Findings show that 97.5% of the apps had a high level of functionality and were de-
veloped according to the goal. This criterion measures the originality of an app.

Moreover, sprites (72.5%) and stages (82.5%) were customized; hence, program-
mers did not use predefined sprites or stages, but accurately sketched these elements.

4.3. What is the Level of Acquisition of CT Skills?

The level of acquisition of CT concepts (How) gained by pre-service teachers was mea-
sured by analysing the 40 developed applications with Dr. Scratch demo software.

According to Dr. Scratch method, a score was assigned to each of the seven CT con-
cepts present in the app and each programmer can reach from 0 to 21 points (Moreno
et al., 2015).

As showed in Table 10, the most used coding concepts were flow control (61.67%)
and user interactivity (60.83%). It means that the projects have a sequence of instruc-
tions according to specific conditions and foresee users’ interaction.

Parallelism was used by 48.33% of the apps, which means that several sprites (char-
acters) were activated at the same time.

The other used CT concepts are: synchronization (45.83%); logic concepts (38.33%)
(and, or, not), including conditional commands (if, if – else); data representation
(37.50%); and abstraction (33.33%).

Dr. Scratch demo software takes also into account some bad habits of programming
or possible errors, such as non-significant sprite names, repetition of code, code never
executed and the incorrect initialization of object attributes.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 89

According to the points obtained in each CT concept (see Table 7), a programmer can
reach the following levels: Basic; Developing; Master.

The level gotten mirrors the CT concepts used from the user in the app. Hence, devel-
opers can try to improve their projects using the guidelines and tips offered by the tool.
The 30% of the developed apps were “Basic”, 60% were “Developing” and 10% were
“Master” (see Table 11).

Final examination results
The impact of the course of Computational thinking on the skills of pre-service teachers
has been successful. In fact, most of the pre-service teachers gained a very high quality
performance.

In fact, at the end of this course, marks were assigned to each pre-service teacher ac-
cording to the level of knowledge and skills acquired. In particular, 21% of pre-service
teachers received an “Excellent” mark, 43% received a “Very good” mark; 22% received
a “Good” mark; 6% received a “Discrete” mark and only 8% received a “Sufficient”
mark on the final examination.

5. Discussion

Curzon et al. (2014) discussed that the CT skills acquisition (framework) encloses four in-
terconnected stages, were “Assessment” is the fourth one, after “Definition”, “Concepts”
and “Classrooms techniques”. Moreover, they underlined the importance of assessing the
increasing competence of learners in CT and mapping the learning outcomes.

Table 10
Competence level of the scratch projects

CT concept %

Flow Control 61.67
Data Representation 37.50
Abstraction 33.33
User Interactivity 60.83
Synchronization 45.83
Parallelism 48.33
Logic 38.33

Table 11
Dr. Scratch assessment

Level % of projects

Basic 30
Developing 60
Master 10

L. Gabriele et al.90

The twofold assessment methodologies that we adopted (Denner et al. 2012; Moreno
et al. 2015) in order to evaluate the developed applications, sketched a composite frame-
work with specific indicators that allowed to assess “What” and “How” coding concepts
have been understood. In particular, the 40 didactic apps implemented by the pre-ser-
vice teachers were assessed according to Denner’s (Denner et al., 2012) and Moreno’s
(Moreno et al., 2015) methodologies. While the first one allows to detecting the CT
concepts acquired by pre-service teachers through the designing and the implementation
of their applications (What), the second one allows to finely ascertain their CT level
competence (How).

The adopted didactic methodology, aimed to motivate pre-service teachers, allowed
us to achieve a very good result. Our sample composed of 141 pre-service teachers were
able to implement 40 applications (two examples are described in Appendix).

In a very short time, pre-service teachers acquired both basic and advanced program-
ming concepts. The designed Laboratory methodology provided learners with specific
suggestions and detailed methodological steps to follow: STEP 1 – Decision-making:
they defined the educational objectives, the user requirements (children age related to
skills) and designed the app functions; STEP 2 – Implementation phase; STEP 3 – Test-
ing phase: they tested the app with final users in a didactic context, in order to verify if
it is really user-centred.

During each step, in case of difficulties or doubts, learners could rely on the research-
ers involved in the laboratory activities. In this way, they had the certainty to receive the
necessary support or feedback or encouragement to go on with the assigned work. In this
way, the risk was that learners were more confident in the suggestions of the research-
ers than in their abilities. That is why we chose to guide them to find new solutions and
never provide just the answer they are looking for.

However, regarding the first research questions (section 3.1) “What are the program-
ming concepts that pre-service teachers gained in developing an app?”, we found that,
after the face-to-face lessons, participants discovered and used sequence, user interaction,
loops, conditionals, and finally communication and synchronization in different scripts.
The fact that some blocks were correctly used in a project means that a programming con-
cept was understood and learned. Then, the use of variables, Boolean logic, and random
numbers was less common but two teams (according to the findings) learned to use these
concepts over time. We found that arrays (Data menu), absolute value and, square root
(Operators menu) never appeared in the projects since these are advanced CT concepts.

One of the main characteristics of the Scratch approach is the projects “remixing”,
that is, the opportunity to use a project already available on the Community, edit it,
modify a part of the code, combining source materials, giving credit to the creator of the
original project (Monroy-Hernández 2012). In some cases, participants had useful help
in adopting the “remixing” approach to implement their app, downloading and modify-
ing scripts from the sample projects.

The opportunity to find other projects and verify how some scripts can be arranged
requires a great ability. In fact, pre-service teachers unconsciously used a top-down ap-
proach to coding, decomposing the whole app in small scripts and analysing the func-
tionality of the different scripts.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 91

Our findings show that Scratch projects were implemented by applying the concept
of “designed for usability”. Students settled the way in which the app had to run cor-
rectly, they personalized the stages and sprites according to the educational goal and user
requirements. Learners customized sound, images, audio file, and so on, only 29% of the
projects used backgrounds images from Scratch folder, the other teams created specific
digital materials. Students settled the appropriate way in which the app had to run, they
personalized the stages and sprites according to the educational goal and user require-
ments. Moreover, each workgroup tested their own app with the targeted final users. This
approach, allowed teams to develop a user-centred app with a high level of usability, as
results from the assessment. We explained to the pre-service teachers the importance to
involve final users in the developing process of the app and to take into account users’
needs, if their app has been effective, efficient, engaging, error tolerant, easy to learn.

