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Abstract. Connecting theory and practice in teaching is sometimes difficult, as it requires expen-
sive or delicate equipment, thus limiting the teacher to giving demonstrations in which students 
are passive participants. Numerical mathematics, as an applied discipline, should be taught on 
real world examples. By using inexpensive Arduino hardware, we can create simple experiments 
that are easily reproduced by students. Furthermore, the experiments generate tangible data, 
which can be processed numerically. The choice of the software used for numerical processing is 
also an important issue. We present several exercises in numerical mathematics that are based on 
experiments in electrical engineering with Arduino, and show how to turn them into motivational 
examples. We also present our experiences in teaching using the developed exercises, as well 
as some important points and conclusions, which stem from discussions with the participating 
students and teachers.

Keywords: interactive learning environments, numerical mathematics, Arduino, education, 
teaching.

1. Introduction

Numerical mathematics is studied in some middle schools and in almost all mathe-
matics courses at undergraduate level studies. Interpolation is introduced by means 
of Lagrange polynomial and Newton polynomials. The concept of definite integral is 
introduced as the Riemann integral, which is defined in terms of Riemann sums and its 
geometric interpretation. Numerical differentiation is devised from Taylor series and 
explained geometrically as the slope of the secant. While these topics are important, 
demonstrations and exercises are often made in class using some arbitrary data, with-
out obvious connection to the real world. By using inexpensive Arduino hardware, a 
teacher can obtain real world data for students to work on, as well as demonstrate the 
connection between theory and application. We present several examples that were 
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developed with the aim to motivate the students and raise their interest in solving real 
world problems using the knowledge and techniques learned in class. Our examples are 
based on Arduino Uno R3, GeoGebra, Mathematica, C++ and C# development envi-
ronments. This work is a continuation of our previous work on teaching of Numerical 
mathematics using computers (Herceg and Herceg, 2008; Herceg and Herceg, 2009; 
Herceg and Herceg, 2010).

The paper is organized as follows. Section 2 describes motivation and related work. 
Sections 3, 4 and 5 introduce interpolation, numerical integration and numerical differ-
entiation through a brief theoretical introduction and with examples developed with Ar-
duino, some programming, GeoGebra and Mathematica. A real world problem is solved 
for each topic and the connection between theory and practice is established. Section 
6 contains an overview of feedback received from the participants in our courses. The 
results of a pedagogical experiment are in Section 7. Concluding remarks are given in 
Section 8.

2. Motivation and Related Work 

Interpolation, numerical integration and numerical differentiation are topics in the Nu-
merical mathematics course, taught at the Faculty of Science, University of Novi Sad. 
The ‘classical’ approach to teaching consists of oral lectures supported with slides, fol-
lowed by practical exercises during which the students solve computational problems 
on paper, using the computer software (Mathematica and/or GeoGebra) mainly as a 
programmable calculator. 

We sought to improve our teaching materials, classroom activities and exercises 
by following the ideas and principles explored in the contemporary literature. Having 
in mind the new demands occurring in educational systems (and) in order to prepare 
students for future professions where technology offers enormous opportunities for 
teaching and learning, we chose to rethink our educational paradigm and strategies 
(Drijvers et al., 2016).

In Cheng et al. (2016) it is argued that majority of teaching is based on the ‘teach-
ing by telling’ approach which centers on mathematical derivation and ignores the 
natural connection between theory and application. They propose introducing digital 
simulation together with hardware-in-loop simulation into teaching practice. To this 
end, we introduced the Arduino-based exercises described in this paper into class-
room activities. Our intention was to better motivate the students and to bring to at-
tention the connection between the lessons being taught and their application in the 
real world. Many authors share the view that in contemporary mathematical model-
ing, the process of translating between the real world situations and mathematics in 
both directions is one of the essential topics in mathematics education, as research 
and practice enhance each other through the development of new tools for classroom 
instruction and across a wide range of disciplines (Blum and Niss, 1991; Kaufmann 
and Schmalstieg, 2002; Zbiek and Conner, 2006; Hohenwarter et al., 2008; Blum and 
Borromeo Ferri, 2009; Niss, 2012).
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Subject integration is necessary in goal-oriented problem solving. In our case, this 
pertains to the use of Arduino-based hardware together with mathematical software 
(Mathematica, GeoGebra) and general-purpose software development environments 
(Arduino and C# IDEs). A certain knowledge of electrical engineering and physics is 
also desirable. The role of computers in teaching has been studied for quite some time 
(Underkoffler; 1969). STEM (science, technology, engineering, and mathematics) edu-
cation is focused on developing tools and processes for teaching, which integrate con-
cepts that are usually taught as separate subjects in different classes and emphasizes the 
application of knowledge to real-life situations, enabling teachers to teach mathematics 
and science much better and more effectively (Burkhardt, 2018; Gonzalez and Kuenzi, 
2012; Tomaschko and Hohenwarter, 2017). Providing early exposure to STEM content 
can ensure that students will continue their interest in STEM subjects through middle 
and high school up to university level (DeJarnette, 2012; Lavicza et al., 2007; Lavicza 
et al., 2018; Prensky, 2008). 

