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Abstract. Control systems are becoming ever more commonly used in everyday life. This is true 
both in industry and in the domestic domain, in the form of e.g., smart home systems. The quality 
of such systems can be increased by using formal verification methods, such as the model check-
ing technique, to make sure that the designed system fulfills all user requirements. The require-
ments are usually written as temporal logic formulas. However, the technical skills of future users 
or the mathematical background knowledge of the developers are not always sufficient to support 
the essential stage of verification. In the paper we propose to use the Scratch-based user-friendly 
approach to define our own scenarios for a control system, in order to avoid focusing on the math-
ematical notation of temporal requirements. The specified properties can then be transformed into 
temporal logic formulas and used directly in the model checking process. Hence, the verification 
phase is simplified and more team members can participate in the engineering of requirements. An 
empirical study with students has shown that the proposed approach can be used in practice.

Keywords: control systems, formal verification, logic controller, model checking, requirements 
engineering, specification.

1. Introduction

The modern world is being expanded by technological evolution. More and more soft-
ware and hardware systems are being used in everyday life. Control systems are becom-
ing more accessible to ordinary citizens, e.g., smart home systems. Smart homes (Alam 
et al., 2012; Bitterman and Shach-Pinsly, 2015; Klimek and Rogus, 2015) are required 
to be user-friendly and offer modern environments. The automation control systems 
for smart homes are purchased by customers who are not always very familiar with the 
technology itself, and therefore such systems should be easy to manage and use. Future 
users should also be able to specify how their automation system should work.
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On the other hand, formal verification allows for an increase in the quality of any 
hardware or software system (Woodcock et al., 2009; Kropf, 1999), considering also 
real-life processes (Grobelna et al., 2017) or exchangeable modules in reconfigurable 
control systems (Wisniewski and Grobelna, 2018; Grobelna, 2018; Wisniewski, 2018). 
However, one should remain aware of the limitations of formal methods (Tempelmeier, 
2011), including environmental influences, unaccountable world knowledge or the mis-
behavior of neighbouring systems. One of the most approved methods is the model 
checking technique (Pakonen et al., 2016; Clarke et al., 1999l Emerson, 2008; Jiang 
et al., 2018), which has recently been entering slowly even into quantum systems (Ying 
and Feng, 2018). Generally speaking, in model checking the specification is validated 
against some user-defined requirements. If any of them cannot be satisfied, appropriate 
counterexamples are generated. It is important that the list of requirements is as com-
plete and unambiguous as possible, since only the specified properties can be checked. 
Hence, the quality of formal verification depends on the quality of requirements (Boz-
zano et al., 2014). Additionally, the requirements are needed to make sure that the sys-
tem is designed properly, otherwise a final product can be released that does not meet 
customer wishes (Robertson and Robertson, 2012).

For the model checking process, requirements are expressed as temporal logic for-
mulas (Huth and Ryan, 2004; Ölveczky, 2017). However, the mathematical approach is 
not very convenient to use, especially for non-engineers, and the effort to formalize the 
functional requirements is the foremost challenge (Pakonen et al., 2016). Moreover, user 
awareness of the safety issues is not always high enough (Grobelna et al., 2018), so the 
tasks performed by the user should be either automated (if possible) or simplified, so that 
they are neither time-consuming nor problematic in use.

During the last few decades, the topics of formal verification and model checking 
have been part of the ongoing research. However, to the best of the author’s knowledge, 
none of the existing methods of requirements specification specifically deal with control 
systems, and at the same time are simple to use for the common user not familiar with 
temporal logic theory.

All these facts, combined with detailed analysis of the state of the art, have built a 
strong motivation to consider a user-friendly form of requirements definition for control 
systems, namely, based on Scratch. Scratch (Resnick et al., 2009; Scratch Project Editor) 
is a project at the MIT Media Lab, provided free of charge, and targeted especially at 
young people for programming of interactive stories, games and animations. It is used in 
more than 150 different countries and available in more than 40 languages, which makes 
it very popular in many cultures. The simplicity of rules makes it also suitable for adults 
or elderly people not so familiar with information technology.