The implemented apps allowed to easily handling modularity, due to the ease of use
of Scratch. According to Wing (2006), modular application allows programmers to de-
compose the whole program in smaller pieces of code (scripts); hence, novices can easily
manage interdependencies between the parts of the project, and assemble very complex
applications in a reliable way. In fact, pre-service teachers created, shared, and reused ob-
jects and components; they broke the main problem into smaller components or modules
and developed the scripts for each sprite independently and asynchronously before as-
sembling them, in line with Brennan and Resnick findings (Brennan and Resnick 2012).

As regards the second research questions “What is the level of acquisition of
CT skills?”

From a CT point of view, the app’ score reflects the cognitive competence level
reached by the programmers; hence, our findings show that our pre-service teachers
sample gained a medium-high level of competences. In fact, 60% of the projects was
categorized as developing, and 10% of the apps got the master level. Only 30% of the
apps were basic. In particular, this latter 30% of the projects with a Basic competence
level used only sequence blocks. They used the command “wait” for synchronization,
and they used only the green flag to implement the interactivity.

As regards the medium-high level, 60% of the projects labeled as “Developing”, had
a better definition of blocks, and used conditionals like “if-else”, and loops like “repeat”
and “forever”. The interactivity was applied by using pressed keys or clicked sprites.
Finally, only few of them used variables. Hence, these teams were able to manage a
more complex script, by using, for example, more complex interactivity functions than
green flag click. 10% of the projects that obtained a Master competence level, used all
the programming concepts explained during the lessons, except lists or arrays. The apps
had audio records, logic operations, and the same code for different sprites.

Summing up, the used criteria to evaluate the student’s work was easy to use and
helpful to assess the increasing knowledge. These criteria can be used easily also by
pre-service teachers to evaluate the children competences.

The adopted assessment method allows pre-service teachers to become more quali-
fied and objective in judging the quality of a Scratch project, reducing also the effort
and the subjectivity in the evaluation of the student’s work (Brennan, 2013; Rehmat and
Bailey, 2014).

L. Gabriele et al.92

How pre-service teachers perceived themselves as regards their programming knowl-
edge level at the end of the laboratory? In addition, how do they judge this experience?

Analysing learners’ answers, we noticed that 82% of the students perceived them-
selves as “experts” in using Scratch and the other software used to assemble the digital
materials for the app’s implementation. The other 18% of the students perceived them-
selves as “beginners”.

Pre-service teachers judged their experience with Scratch as excellent and good
(91.67%), able to stimulate their creativity (83.33%), offered them a good possibility to
interact with their colleagues improving their work competences (79.17%). During the
project development, students experienced some emotions, as a desire to finish the project,
satisfaction, joy, and someone a little confusion. Pre-service teachers were satisfied and
very satisfied with the setting applied to develop their own Scratch projects (81.82%).

As results of the investigation (see Table 3), each work team of pre-service teachers
esteemed this experience useful for their career development. In particular, 85% of them
judged “Personal satisfaction” positively, in the same way, 92.5% of them considered
“Personal development” as a good and excellent experience”. 85% of them estimated
“Pedagogical knowledge improved after CT skills acquisition” and “High capability to
design educational stuff after CT skills acquisition” “Very Good” and 15% selected the
“Good” option.

The second section of the survey was focused on “Pre-service teachers teaching
CT skills”. 92.5% of pre-service teachers considered “Very good” their “Expertise improve-
ment in teaching elements of CT to children” and 97.5% of them confirmed that “Children’s
motivation increase knowledge acquisition through technology” was “Very good”.

A Pearson’s correlation (two-tailed test) was run to determine the relationship be-
tween “High capability to design educational stuff after CT skills acquisition” (Ques-
tion 3 of the survey – Q3) and “Pedagogical knowledge improved after CT skills acquisi-
tion” (Question 4 of the survey – Q4).

The calculation was run with SPSS (IBM statistic SPSS 24) software. The Pear-
son correlation coefficient value of 1.00 (see Table 12) confirms that there was a very
strong, positive correlation between “High capability to design educational stuff after

Table 12
Correlations between Q3 – “High capability to design educational stuff after CT skills acquisition”

and Q4 – “Pedagogical knowledge improved after CT skills acquisition”

Q3 Q4

Q3 Pearson Correlation 1 1.000**

Sig. (2-tailed) .000
N 40 40

Q4 Pearson Correlation 1.000** 1
Sig. (2-tailed) .000
N 40 40

** Correlation is significant at the 0.01 (2-tailed).

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 93

CT skills acquisition” and “Pedagogical knowledge improved after CT skills acquisi-
tion” (r = 1.00; N = 40; p =< .001). The direction of the relationships is positive meaning
that these variables tend to increase together.

In the opinion of some pre-service teacher: “After completing this project we were
very pleased with the results. We realized that the use of new kind of teaching tools is
very important because we have enriched our cultural background and we understood
that the initial scepticism shown towards this type of activity was totally unfounded.
We have to be more flexible and elastic, not to limit the imagination of our pupils and
to provide them with more tools for their learning process”. Others: “We were given
the opportunity to interact casually with colleagues. This opportunity has stimulated
and motivated to reflect on the disadvantages and advantages of teamwork. Each meet-
ing produced either uniformity of thoughts or divergence of opinions; however, it was
an innovative training experience”. “Scratch offers the opportunity not only to use it
but also to create our own app, so that adults and children are not only users but also
digital manufacturers”.

In conclusion, we can say that programming with Scratch was an interesting and fun
experience. We believe that this application is suiTable and useful for learning the no-
tions of programming and construction of short stories involving children with a wide
range of age. In addition, as future teachers, Scratch serves us to engage even more stu-
dents to technology and, of course, to use this software in our teaching practice. Scratch
is available to everyone, so even adults can use it to create nice scenes, presentations
and games”. In any case, engaging people in coding does not mean to turn them into
expert programmers, but it means to foster the acquisition of CT skills and abilities, to
promote their digital literacy and information technology knowledge, introducing them
in the technological and software world (Polly 2015; Bertacchini et al. 2014). This re-
mark is very important since all pre-service teachers involved in this research had never
programmed before this experience.

6. Conclusions and Further Perspectives

The effects of the programming course using Scratch had two consequences on pre-
service teachers. On the one hand, they questioned their teaching tools, because they
had to compare technically and from the point of view of programming (to realize
the lessons in Scratch); on the other hand, they were confronted with their specific
pedagogical and disciplinary knowledge. In a nutshell, the pre-service teachers have
been able to reflect on their knowledge and ability to foster their knowledge base for
teaching.