When it comes to the choice of a hardware platform which is suitable for class-
room application, one must consider potential obstacles. Many authors are aware that 
advanced teaching concepts may fail in practice because of high prices and complexity 
of hardware and/or software or other similar factors which impact low-income societies 
differently than highly developed ones. For example: Particularly in developing coun-
tries, teachers are sometimes willing to learn new teaching tools, but, due to various rea-
sons, are not able to implement them in class. Distinctive characteristics of educational 
systems, culture and financial level also impact the integration of technology in school 
education (Bhagat and Chang, 2015; Han et al., 2013; Jezdimirović, 2014; Mainali and 
Key, 2012). We chose Arduino hardware because it is easy to obtain at a modest price, 
ubiquitous, well supported and easy to configure for the presented teaching topics. 

3. Interpolation

3.1. Definition

We start by introducing the Lagrange polynomial. For a given set of data points 
(𝑥�,𝑦�), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥�, 𝑦�), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, …  the Lagrange polynomial is defined as

(𝑥�,𝑦�), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝐿𝑛(𝑥) = �𝑦��
�𝑥 − 𝑥��
�𝑥� − 𝑥��

𝑛

�=�
���

𝑛

�=�
. 

 

𝐿𝑛(𝑥) = �𝑦��
�𝑥 − 𝑥��
�𝑥� − 𝑥��

𝑛

�=�
���

𝑛

�=�
. 

𝐿𝑛(𝑥) = �𝑦��
�𝑥 − 𝑥��
�𝑥� − 𝑥��

𝑛

�=�
���

𝑛

�=�
. 

In the simple case of two points (

(𝑥�,𝑦�), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥�, 𝑦�), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 ) we get linear interpolation

𝐿�(𝑥) = 𝑦�
𝑥 − 𝑥�
𝑥� − 𝑥�

+ 𝑦�
𝑥 − 𝑥�
𝑥� − 𝑥�

= 𝑦� +
(𝑥 − 𝑥�)(𝑦� − 𝑦�)

𝑥� − 𝑥�
. 
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3.2. Real World Example

Water pressure in a household water supply is essential to the regular function of water 
heaters and washing machines. To measure water pressure one can use mechanical or 
electronic devices. An electronic water pressure sensor can simply be installed in a water 
pipe and connected to Arduino (Fig. 1). The sensor produces output from 0.5 to 4.5V, 
corresponding to pressures from 0 bar to 12 bar. The dependency is linear.

To measure water pressure, we need to write a C++ program to read the voltage from 
the sensor and convert it to pressure. The result is displayed on a 7-segment display or 
otherwise relayed to the user.

3.3. Solution

First, a formula to convert the voltage from the sensor’s output pin to pressure must 
be constructed. Arduino has analog input pins which can measure voltages from 00𝑉  to 
50𝑉   and represent them as unsigned 10-bit integers, from 0 to 1023. Knowing the sen-
sor output’s range, integer values which correspond to input values of 0.50𝑉  and 4.50𝑉  
are determined. Interpolating polynomial is constructed for points (0,0), (5,1023), 
which yields a ratio between the input voltage on the sensor 𝑢  and analog reading 
𝑎 = 1023𝑢/5 .