Therefore, a novel method to define the control system requirements is proposed 
in this paper, dedicated especially to non-engineers, to designers of nontechnical user 
experience and to ordinary future end-users of such control systems. It may be also 
well suited for learning temporal logic among students, which fact has been proved in 
an empirical study. The Scratch-based specification is quite similar to the natural lan-
guage, with the difference being that it follows some rules and only the defined blocks 
of words can be used. It should be highlighted that the proposed approach is a simple 
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and user-friendly method of requirements definition for control systems, supporting 
formal verification (model checking) of the specification. 

The paper is organized as follows. Section 2 presents the state of the art regard-
ing methods of requirements specification in terms of their simplicity of use and the 
benefits of using the Scratch environment. Section 3 contains the main contributions of 
this paper and introduces the novel method of Scratch-based user-friendly definition of 
temporal logic requirements for control systems. Section 4 summarizes some primary 
empirical studies among students. Finally, Section 5 concludes the paper.

2. State of the Art

In order to perform the model checking process, requirements of a control system have 
to be written as temporal logic formulas. They can be firstly written in natural language 
and then translated into temporal logic. However, the translation process is error-prone 
to ambiguities related, e.g., to diverse terms or complex sentences, and to the copy-paste 
operation of written sentences (an empirical study on different programming languag-
es shows that it is a common human behavior to copy-paste some data (Ahmed et al., 
2015)). An approach based on natural language is presented in (Barza et al., 2016), 
where the Controlled Natural Language (CNL, being a subset of English that obeys a 
formal grammar) is proposed as a language for writing requirements. Additionally, a 
translator from a CNL to the modelling language of the NuSMV model checker has been 
implemented. Another interesting requirements specification technique (for software), 
called seam-less requirements, is proposed in (Naumchev and Meyer, 2017), where 
natural language is used together with formal components. Unfortunately, it is only ap-
plicable to non-concurrent programs.

The efficient and user-friendly solution is through the use of UML activity diagrams 
(one of the most common diagrams of the Unified Modelling Language (OMG Uni-
fied Modelling Language)), proposed in (Grobelna and Grobelny, 2015), where only the 
basic technical knowledge (but still) of the UML language is needed. A quality assured 
model-driven requirements engineering and software development method is proposed 
in (Lengyel et al., 2015), based on the modelling of software requirements oriented to-
wards an automatic generation of several artifacts.

More research on user-friendly specification methods for requirements, including, 
e.g., property patterns, visual languages (such as Graphical Interval Logic, Property Se-
quence Charts or Live Sequence Charts) and Property Specification Language, being 
an IEEE standard, can be found in the survey paper (Pakonen et al., 2016), where the 
conclusion is given that finding a user-friendly specification language with the right bal-
ance between expressiveness and readability is still an up-to-date and important research 
topic. In (Dillon et al., 1994; Smith et al., 2001; Vyatkin and Bouzon, 2008) the require-
ments are presented on timing diagrams, which – due to their technical nature – can 
sometimes be relatively difficult to use. Property Sequence Charts (Autili et al., 2007) as 
well as Live Sequence Charts (Brill et al., 2004) use UML diagrams to define scenarios. 
Simple graphical scenarios (for the software domain) are also proposed in (Asteasuain 
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and Braberman, 2017), where a declarative language is introduced. In (Beckert et al., 
2017) Generalised Test Tables are presented as a specification language for reactive sys-
tems, which are then encoded into verification conditions. However, all these approaches 
are not very close to the natural language nor do they seem to be very easy to use for 
non-engineers in practice.