The benefits consist in the practical applicability of their applications. In fact, all
pre-service teachers have been able to directly administer to the students the applications
developed in Scratch during their school internship hours, (about 2 hours per week, for
all the weeks of the academic year). In this context, preservice teachers can interact from
an educational point of view with the children, in accordance with the curricular plan-
ning that the tenured teacher does.

L. Gabriele et al.94

The challenges of the course concern the design of teaching units with Scratch real-
ized according to three specific types of activities:

The representation of the contents, using the narration and the representation of 1.
events and phenomena to simulate the main concepts and phenomena that we
want to communicate and make children acquire. This part seemed very stimulat-
ing to the preservice as they found themselves having to narrate in a new way,
using a whole series of characters, environments, objects, objects and tools that
normally do not use in the construction of traditional teaching units.
The construction of interaction environments for children. This type of activity 2.
has become very stimulating for the pre-service, as to realize this interactive activ-
ity they had to build a series of games of manipulation of data with the Software
Scratch, which in turn also corresponds to a conceptual manipulation by children.

A coding learning laboratory has been arranged at the University of Calabria (It-
aly) to define guidelines on how to implement a Programming Laboratory for pre-
service teachers, using Scratch with the aim to foster CT acquisition and to achieve
the 21st skills.

The complexity of the developed app reflects the learners coding skills. Hence, the
efficacy of our didactic methodological guidelines were measured by individuating the
learned programming concepts and the competence level of CT skills acquired by the
pre-service teachers.

According to McComas (2013), an imperative need of our society is to prepare teach-
ers to efficaciously delivery skills and contents, and this requires an adequate curriculum
experience and a reasonable time of practice. In our opinion, this is also particularly true
for pre-service teachers, to prepare them on how to teach 21st Century Skills.

Our results suggest that the planning laboratory activities had a successful effect on
pre-service teachers’ digital literacy. In fact, our findings showed a full engagement of
novice programmers with coding. This was probably due to the possibility to verify in
real time the output of the scripts on the screen. This facility is particularly useful for all
types of didactic projects (Koh 2013).

Regarding the practical importance of this investigation, we conclude that in a few
weeks, students were able to acquire the key elements of coding needed to develop
Scratch projects according to the suggested educational perspective. Furthermore, this
group of pre-service teachers was able to face the 21st century requirements, gaining
programming concepts, problem-solving practices, and computational skills. Going on
with the work, using new technological tools, learners were able to develop different
abilities such as creativity, critical thinking, and decision-making, sharing at the same
time knowledge and responsibilities in the group.

The presented didactic methodology for pre-service teachers has a twofold advantage:
It represents a useful and repeaTable example that pre-service teachers could ap-1.
ply as guidelines in their future classrooms and for their curriculum. In fact, we
showed them how to include the coding activities into the didactic planning, giv-
ing them some didactic methodological guidelines.
It is “friendly”. In a very short time, thanks to the collaborative and coopera-2.
tive learning approach adopted, with a constructivist perspective and fostering a

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 95

learning-by-doing skills acquisition, novice programmers reached a medium-high
competence level in coding.

The present paper sums up a long work carried out at different levels: bureaucratic
level, didactic level and individual level to better motivate students to face challenges
and the general change. The approach adopted in our university, starts from the general
observation that there exists a gap between university education in Computer Science
for Elementary teachers, and the school needs, as remarked also by the National Law.
Hence, after long discussions on this problem, we had the opportunity to launch a new
programme for the Laboratory on Educational Technology for pre-service teachers: a
new experimental programme course based on Scratch. A strong work has been carried
out to arrange didactical materials and to choose the right educational approach. Howev-
er, good results were achieved at the end of the course, as highlighted in the results here
presented, and during the European Researchers’ Night 2016 at University of Calabria,
when pre-service teachers showed their developed app to the visitors.

Why our small research is important? Porter, Lee, Simon, and Guzdial (2017) under-
line the need and the importance “to emphasize best practices underrepresented groups”.

Our approach starts from the low because it takes into account the real learners’
requirements that have to approach to the programming. These latter have not a basic
computer science background and in some case, they are adult learners that need to be
greatly motivated.

In our opinion, the results presented in this paper, focused on measuring the effi-
cacy of our didactic methodological guidelines, allows to collect important information
from an academic point of view. In particular, both positive and negative laboratory
outcomes might lead to: re-arrange some key University courses; rethink Italian pre-
service teachers’ curricula, in order to be really centred on the needs of the future in-
service teachers.

Educational paths focused on 21st Century Skills acquisition means to promote the
attainment of life skills, workforce skills, applied skills, personal and interpersonal skills
as well as non-cognitive skills (Trilling and Fadel 2009). The acquisition of these abili-
ties represents a great challenge for each educational system since these skills are the
scaffolding that allows everyone to face the changes that occurred in the learning pro-
cesses, in the educational and social life aspects, in the last years.

In our opinion, it would be interesting to investigate, in a future work, also pre-
service teachers’ motivation: for example, to verify how motivation changes the educa-
tional paradigm, administrating a pre and post-test.

References

Adamo, A., Bertacchini, P.A., Bilotta, E., Pantano, P., Tavernise, A. (2010). Connecting art and science for
education: learning through an advanced virtual theater with “talking heads”. Leonardo, 43(5), 442–448.

Alì, G., Bilotta, E., Gabriele, L., Pantano, P. (2006). An e-learning platform for academy and industry net-
works. In: PerCom Workshops 2006. Fourth Annual IEEE International Conference on (Pervasive Com-
puting and Communications Workshops, 2006). IEEE, 4-pp.

An, S., Lee, Y. (2014). Development of pre-service teacher education program for computational thinking.
In: Proceedings of Society for Information Technology & Teacher Education International Conference.

L. Gabriele et al.96

2048–2052.
Angeli, C. (2004). The effects of case-based learning on early childhood pre-service teachers’ beliefs about the

pedagogical uses of ICT. Journal of Educational Media, 29(2), 139–151.
Assessment & Teaching of 21st Century Skills. Retrieved September 21, 2016 from

http://www.atc21s.org/

Armoni, M., Meerbaum-Salant, O., Ben-Ari, M. (2015). From Scratch to “Real” Programming. Trans. Com-
put. Educ. 14(4), Article 25 (February 2015), 15 pages. DOI: 10.1145/2677087

Barr, D., Harrison, J., Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20–23.

Baydas, O., Goktas, Y. (2016). Influential factors on preservice teachers’ intentions to use ICT in future les-
sons. Computers in Human Behavior, 56, 170–178.