By substituting 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

0.5 and 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

4.5 and rounding the results, we get 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 , 𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

102 
and 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 921. These are the readings Arduino will get when sensor voltages are 0.50𝑉  
and 4.50𝑉  respectively. The readings are converted to pressure by constructing another 
interpolating polynomial for points (102,0), (921,12):

 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

 

Fig. 1. Arduino with a water pressure sensor and a 7-segment display.
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The resulting polynomial 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 .  converts readings from the analog input pin on the 

Arduino to pressure in the range from 0 bar to 12 bar. The calculation can be executed 
in Mathematica (Fig. 2).

The result can be obtained geometrically in GeoGebra, by constructing a line 
through points A1 = (102,0) and A2 = (921,12). The conversion is obtained by placing 
the point C on the line. By positioning the point C at the 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

 coordinate equal to a value 
read from the sensor, the corresponding pressure can be read from the 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦  coordinate 
(Fig. 3). The axes are scaled non-proportionally in this exercise.

It should be noted that a built-in Map function exists in Arduino, which is intended 
for the same purpose. However, the function is implemented using integer arithmetic 
and, due to truncation errors, sometimes yields unsatisfactory conversions.

 

Fig. 2. Interpolation in Mathematica to convert sensor readings to pressure.

 
Fig. 3. Conversion of sensor readings to pressure in GeoGebra.
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4. Numerical Integration

4.1. Definition

The concept of definite integral is introduced as the problem of area under a graph. The 
Riemann sum is defined as

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 
 

where 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 

∆𝑥� = 𝑥� − 𝑥�−1,    𝑥�∗ ∈ [𝑥�−1, 𝑥�].  Several special cases are observed, left rule for 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 

∆𝑥� = 𝑥� − 𝑥�−1,    𝑥�∗ ∈ [𝑥�−1, 𝑥�]. 

𝑥�∗ = 𝑥�−1,  right rule for 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 

∆𝑥� = 𝑥� − 𝑥�−1,    𝑥�∗ ∈ [𝑥�−1, 𝑥�]. 

𝑥�∗ = 𝑥�−1, 

𝑥�∗ = 𝑥�   and midpoint rule, for 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 

∆𝑥� = 𝑥� − 𝑥�−1,    𝑥�∗ ∈ [𝑥�−1, 𝑥�]. 

𝑥�∗ = 𝑥�−1, 

𝑥�∗ = 𝑥�  

𝑥�∗ = 𝑥� + 𝑥�−1
2 . 

𝑥�∗ = (𝑥� + 𝑥�−1)/2. 

𝑥�∗ = 𝑥�+𝑥�−1
2 .  

 In the case of 
equidistant points, i.e. 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 

∆𝑥� = 𝑥� − 𝑥�−1,    𝑥�∗ ∈ [𝑥�−1, 𝑥�]. 

𝑥�∗ = 𝑥�−1, 

𝑥�∗ = 𝑥�  

𝑥�∗ = 𝑥� + 𝑥�−1
2 . 

𝑥�∗ = (𝑥� + 𝑥�−1)/2. 

𝑥�∗ = 𝑥�+𝑥�−1
2 .  

ℎ = ∆𝑥�  for 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 , the formula becomes

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 
 

If the function f is unknown and only the points 

(𝑥0,𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 ,𝑦𝑖)  are available, 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 , 𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)  can be 
substituted with 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2  and thus the trapezoidal rule is obtained. Depending on the 
course level, Newton-Cotes quadrature formulas may also be used.

4.2. Real World Example

This example presents the working principle of a digital electrical energy meter, similar 
to those found in households. The example electric circuit consists of a power supply 
unit and two loads B1 and B2, which can be independently switched on and off (Fig. 4). 
The voltage and current are measured by the Arduino, and then the consumed energy is 
calculated by numerical integration. 

 
Fig. 4. Schematic for the current measuring experiment
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Assuming a constant voltage on the power supply, calculate the energy consumed by 
the loads over an interval of time, defined by start time 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 , 𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2 

𝑃 = 𝑈𝐼. 

 and end time 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 , 𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2 

𝑃 = 𝑈𝐼. 

. During that 
interval the loads are randomly switched on and off.