On the other hand, an approach to visualize logical formulas is proposed in (Klimek, 
2018), where a widely accessible system in the form of a web application is initially im-
plemented and the visualization methods are based on graphs. It does not refer directly 
to requirements definition, but the aim of the tool is to help to understand, analyze and 
examine logical formulas, what is also a significant step towards the user. There are 
also many publications regarding requirements prioritizations, such as the MoSCoW 
technique (Tudor and Walter, 2006) or the Hundred Dollar Method (Davies, 2005), 
more information can be found in a comparison of the commonly used techniques in 
(Hudaib et al., 2018).

Other research shows that Scratch is used with success in various projects. It can 
be used to code a user’s own interactive stories, animations or games. It teaches stu-
dents to think creatively, reason systematically and work collaboratively. The online 
editor is easy to use, the elements just need to be drag-and-dropped from the list into 
the main coding area and joined with the other elements. Each type of element has its 
own colour and some of them can be customized by specifying their characteristic. 
The literature overview reveals that Scratch is a good option for teaching students 
some new concepts. They can learn basic code structures and algorithmic thinking by 
using simple elements, and the Graphical User Interface is intuitive and easy to use. 
Results of an experiment conducted in a primary school (Gülbahar and Kalelioğlu, 
2014) have shown that all the students liked programming and wanted to improve their 
programming skills after the Scratch course. Scratch is also commonly used at uni-
versities as an introduction to programming course for engineering students (Ozoran 
et al., 2012), making programming more enjoyable and more visual. Using the Scratch 
environment for learning programming highly motivates students and empowers them 
to pursue their studies in programming (Ouahbi et al., 2015). It is also well suited to 
helping understand the elements of logic and mathematics (Sáez-López et al., 2016) 
or to being used in an integrated approach for enhancing the learning of computer 
programming (Cárdenas-Cobo et al., 2018). There are also approaches in other do-
mains of computer science not related directly to education, such as (Nergaard et al., 
2015), where a Scratch-based policy editor for the extensible Access Control Markup 
Language (XACML) is proposed, which just simplifies building the XACML policies. 
The disadvantage of Scratch may be bad programming habits, such as the repetition of 
code and object naming (Moreno and Robles, 2014), but the advantages still outweigh 
the disadvantages.

Pattern-based analysis of automated production systems, making formal verification 
accessible to engineers, is proposed in (Campos and Machado, 2009). The approach is 
a step towards the user, here a specialist already working in the industry. In the paper, 
we are going to an earlier stage of engineer career, namely to academic education of 
future experts.
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Taking into account that Scratch is often introduced at schools and universities to 
teach children and students how to code and to help understand some new knowledge, 
it can be deduced that adults too who are not familiar with information technology 
can also easily adjust to its rules and use its online editor. This is the key issue for 
the conducted research and for Scratch-based user-friendly definition of requirements 
proposed in this article – to make the requirements definition as simple as possible and 
accessible to a non-expert user.

3. Expressing Requirements Using Scratch-Based Approach

The user-friendly Scratch-based method of requirements definition is an important step 
in the design process of control systems (illustrated in Fig. 1) and fits perfectly into the 
design flows of logic controllers. The primary specification of a control process (e.g., 
in the form of control interpreted Petri nets or UML diagrams) is formally written as an 
abstract rule-based logical model (Grobelna et al., 2017), suitable both for model check-
ing and synthesis. To perform formal verification, a list of requirements to be checked 
is also needed. In the proposed approach, they are defined with Scratch and transformed 
into temporal logic formulas. If in the model checking process any of the properties are 
not satisfied, appropriate counterexamples are generated and both the specification and 
the requirements list should be revised. Necessary modifications have to be made and 
formal verification is then performed once more. After successful verification the design 
flow can proceed with logic synthesis and the system can be physically implemented 
using dedicated hardware platforms (e.g., FPGA devices).