Baytak, A. Land, S.M. (2011). An investigation of the artifacts and process of constructing computers games
about environmental science in a fifth grade classroom. Educational Technology Research and Develop-
ment. 59(6), 765–782. DOI: 10.1007/s11423-010-9184-z

Bell, S., Frey, T., Vasserman, E. (2014). Spreading the word: introducing pre-service teachers to programming
in the K12 classroom. In: Proceedings of the 45th ACM technical symposium on Computer science educa-
tion (SIGCSE’14). ACM, New York, NY, USA, 187–192. DOI: 10.1145/2538862.2538963

Bean, N., Weese, J., Feldhausen, R., Bell, R.S. (2015). Starting from scratch: Developing a pre-service teacher
training program in computational thinking, In: IEEE Frontiers in Education Conference (FIE), El Paso,
TX, 1–8, DOI: 10.1109/FIE.2015.7344237

Bennett, L. (2014). Learning from the early adopters: developing the Digital Practitioner. Research In Learn-
ing Technology, 22. DOI: 10.3402/rlt.v22.21453

Bertacchini, F., Gabriele, L., Pantano, P.S., Olmedo-Vizueta, D., Giaquinta, A., Tavernise, A., Bilotta, E.
(2018). A facial emotions recognition application for subjects with Autism Spectrum Disorder, EDULE-
ARN18 Proceedings, 4005–4011.

Bertacchini, F., Giglio, S., Gabriele, L., Pantano, P.S., Bilotta, E. (2018). New technologies for improving
tourism students training, EDULEARN18 Proceedings, 4155–4162.

Bertacchini, F., Bilotta, E., Pantano, P. (2017). Shopping with a robotic companion. Computers in Human
Behavior, 77, 382–395.

Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P., Bustamante, L.R. (2016, October). Emergence of lin-
guistic-like structures in one-dimensional cellular automata. In: AIP Conference Proceedings. AIP Publish-
ing, 1776(1), 090044.

Bertacchini, F., Bilotta, E., Gabriele, L., Vizueta, D.O., Pantano, P., Rosa, F., Tavernise, A., Valenti, A. (2013).
An emotional learning environment for subjects with Autism Spectrum Disorder. International Conference
on Interactive Collaborative Learning (ICL) (2013), 653–659. DOI: 10.1109/icl.2013.6644675

Bertacchini, F., Bilotta, E., Carini, M., Gabriele, L., Pantano, P., Tavernise, A. (2014). Learning in the Smart
City: A Virtual and Augmented Museum Devoted to Chaos Theory. Lecture Notes in Computer Science
New Horizons in Web Based Learning (2014), 261–270. DOI: 10.1007/978-3-662-43454-3_27

Bertacchini, F., Tavernise, A. (2014). Knowledge sharing for Cultural Heritage 2.0: prosumers in a “digital
agora”. International Journal of Virtual Communities and Social Networking (IJVCSN), (6)2, 24–36.

Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Tavernise, A. (2015). Designing an educational music
software using a student-centred strategy. In: Roberta V. Nata Progress in Education, New York: Nova
Science Publishers.

Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Tavernise, A. (2013). Toward the use of Chua’s circuit
in education, art and interdisciplinary research: Some implementation and opportunities. Leonardo, 46(5),
456–463.

Bertacchini, F., Bilotta, E., Pantano, P., Tavernise, A. (2012). Motivating the learning of science topics in sec-
ondary school: A constructivist edutainment setting for studying Chaos. Computers & Education, 59(4),
1377–1386.

Bertacchini, F., Gabriele, L., Tavernise, A. (2011). Bridging educational technologies and school environment:
implementations and findings from research studies. Educational theory, 63–82.

Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Servidio, R. (2010). Using Lego MindStorms in higher
education: Cognitive strategies in programming a quadruped robot. In: Workshop proceedings of the 18th
international conference on computers in education, ICCE. 366–371.

Bertacchini, F., Bilotta, E., Gabriele, L., Mazzeo, V., Pantano, P., Rizzuti, C., Vena, S. (2007). Imagination-
TOOLSTM: Made to play music. In: International Conference on Technologies for E-Learning and Digital
Entertainment. Springer, Berlin, Heidelberg, 369–380.

Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Tavernise, A. (2015). Designing an educational music

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 97

software using a student-centred strategy. Progress in Education, 33, 89–99.
Bilotta, E., Bossio, E., Pantano, P. (2010). Chaos at school: Chua’s circuit for students in junior and senior high

school. International Journal of Bifurcation and Chaos, 20(01), 1–28.
Bilotta, E., Di Blasi, G., Stranges, F., Pantano, P. (2007). A gallery of Chua attractors: part IV. International

Journal of Bifurcation and Chaos, 17(04), 1017–1077.
Bilotta, E., Di Blasi, G., Stranges, F., Pantano, P. (2007). A gallery of Chua attractors: part VI. International

Journal of Bifurcation and Chaos, 17(06), 1801–1910.
Bilotta, E., Fiorito, M., Iovane, D., Pantano, P. (1995). An educational environment using WWW. Computer

Networks and ISDN Systems, 27(6), 905–909.
Bilotta, E., Gabriele, L., Servidio, R., Tavernise, A. (2009). Edutainment robotics as learning tool. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 5940 LNCS, 25–35. DOI: 10.1007/978-3-642-11245-4_3.

Bilotta, E., Lafusa, A., Pantano, P. (2003). Life-like self-reproducers. Complexity, 9(1), 38–55.
Bilotta, E., Pantano, P. (2006). Structural and functional growth in self-reproducing cellular automata. Com-

plexity, 11(6), 12–29.
Bilotta, E., Pantano, P., Bertacchini, F., Gabriele, L., Longo, G., Mazzeo, V., Vena, S. (2007). Imagination-

TOOLS (TM)-A 3D environment for learning and playing music. In: Eurographics Italian Chapter Confer-
ence. 139–144.

Bilotta, E., Pantano, P., Cupellini, E., Rizzuti, C. (2007, April). Evolutionary methods for melodic sequences
generation from non-linear dynamic systems. In: Workshops on Applications of Evolutionary Computation.
Springer, Berlin, Heidelberg, 585–592.

Bilotta, E., Pantano, P., Stranges, F. (2006). Computer graphics meets chaos and hyperchaos. Some key prob-
lems. Computers & Graphics, 30(3), 359–367.

Bilotta, E., Pantano, P., Vena, S. (2011). Artificial micro-worlds: part I: A new approach for studying life-like
phenomena. International Journal of Bifurcation and Chaos, 21(02), 373–398.

Bilotta, E., Stranges, F., Pantano, P. (2007). A gallery of Chua attractors: part III. International Journal of
Bifurcation and Chaos, 17(03), 657–734.

Blömeke, S., Busse, A., Kaiser, G., König, J., Suhl, U. (2016). The relation between content-specific and gen-
eral teacher knowledge and skills. Teaching and Teacher Education, 56, 35–46.

Brennan, K.A., Resnick, M. (2012). New frameworks for studying and assessing the development of com-
putational thinking. In: Proceedings of the 2012 annual meeting of the American Educational Research
Association, (2012). Vancouver, Canada, 1–25.

Brennan K.A. (2013). Best of Both Worlds: Issues of Structure and Agency in Computational Creation, in and
out of School. PhD Thesis. Massachusetts Institute of Technology.

Buechley, L., Eisenberg, M. (2008). The LilyPad arduino: Toward wearable engineering for everyone. IEEE
Pervasive Computing, 7(2), 12–15. DOI: 10.1109/mprv.2008.38

Bullock S.M., Sator, A.J. (2015). Maker pedagogy and science teacher education. Journal of the Canadian
Association for Curriculum Studies, 13(1), 60–87.

Chai, C.S., Ling Koh, J.,H., Chin-Chung Tsai, Lynde, L., Wee Tan (2011). Modeling primary school pre-service
teachers’ Technological Pedagogical Content Knowledge (TPACK) for meaningful learning with informa-
tion and communication technology (ICT). Computers & Education, 57(1), 1184–1193. DOI: 10.1016/j.
compedu.2011.01.007

Chiu, C. (2014). Use of problem-solving approach to teach scratch programming for adult novice program-
mers (abstract only). In: Proceedings of the 45th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE’14). ACM, New York, NY, USA, 710–711. DOI: 10.1145/2538862.2544284

Choi, H. (2013). Pre-service teachers’ conceptions and reflections of computer programming using Scratch:
Technological and pedagogical perspectives. International Journal for Educational Media and Technol-
ogy, 7(1), 15–25.

Coutinho, C.P. (2009). Challenges for teacher education in the learning society: case studies of promising prac-
tice. Handbook of Research and Practices in e-Learning: Issues and Trends, 385–401. DOI: 10.4018/978-
1-60566-788-1.ch023

Curzon, P., Dorling, M., Ng, T., Selby, C., Woollard, J. (2014). Developing Computational Thinking in the
Classroom: A Framework. Swindon, GB, Computing at School.

Dasgupta, S., Resnick, M. (2014). Engaging novices in programming, experimenting, and learning with
data. ACM Inroads, 5(4), 72–75.

Denner, J., Werner, L. (2011). Measuring computational thinking in middle school using game programming.
In: Proceedings of the Annual Meeting of the American Educational Research Association.

L. Gabriele et al.98

Denner, J., Bean, S., Martinez, J. (2009). The girl game company: Engaging Latina girls in information tech-
nology. Afterschool Matters, 8, 26–35.

Denner, J., Werner, L., Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts? Computers & Education, 58(1), 240–249.

Denner, J., Werner, L. (2011). Measuring computational thinking in middle school using game programming.
In: Proceedings of the Annual Meeting of the American Educational Research Association.

Du Toit, J. Teacher Training and Usage of ICT in Education. New Directions for the UIS Global Data
Collection in the Post-2015 Context. UNESCO Institute for Statistics. Retrieved March 2017, from
http://www.uis.unesco.org/StatisticalCapacityBuilding/Workshop%20Documents/Com-

munication%20workshop%20dox/Paris%202014/ICT-teacher%20training-use_EN.pdf

Ericson, B., McKlin, T. (2012). Effective and sustainable computing summer camps. In: Proceedings of the
43rd ACM technical symposium on Computer Science Education (SIGCSE ‘12). ACM, New York, NY,
USA, 289–294. DOI: 10.1145/2157136.2157223

Ertmer, P., Ottenbreit-Leftwich, A. (2010). Teacher technology change: how knowledge, confidence, beliefs,
and culture intersect. Journal of Research on Technology in Education, 42(3), 255–284.

Faraco, G., Gabriele, L. (2007). Using LabVIEW for applying mathematical models in representing phenom-
ena. Computers & Education, 49(3), 856–872.

Federici, S., Gola, E., Brau, D., Zuncheddu, A. (2015). Are educators ready for coding?. In: Markus Helfert,
Maria Teresa Restivo, Susan Zvacek, and James Uhomoibhi (Eds.) Proceedings of the 7th International
Conference on Computer Supported Education – Volume 1 (CSEDU 2015). SCITEPRESS – Science and
Technology Publications, Lda, Portugal, 494–500. DOI: 10.5220/0005491604940500

Fesakis, G., Serafeim, K. (2009). Influence of the familiarization with “scratch” on future teachers’ opinions
and attitudes about programming and ICT in education. In: Proceedings of the 14th annual ACM SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE ‘09). ACM, New York,
NY, USA, 258–262. DOI: 10.1145/1562877.1562957

Foerster, K. (2016). Integrating programming into the mathematics curriculum: Combining Scratch and geom-
etry in Grades 6 and 7. In: Proceedings of the 17th Annual Conference on Information Technology Educa-
tion (SIGITE ‘16). ACM, New York, NY, USA, 91–96. DOI: 10.1145/2978192.2978222

Gabriele, L., Tavernise, A., Bertacchini, F. (2012). Active learning in a robotics laboratory with university
students. In: Wankel, C., Blessinger, P. (Eds.) Increasing Student Engagement and Retention Using
Immersive Interfaces: Virtual Worlds, Gaming, and Simulation (Cutting-edge Technologies in Higher
Education, Volume 6 Part C). Emerald Group Publishing Limited, 315–339. DOI: 10.1108/s2044-9968-
(2012)000006c014

Gabriele, L., Bilotta, E. (2013). Robot for thinking: cognitive strategies to experiment the use of educational
robotics in classroom. EDULEARN13 Proceedings, 5801–5810.

Gabriele, L., Marocco, D., Bertacchini, F., Pantano, P., Bilotta, E. (2017). An educational robotics lab to in-
vestigate cognitive strategies and to foster learning in an arts and humanities course degree. International
Journal of Online Engineering, 13(4), 7–19. DOI: 10.3991/ijoe.v13i04.6962

Gill, L., Dalgarno, B. (2008). Influences on pre-service teachers’ preparedness to use ICTs in the classroom. Hel-
lo! Where are you in the landscape of educational technology? Proceedings Ascilite Melbourne 2008.

Griffin, P. (2014). Performance assessment of higher order thinking. Journal of Applied Measurement, 15(1),
1–16.