3.1. Basic Elements

Requirements for control systems are usually divided into two types: regarding safety 
(i.e., something bad will never happen) and liveness (i.e., something good will eventu-
ally happen). The safety properties are especially important for the correct functionality 
of the designed system and they can be easily verified using the model checking tech-

Fig. 1. Design flow with Scratch-based definition of requirements.
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nique. In the model checking process (we use the nuXmv tool (Cavada et al., 2014)) the 
properties are expressed as LTL (linear-time temporal logic) or CTL (branching time 
temporal logic) formulas (Huth and Ryan, 2004). In the paper we focus on the LTL 
formulas, where single temporal operators are used: G, X and F (explained in Table 1), 
possibly combined with Boolean logic (and, or, not). The selection of temporal operators 
to be used in Scratch was based on the statistical usage of the operators in LTL proper-
ties (collected by (Pakonen et al., 2016)), where the three most frequently used temporal 
operators are: G (99,5% of all properties), X (12,9%) and F (5,2%).

Basic elements of Scratch-based definition of requirements are illustrated in Table 2 
(not all elements are by default in the Scratch editor). Using the graphical environment, 
the only user’s task is to drag-and-drop appropriate elements (predefined keywords and 
specific variables) and to connect them together (put into right places). According to 
the paper (Aivaloglou and Hermans, 2016), where about 250 thousand Scratch projects 
were taken into account, 31,5% of the projects use variables, 39,8%, conditional state-
ments and 77,2%, loop statements, so the proposed set of visual elements matches the 
standard used templates. Different colors (i.e., orange and purple for the main elements 
and green for logical operators) and shapes (i.e., rounded or angle) of elements simplify 
the process and prevent any misusage.

Basic graphical temporal logic and Boolean logic elements are transformed into LTL 
logic elements according to some strictly defined rules as follows in Table 2. Each ele-
ment has its own equivalent. And so, each Scratch element is transformed directly into 
appropriate temporal logic operator. Variables remain the same in both interpretations. 
It  should be pointed out, that the negation occurs twice in the visual blocks – the first 
time as a main element never, which refers to situations never globally (combined in use 
as forever-never), and the second time as a simple Boolean operator not, which refers to 
variables (and is used only in combination with variables). Different shapes of the ele-
ments simplify the usage of them. It should be also noted, that the Boolean logic opera-
tors can be combined together to form, e.g., the triple conjunction.

Let us point out, that whilst the temporal logic elements are constant (regardless of 
the considered case study), the variables are application specific (defined individually 
for each case study) and refer to input and output signals of a designed logic controller, 
taking a Boolean value true (signal active) or false (signal inactive, combined with the 

Table 1
Basic operators in the LTL temporal logic

Operator Meaning Example

G globally / forever / always G p 
formula p is true forever  
(that is in all states) 

X next X p 
formula p is true in the next state

F finally / sometimes F p 
formula p is true finally  
(that is in some states)
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Boolean operator not). Variables are represented as blue blocks with appropriate signal 
names. Examples of logic controller input and output signals for a smart home system 
(a) and the corresponding variables (b) are shown in Fig. 2. The variables are individual-
ly defined for the particular case study. Here, input signals are coming from the environ-
ment (user action or sensors), while output signals are controlling the real objects. Basic 
elements together with variables allow definition of the most essential requirements for 
a designed control system.

3.2. Complete Expressions

Let a complete visual representation of a requirement be called SCRATCH_EXP. Then, 
a SCRATCH_EXP is formalized as a LTL logic formula, ready to be used in the model 
checking process (in the proposed approach the nuXmv model checker (Cavada et al., 

Table 2
Equivalent elements in Scratch-based definition of requirements and LTL logic

Meaning Scratch element LTL logic  
(and Boolean operators)

forever G

if then –>

next X

finally F

never (globally) !

and &

or |

not !

(a) (b)

Fig. 2. Logic controller input and output signals (a) and variables definition in Scratch (b).
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2014) is used). The complete expressions are created by translating the elements, let an 
element be called Ei. The transformation method of complete requirements in Scratch 
into temporal logic formulas is described in details in Algorithm 1. It is supposed that 
the requirement must start with the G or F operator, otherwise a bug is reported. Hence, 
the never-globally situation is formed with two graphical elements (as it will be shown 
further in the example).