Gunter, G.A. (2001). Making a difference: Using emerging technologies and teaching strategies to restructure an
undergraduate technology course for pre-service teachers. Educational Media International, 38(1), 13–20.

Guzzetti, B.J., Elliott, K.F., Welsch, D. (2010). DIY Media in the Classroom: New Literacies across Content
Areas. Teachers College Press.

Heong, Y.M., Yunos, J.M., Othman, W., Hassan, R., Kiong, T.T., Mohamad, M.M. (2012). The needs analysis
of learning higher order thinking skills for generating ideas. Procedia-Social and Behavioral Sciences, 59,
197–203.

Indicazioni nazionali per il curricolo della scuola dell’infanzia e del primo ciclo d’istruzione. 2012. Retrivied
September 11, 2016 from http://www.indicazioninazionali.it/documenti_Indicazioni_na-
zionali/indicazioni_nazionali_infanzia_primo_ciclo.pdf

Johnson, D.E. (2016). ITCH: Individual Testing of Computer Homework for Scratch Assignments. In: Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ‘16). ACM,
New York, NY, USA, 223–227. DOI: https://doi.org/10.1145/2839509.2844600

Kafai, Y.B., Peppler, K.A. (2011). Youth, technology, and DIY developing participatory competencies in cre-
ative media production. Review of Research in Education, 35(1), 89–119.

Kobsiripat, W. (2015). Effects of the Media to Promote the Scratch Programming Capabilities Creativity of
Elementary School Students. Procedia-Social and Behavioral Sciences, 174, 227–232.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 99

Koh, K. (2013). Adolescents’ information-creating behavior embedded in digital Media practice using
scratch. Journal of the American Society for Information Science and Technology, 64(9), 1826–1841.

Koh, K.H. (2014). Computational thinking pattern analysis: a phenomenological approach to compute com-
putational thinking. Diss. Computer Science Graduate Theses & Dissertations. 86.
http://scholar.colorado.edu/csci_gradetds/86

Korkmaz, Ö. (2016). The Effects of Scratch-Based Game Activities on Students’ Attitudes, Self-Efficacy and
Academic Achievement. Education, 3(4), 13–15.

Lei, J. (2010). Quantity versus quality: A new approach to examine the relationship between technology use
and student outcomes. British Journal of Educational Technology, 41(3), 455–472. DOI: 10.1111/j.1467-
8535.2009.00961.x

Lye, S.Y., Koh, J.H.L. (2014). Review on teaching and learning of computational thinking through program-
ming: What is next for K-12?, Computers in Human Behavior, 41, 51–61.

Lynde, T., Kim, B. (2015). Learning by doing in the digital media age. In: New Media and Learning in the 21st
Century. Springer, Singapore, 2015, 181–197. DOI: 10.1007/978-981-287-326-2_12

Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M., Rusk, N. (2008). Programming by choice: urban youth
learning programming with scratch. ACM SIGCSE Bulletin, 40(1), 367–371.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The scratch programming language
and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.

Masterman, E., Manton, M. (2011). Teachers’ perspectives on digital tools for pedagogic planning and de-
sign. Technology, Pedagogy and Education, 20(2), 227–246.

McComas, W.F. (2013). The Language of Science Education: an Expanded Glossary of Key Terms and Con-
cepts in Science Teaching and Learning, Rotterdam: Sense Publishers.

McInerney, D.M., Gavin, B.TL., Liem, G.A.D. (2009). Student perspectives on assessment: What students can
tell us about assessment for learning. Vol. 9. IAP, Charlotte, NC.

Meerbaum-Salant, O., Armoni, M., (Moti) Ben-Ari, M. (2013). Learning computer science concepts with
Scratch, Computer Science Education, 23(3), 239–264, DOI: 10.1080/08993408.2013.832022

Monroy-Hernández, A. (2012). Designing for remixing: Supporting an online community of amateur creators.
PhD Thesis. Massachusetts Institute of Technology.

Moreno-León, J., Robles, G., Román-González, M. (2015). Dr. Scratch: análisis automático de proyectos
Scratch para evaluar y fomentar el pensamiento computacional. Revista de Educación a Distancia, 46(10),
15-Sept.-2015, DOI: 10.6018/red/46/10, http://www.um.es/ead/red/46/moreno_robles_es.pdf

Papert, S. (1980). Mindstorms: Children, Computers, And Powerful Ideas. New York: Basic Books
Polenghi, S., Triani, P. (2014). Teacher training and profession in Italy. Today’s situation after a 250 years

history. In: Gabriella Pusztai, Įgnes Engler. Teacher Education Case Studies in Comparative Perspective.
Center for Higher Education Research and Development-Hungary.

Polly, D. (2015). Elementary Education Pre-service Teachers’ Development of Mathematics Technology In-
tegration Skills in a Technology Integration Course. Journal of Computers in Mathematics and Science
Teaching, 34(4), 431–453.

Porter, L., Lee, C., Simon, B., Guzdial, M. (2017). Education. Preparing Tomorrow’s Faculty to Address
Challenges in Teaching Computer Science. Using a “boot camp” workshop for new faculty orientation.
Communications of the ACM, 60(5), 25–27. DOI: 10.1145/3068791

Polly, D. (2015). Elementary Education Pre-service Teachers’ Development of Mathematics Technology In-
tegration Skills in a Technology Integration Course. Journal of Computers in Mathematics and Science
Teaching, 34(4), 431–453.

Programma il Futuro – Code.org (2016). Retrieved September 21, from
http://www.programmailfuturo.it/

Rehmat A.P., Bailey J.M. (2014). Technology Integration in a Science Classroom: Preservice Teachers’ Percep-
tions. Journal of Science Education and Technology 23(6), 744–755. DOI: 10.1007/s10956-014-9507-7

Repenning, A., Webb, D.C., Koh, K.H., Nickerson, H., Miller, S.B., Brand, C., Many Horses, I.H., Basawap-
atna, A., Gluck, F., Grover, R., Gutierrez, K., Repenning, N. (2015). Scalable game design: A strategy to
bring systemic computer science education to schools through game design and simulation creation. Trans.
Comput. Educ., 15(2), Article 11 (31 pages). DOI: 10.1145/2700517

Repenning, A., Webb, D.C., Koh, K.H., Nickerson, H., Miller, S.B., Brand, C., ... Repenning, N. (2015). Scal-
able game design: A strategy to bring systemic computer science education to schools through game design
and simulation creation. ACM Transactions on Computing Education (TOCE), 15(2), 11.

Repenning, A. (2011). Making programming more conversational. In: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC ‘11, (Pittsburgh, PA, USA Sept. 18–22, 2011).
IEEE Computer Society, Los Alamitos, CA.

L. Gabriele et al.100

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Kafai, Y. (2009). Scratch:
programming for all. Communications of the ACM, 52(11), 60–67. DOI: 10.1145/1592761.1592779

Scratch – Imagine, Program, Share (2016). Retrieved September 21, 2016 from
https://scratch.mit.edu/

Seiter, L., Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary grade
students. In: Proceedings of the Ninth Annual International ACM Conference on International Computing
Education Research . ACM, New York, NY, USA, 59–66. DOI: 10.1145/2493394.2493403

Tavernise, A., Bertacchini, F., Pantano, P.S., Bilotta, E. (2016). Implementing a new Class-Lab: guidelines for
integrating innovative devices in pre-service teachers’ practice. International Journal of Digital Literacy
and Digital Competence (IJDLDC). Special Issue on “School revolution? Let’s start from teachers’ digital
literacy and competences!”. Hershey, USA: IGI Global Publishing. DOI: 10.4018/IJDLDC.

Tømte, C., Enochsson, A.B., Buskqvist, U., Kårstein, A. (2015). Educating online student teachers to mas-
ter professional digital competence: The TPACK-framework goes online. Computers & Education, 84,
26–35.

Tondeur, J., Aesaert, K., Pynoo, B., Braak, J., Fraeyman, N., Erstad, O. (2016). Developing a validated instru-
ment to measure preservice teachers’ ICT competencies: Meeting the demands of the 21st century. British
Journal of Educational Technology. DOI: 10.1111/bjet.12380

Tondeur, J., Van Braak, J., Sang, G., Voogt, J., Fisser, P., Ottenbreit-Leftwich, A. (2012). Preparing pre-service
teachers to integrate technology in education: A synthesis of qualitative evidence. Computers & Educa-
tion, 59(1), 134–144.

Trilling, B,. Fadel, C. (2009). 21st century skills: learning for life in our times, San Francisco: Jossey-Bass.
Vaca Cárdenas, L.A., Bertacchini, F., Gabriele, L., Tavernise, A., Olmedo, D., Pantano, P., Bilotta, E. (2015).

Surfing virtual environment in the Galápagos Islands. In: Remote Engineering and Virtual Instrumenta-
tion (REV), 2015 12th International Conference on, 25–27 Feb. 2015. IEEE, 192–198. DOI: 10.1109/
REV.2015.7087291

Vaca Cárdenas, L.A., Olmedo, D., Tavernise, A., Gabriele, L., Bertacchini, F., Pantano, P., Bilotta, E. (2014).
Darwin has come back to the Galápagos Islands: An educational journey to discover biological evolu-
tion. EDULEARN14 Proceedings, 6088–6095.

Vaca-Cárdenas, L.A., Bertacchini, F., Tavernise, A., Gabriele, L., Valenti, A., Olmedo, D., Pantano, P., Bilotta,
E. (2015). Coding with Scratch: The design of an educational setting for Elementary pre-service teachers.
In: Interactive Collaborative Learning (ICL), 2015 International Conference on, 20–24 Sept. 2015. IEEE,
1171–1177. DOI: 10.1109/ICL.2015.7318200

Vaca-Cárdenas, L., Tavernise, A., Bertacchini, F., Gabriele, L., Valenti, A., Pantano, P., Bilotta, E. (2016). An
educational coding laboratory for elementary pre-service teachers: A qualitative approach. International
Journal of Engineering Pedagogy (iJEP), 6(1), 11–17.
http://dx.doi.org/10.3991/ijep.v6i1.5146

Wilson, A., Moffat, D. C. (2010). Evaluating Scratch to introduce younger school children to programming. In:
Proc. of the Psychology of Programming Interest Group Workshop. Madrid/Espanha, 64–75.

Wing, J.M. (2006). Computational thinking. Commun. ACM 49, 3 (March 2006), 33–35.
DOI: 10.1145/1118178.1118215

Wolz, U., Stone, M., Pearson, K., Pulimood S.M., Switzer, M. (2011). Computational thinking and
expository writing in the middle school. Trans. Comput. Educ. 11(2), article 9 (22 pages).
DOI: 10.1145/1993069.1993073.

L. Gabriele is with the Physics Department, University of Calabria, Rende, Italy. She
is a post-doc Fellow and lecturer and is interested in the following topics: psychology
of programming, educational technologies and their use in didactic context, learning,
and techniques of Human Computer Interaction, communications systems and their
use for educational purposes. She is an occasional referee of the journals Computers &
Education, Scientific Research and Essays, and member of the Editorial Board of the
Journal of Applied Research in Higher Education (JARHE). She worked in different
national and international projects.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 101

F. Bertacchini is with the Mechanical, Energy and Management Engineering Depart-
ment, University of Calabria, Rende, Italy. She is a Ph.D in “Psychology of Program-
ming and Artificial Intelligence”, and a Post-Doc Fellow. She is a member of the re-
search group ESG, and works in the Laboratory of Psychology and Cognitive Science
at University of Calabria, designing educational-entertaining environments for science
communication and education. Among her research interests we can cite the follow-
ings: Educational Technologies, Art & Science, Scientific Visualization, Psychology
of Music.

A. Tavernise is member of both the Laboratory of Psychology and Cognitive Science
and the research group called Evolutionary Systems Group at the University of Ca-
labria. The focus of her research is the design and implementation of educational set-
tings/paths in technology-enhanced contexts in order to investigate the acquisition of
high-level cognitive skills (as critical thinking, problem solving, creativity, collabora-
tion) and, in particular, learning. Many of her research results were achieved in national
and international projects, as for example Connecting European Culture through New
Technology – NetConnect (EU project, financed in the programme Culture2000) and
Virtual Museum System (national projects POR 2000–2006).

L. Vaca-Cárdenas is Ph.D graduated and collaborated with the Laboratory of Psychol-
ogy and Cognitive Science. She is a Systems Engineer and she has a Master degree in
University Teaching and Educational Research. Her research interests are focused in
the following topics: E-learning Systems, Virtual Learning platforms, Information and
Communication Technologies (ICTs), Internet of Things (IoT), Virtual Reality, Games
and programming tools for education.

P. Pantano is with the Physics Department, University of Calabria, Rende, Italy. He
is a full Professor of Physics and Mathematics at University of Calabria. His main
research interests concern several topics according to an interdisciplinary approach,
among which we can cite the followings: e-Learning systems; scientific communica-
tion; Artificial life. He is a member of several national and international scientific com-
munities, scientific committees and organized several congresses and workshops. From
2011 to 2016 was the director of a Doctoral School at University of Calabria. He par-
ticipated in national and international projects as responsible of local research unit as
well as international coordinator.