Algorithm 1. Transformation of complete expressions in Scratch into LTL logic 
formulas

Step1:
write the LTLSPEC keyword

Step2:
take the first element E1 ∈ SCRATCH_EXP
if E1 is the FOREVER element then write the G operator
else if E1 is the FINALLY element then write the F operator
else report an error 
end if

Step3:
for all elements Ei ∈ SCRATCH_EXP, starting from i = 2 do

if Ei is a basic element then write the equivalent operator in LTL logic
else (which means that Ei is a variable) write variable name

end for
write the semicolon (ending the expression)

Step4:
check the complete formula if it is valid (proper structure and sequence of elements)

And so, each Scratch-based defined requirement is translated into LTL logic using the 
same method (Algorithm 1) and a list of requirements is built to be applied directly in the 
model checking process. The complete list of requirements is formed according to Algo-
rithm 2. Afterwards, the user’s only task is to append the text list at the end of a verifiable 
file and formal verification can be automatically performed using the nuXmv tool.

Algorithm 2. Transformation of a set of expressions in Scratch into a list of LTL logic 
formulas

for all drawn visual expressions SCRATCH_EXPi do
apply Algorithm 1 to each SCRATCH_EXPi

end for

Let us illustrate the Scratch-based definition of requirements by a sample control 
process from a smart home system. Smart home systems are used to increase the comfort 
of inhabitants by applying some automation in daily life. The six sample properties are 
visually drawn using Scratch, as presented in Fig. 3. The variables are application spe-
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cific and have already been shown in Fig. 2a. Let us point out that this is only a snapshot 
from the sample smart home system and other aspects (e.g., its specification) are here out 
of scope and are not treated further in this paper.

The requirements in Scratch (Fig. 3) are transformed into a list of requirements ac-
cording to Algorithm 2 (and involving Algorithm 1). As the result the following list is 
formed, shown in Fig. 4. The verbal interpretation of requirements can be easily achieved 
by reading out the visual blocks, assuming that variables related to input and output sig-
nals of logic controller are intuitively named, e.g., “Always (forever) if the button is 
pressed, then next the gate opens” (property 1), “Always (forever) if somebody enters 
home, then finally the music is turned on and the air purifier is turned on” (property 4) or 
“Forever never should be possible that both signals for opening and closing the gate are 
active at the same time” (property 5).

When considering the model checking of any system, the most essential properties 
concern the safety and liveness of such systems. Safety requirements, stating that the 
undesired situation will never happen, are presented in LTL temporal logic in the form 
of G! property, which can be written in Scratch as forever-never (see Fig. 5). Liveness 
requirements, stating that the desired situation will eventually happen, are presented in 
LTL temporal logic in the form of GF property (or with an additional condition as G 
(condition –> F property)), which can be written in Scratch as forever-finally (or, respec-
tively, forever-if-then-finally).

LTLSPEC G (button_pressed –> X open_gate);    -- 1
LTLSPEC G (button_pressed –> F turn_off_alarm);   -- 2
LTLSPEC G (car_parked –> X (close_gate & led_off));   -- 3
LTLSPEC G (entered_home –> F (turn_on_music & turn_on_air_purifier)); -- 4
LTLSPEC G !(open_gate & close_gate);    -- 5
LTLSPEC G ((car_parked | entered_home) –> F illuminate_garden);  -- 6

Fig. 4. List of LTL logic requirements from Scratch-based expressions.

Fig. 3. Scratch-based definition of requirements – examples.
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The sample safety requirement in Scratch is shown in Fig. 5 (at the top) and states: it 
should never be the case during gate reconfiguration that the control system will be try-
ing to open or close the gate. In turn, the sample liveness requirement in Scratch (Fig. 5, 
at the bottom) states: whenever the inhabitants leave their home, then finally the com-
fort maintaining subsystems will be turned off (sometimes not immediately, but after 
finishing the work cycle, e.g., of an air purifier) and the blinds will be closed. In some 
situations, it can also be necessary to define that something will happen immediately, as 
shown in the example (Fig. 5, in the middle), where unauthorized access to the house 
results in some immediate reactions, such as turning on the alarm siren or notifying a 
security agency. The Scratch-based requirements from Fig. 5 are transformed into a list 
of requirements, shown in Fig. 6.