E. Bilotta is with the Physics Department, University of Calabria, Rende, Italy. She is a
full professor of General Psychology at University of Calabria, Italy, where she is also
the director of the Cognitive Psychology Laboratory. Her research interests concern
various scientific topics from an interdisciplinary point of view and comprise the fol-
lowing areas: Human Computer Interaction, Psychology of Programming, Information
and communication technologies, Educational Technologies. She published more than
200 scientific papers and is the author of various books. She was the coordinator of (or
participated in) national and international projects. Moreover, she is a member of sev-
eral national and international scientific communities.

L. Gabriele et al.102

APPENDIX: Two Apps in Depth

In this Appendix, to better illustrate the findings, we describe in details two apps and
their assessment, to show how in a very short time, pre-service teachers acquired both
basic and advanced computer science concepts thanks also the methodology adopted
during the Lab.

The first app is “Little Red Riding Hood in an apple garden” and was developed by a
group of three pre-service teachers.

The educational objective was: improving the ability to count from 1 to 10, in pre-
school children (aged from 4 to 5). In this app, the main character (that is, the sprite) is a
young girl known as Little Red Riding Hood (the fairy tale character). There are differ-
ent scenes (a project with different backdrops, like a story with multiple scenes). In the
first scene, the title of the application and the image of the garden apples are present. In
the second scene, Little Red Riding Hood talks to her grandmother (called Granny), who
asks her to go to the garden and collect 10 apples for making a cake. In the third scene,
the user can move Little Red Riding Hood using the direction keys, while a recorded
voice explains the concept of tens.

In Fig. 3 a screenshot of the app “Little Red Riding Hood in the apple garden”
(scene 3) is showed.

In the same scene, Little Red Riding Hood and Granny ask the user to repeat a
numerical sequence. In the last scene, Granny explains to Little Red Riding Hood the
quickest way to reach her house, and the user has to follow her instructions, following
a specific path and counting the trees. If the user takes the wrong way, all the opera-
tions are automatically reset, and he/she has to start again the same scenario; if the
user follows the instructions correctly, he/she will reach the target (Granny’s home
and the apple pie).

Fig. 3. A screenshot of the app “Little Red Riding Hood in the apple garden”. The educa-
tional objective of the app is the improvement the ability to count from 1 to 10 in preschool
children.

Lesson Planning by Computational Thinking Skills in Italian Pre-service Teachers 103

According Denner’s (2012) evaluation criteria, the sprites and scenes, in the game
are controlled by the arrow keys and by the keys 1, 2, 3 and 4. The app uses conditions
such as: if the red apples are touched by Little Red Riding Hood a sound is played; if she
collects an apple, the apple disappears.

“Little Red Riding Hood in an apple garden” has not variables or random numbers,
but it presents statements of sequence, user interaction, Boolean expressions, condi-
tions, loops and threads control commands and also voice records and sounds.

According to Dr. Scratch software, this app has a “developing” level. All the CT con-
cepts are used, the feedback of the program reports that all 33 sprites have the default
name, that should be changed for a better organization. The concepts on data represen-
tation, abstraction and synchronization should be improved.

The second app is “Uncertainty Mathematics: From Luckyville to Sharpsville” and
was developed by a group of three pre-service teachers.

The educational objective was the improving of the concept of “probability calcula-
tion” in elementary school children (aged from 9 to 11); users’ prerequisite was the basic
knowledge of Computer Science.

Eight apps with different difficulty levels are developed and linked through a
community. The apps are also customized for children with learning difficulties: dys-
lexia (audio messages allow to overcome the obstacle of reading the instructions);
dyscalculia (only few symbols and mathematical formulas are used). From the main,
user can choose among eight game levels: 1) Certainty, feasibility, impossibility;
2) Objects matrix; 3) Probability; 4) Combinatory; 5) Lucky wheel; 6) Spider web;
7) Butterflies; 8) Monty Hall.

 1) Certainty, feasibility, impossibility. The aim of this app is to teach the differ-
ence between events that can be predicted and events that cannot be. In order
to understand if an event is predicTable or not, children have to make decisions
based on the experience and the circumstances in which the event occurs (the
variables).
 2) Objects matrix. Children have to identify object properties and operate their
combinations on a matrix. Users learn that the knowledge of variables allows the
prediction of the even, as well as the use of a double entry Table to compare the
probability of events and to highlight correlations.
 3) Probability. The aim of the app is the comparison with the events in order to
reflecting on their degrees of probability. Children have to distinguish between
probable and improbable events. Children have to compare the probability in the
space of the events, understanding that a different distribution of the variables
creates different probabilities.
 4) Combinatory. The aim of the app is the measurement of the probability taking
into account the ratio between favourable and possible cases. Children have to
work on the space of the event, aggregate and eliminate cases.

 5) Lucky wheel. Children have to make decisions using the calculation of prob-
abilities.
 6) Butterfly. Children have to understand the probability of an event using the
mathematical fraction, switching from visual and semantic representations to
symbolic ones (mathematical representations).
 7) Spider Web. Three concrete events are presented; children have to understand
which is the most probable. Hence, they learn to make decisions using the calcu-
lation of probabilities, and controlling multiple variables simultaneously.
 8) Monty Hall. Children have to recognize and define the space of events in com-
plex situations. They have to solve problems, identify appropriate strategies, jus-
tify the followed procedure, and use the learned concepts. In particular, behind
three locked doors there are a car and two goats. The user wins when he finds
the car. First, the user must choose a door, that remains closed, while another
door opens. The user can decide to change or keep the object behind the closed
door. 1 point is assigned for each right choice (the car); the aim of the game is
to score 3 points. The user has to understand if the change of the chosen door
increases the probability of winning. In Fig. 4, a screenshot of the app “Monty
Hall” is showed.

Applying Denner’s (2012) evaluation criteria, “Uncertainty Mathematics: From
Luckyville to Sharpsville” the following concepts were learned by pre-service teachers:
statements of sequence, user interaction, Boolean expressions, conditions, loops and
threads control commands and also voice records, sounds and very original handmade
images. According with Dr. Scratch “Monty Hall” app has a master level, because uses
Flow control, Data Representation, Abstraction, user interactivity, synchronization, par-
allelism and logic, sprite attributes. From an educational point of view, this collection
of apps had a great success with children, arousing enthusiasm and stimulating curiosity
in the targeted users.

Fig. 4. A screenshot of the app “Monty Hall”. Users have to recognize and define the space
of events in complex situations.