Although the presented examples may seem to be only academic, the real applica-
tions of model checking technique in the industry and reported in the literature are also 
based on such simple patterns. In (Pakonen et al., 2017) the model checking is success-
fully adopted in the verification of instrumentation and control systems (I&C) in the 
Finnish nuclear industry. The generalized design issues identified using model checking 
include, e.g., conflicting operational modes selected on fluctuating input data, with re-
quirements such as that only one mode (a or b) shall be active at the same time or that 

Fig. 5. Scratch-based definition of requirements, focusing especially on safety and liveness.

LTLSPEC G !(reconfigure_gate & (open_gate | close_gate)); 
LTLSPEC G ((entered_home & !button_pressed) –> X (notify_security_agency & 

turn_on_alarm_siren & turn_on_alarm_lights & start_recording));
LTLSPEC G (leaved_home –> F (turn_off_music & turn_off_TV & turn_off_air_

purifier & close_blinds));

Fig. 6. LTL logic requirements from Scratch-based expressions,  
focusing especially on safety and liveness.
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the set_a command shall reset b if signal c is not active. The experience in a nuclear 
industry practice has evidently shown that the main benefit of using the model checking 
technique is to reveal design issues that are otherwise hard to detect using other methods, 
such issues as ones related to possible spurious actuation scenarios caused by unintended 
functionality.

To summarize, in the proposed approach formal verification of logic controllers is 
more user-friendly than in the standard method of specifying the requirements in tem-
poral logic. In order to perform the model checking process, the Scratch-based require-
ments, which are simply drawn as visual blocks, are transformed directly into temporal 
logic formulas. Thus, based on the Scratch code –mathematical formulas are generated. 
Following the proposed design flow for logic controllers shown in Fig. 1, the considered 
control process is first specified as a control interpreted Petri net or a diagram of the 
UML language and then formally written as a rule-based logical model (for more details 
see Grobelna et al., 2017,). Afterwards, a verifiable code in the nuXmv format (Cavada 
et al., 2014) is automatically generated and combined with the received requirements in 
temporal logic. The nuXmv tool then automatically compares the system model with the 
list of properties and reports whether they are satisfied or not (with generated counterex-
amples to help localizing the error source). If needed, the control process specification 
(and so the rule-based logical model) is changed, but sometimes it turns out that also the 
requirements must be modified. After successful formal verification, the design flow can 
proceed and the already verified solution can be implemented in a real device.

It should be noted, that the Scratch-based definition of requirements, transformed 
into temporal logic formulas, is the first of the key elements required for successful 
formal verification. The second necessary key element here is the system specification 
(model of the system). With only these two parts (c.f. Fig. 1), the model checking pro-
cess can be performed. The model of a system, extending in a verifiable file (ready to 
be checked by a model checker tool) to usually at least hundreds of lines of code, can 
also be prepared in a more user-friendly way, using, e.g., the rule-based logical model 
of a control process proposed in (Grobelna et al., 2017). The rule-based logical model 
(extending to usually only a few dozens of lines) is then automatically transformed into 
the complete verifiable model of the system (using the implemented m2vs tool).

4. Primary Experimental Results

The proposed approach of using Scratch for user-friendly requirements definition of 
control systems was evaluated by the students of University of Zielona Góra (Poland), 
Faculty of Computer, Electrical and Control Engineering, in two courses of Discrete 
Control Systems. The total number of students was 84, most of whom were male stu-
dents. During classes they learned about various specification techniques of control sys-
tems, formal verification including especially the model checking process, requirements 
definition and temporal logic (specifically it was the LTL and CTL logic). They had also 
the opportunity to test themselves by interpreting and writing their own requirements for 
sample real-life control systems.
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4.1. Aim, Method and Results of the Experiment

The conducted experiment consisted of two parts and its aim was to find out whether 
Scratch-based definition of temporal requirements for a control system is easier and 
more user-friendly for students than using the temporal logic itself. The students were 
given some sample informal specifications of real-life control systems.

Part 1:
Firstly, the students were shown the basics and theory of temporal logic (both the LTL 
and CTL) in the area of model checking of the embedded specification. Then, the stu-
dents were asked to describe and explain some sample requirements written in LTL 
logic. Despite the in-depth earlier presentation of the temporal logic rules, it was diffi-
cult for them to correctly decode the existing requirements written as LTL formulas and 
writing their own ones was even more challenging. In the case of complex formulas, the 
students had to be assisted by the teacher in order not to make any errors.

Part 2:
Afterwards, the students were introduced to the novel concept of Scratch-based user-
friendly definition of requirements for control systems. The presentation of sample prop-
erties defined with graphical colorful blocks revived the group and it seemed so attrac-
tive, that even students who had not been active so far started to actively participate in 
the exercises. The Scratch-based method was much easier to use and, what should be 
emphasized, less error-prone. Moreover, the students had much fun by defining their 
own requirements for real-life control processes and so the number of specified require-
ments was much bigger in comparison to the results from the first part of the experiment 
using only the temporal logic.

Finally, the students were asked which requirements definition method was easier for 
them to use and more user-friendly. The majority (61%) stated that it was the Scratch-
based definition, almost one third (28%) declared that both methods were for them just 
as easy to use, and the rest (11%) chose temporal logic formulas. The evaluation results 
are presented on a pie chart in Fig. 7.

Fig. 7. Experimental results.
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4.2. Conclusions of the Experiment

The conducted experiment has shown that:
Students were much more concentrated on requirements definition using Scratch  ●
(in comparison to the standard approach using temporal logic).
Students had no problems in writing and explaining sample requirements (even  ●
the complex ones) using the Scratch-based approach.
Students using Scratch wanted to spend more time on defining further require- ●
ments.
The number of human-related errors in the Scratch-based approach was much  ●
lower in comparison to the approach based on temporal logic.

The initial tests confirm that using Scratch is most likely more user-friendly and 
more effective for non-experienced users in describing the requirements of a control 
system. Thanks to its graphical representation it is easier to use in comparison to writing 
directly temporal logic formulas. Also, compared with other requirements specification 
techniques cited in this paper, using the Scratch-based method requires almost no techni-
cal knowledge.

5. Conclusions

The paper introduced a novel user-friendly method of requirements definition for control 
systems based on the Scratch programming language, in order to simplify the model 
checking process for the common user and at the same time to achieve a high quality in 
the designed control system. In brief, the Scratch is easy to use and its simple rules are 
well understood. The graphical support makes the requirements specification a quick 
and user-friendly task. In fact, user attention is paid to the requirement itself, and not on 
the representation of it, which eliminates unnecessary distraction. Using some strictly 
defined rules, the Scratch-based properties are then translated into temporal logic formu-
las, making them directly usable in the model checking process.

The initial tests show that the Scratch-based definition of requirements for control 
systems is simpler and more effective (in terms of the amount of specified proper-
ties) in use in comparison to writing directly temporal logic formulas or when using 
other requirements specification methods for control systems. Additionally, using the 
visual blocks attracts user attention and results in more requirements being defined. It 
has been proved to be useful also in teaching students on the topics of temporal logic 
theory and requirements definition. The proposed method focuses only on the LTL 
logic, what is its main drawback. However, as explained in the paper, the selected set 
of elements is sufficient to describe the most used industrial properties found in the 
literature. Preliminary results presented in this paper confirm the usability of the pro-
posed method. Future research will include further establishment and advancement of 
the proposed method.
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