For a constant voltage U and a constant current I, the power is constant, 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 , 𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2 

𝑃 = 𝑈𝐼.  
For time-dependent values of voltage and current, 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5                    𝑢2 = 4.5 

𝑎1 = 102                   𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥                𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖 

𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
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4.3. Solution

Two flashlight bulbs were used as loads and connected to the power supply unit (PSU) 
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Fig. 5. Setup for the current measuring experiment
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𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
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was approximated with the trapezoidal rule. Since the raw data was sampled at regular 
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Fig. 6. Converting raw data and graphing the results
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𝑇𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

, 

𝑇 = 𝑡2 − 𝑡1 

𝑃 = 1
𝑇𝑈 � 𝑖(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝐴 = ℎ�𝑦𝑖 + 𝑦𝑖−1
2

𝑛

𝑖=1
 

ℎ = ∆𝑥𝑖 = 1/4           

𝑃 ≈ 1
𝑇𝑈 1

4�
𝑦𝑖 + 𝑦𝑖−1

2

20�

𝑖=1
= 2.19226𝑊 

𝑦𝑖  is the sample at index 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

𝑢                𝑎 = 1023𝑢/5                  𝑢1 = 0.5                    𝑢2 = 4.5 

𝑎1 = 102                   𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥                𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖          𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2        𝑃 = 𝑈𝐼.         𝑢(𝑡)              𝑖(𝑡),         𝑝(𝑡) = 𝑢(𝑡)𝑖(𝑡). 

𝑊 =  � 𝑝(𝑡)𝑑𝑡
𝑡2

𝑡1

= � 𝑢(𝑡)𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

. 

𝑃 = 𝑊
𝑇 = 1

𝑇𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

, 

𝑇 = 𝑡2 − 𝑡1 

𝑃 = 1
𝑇𝑈 � 𝑖(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝐴 = ℎ�𝑦𝑖 + 𝑦𝑖−1
2

𝑛

𝑖=1
 

ℎ = ∆𝑥𝑖 = 1/4           

𝑃 ≈ 1
𝑇𝑈 1

4�
𝑦𝑖 + 𝑦𝑖−1

2

20�

𝑖=1
= 2.19226𝑊 

𝑦𝑖        𝑖 , 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

𝑢                𝑎 = 1023𝑢/5                  𝑢1 = 0.5                    𝑢2 = 4.5 

𝑎1 = 102                   𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥                𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖          𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2        𝑃 = 𝑈𝐼.         𝑢(𝑡)              𝑖(𝑡),         𝑝(𝑡) = 𝑢(𝑡)𝑖(𝑡). 

𝑊 =  � 𝑝(𝑡)𝑑𝑡
𝑡2

𝑡1

= � 𝑢(𝑡)𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

. 

𝑃 = 𝑊
𝑇 = 1

𝑇𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

, 

𝑇 = 𝑡2 − 𝑡1 

𝑃 = 1
𝑇𝑈 � 𝑖(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝐴 = ℎ�𝑦𝑖 + 𝑦𝑖−1
2

𝑛

𝑖=1
 

ℎ = ∆𝑥𝑖 = 1/4           

𝑃 ≈ 1
𝑇𝑈 1

4�
𝑦𝑖 + 𝑦𝑖−1

2

20�

𝑖=1
= 2.19226𝑊 

𝑦𝑖        𝑖           𝑇 = 209𝑠/4 = 52.25               𝑈 = 3.5𝑉  and 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

𝑢                𝑎 = 1023𝑢/5                  𝑢1 = 0.5                    𝑢2 = 4.5 

𝑎1 = 102                   𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥                𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖          𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2        𝑃 = 𝑈𝐼.         𝑢(𝑡)              𝑖(𝑡),         𝑝(𝑡) = 𝑢(𝑡)𝑖(𝑡). 

𝑊 =  � 𝑝(𝑡)𝑑𝑡
𝑡2

𝑡1

= � 𝑢(𝑡)𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

. 

𝑃 = 𝑊
𝑇 = 1

𝑇𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

, 

𝑇 = 𝑡2 − 𝑡1 

𝑃 = 1
𝑇𝑈 � 𝑖(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝐴 = ℎ�𝑦𝑖 + 𝑦𝑖−1
2

𝑛

𝑖=1
 

ℎ = ∆𝑥𝑖 = 1/4           

𝑃 ≈ 1
𝑇𝑈 1

4�
𝑦𝑖 + 𝑦𝑖−1

2

20�

𝑖=1
= 2.19226𝑊 

𝑦𝑖        𝑖           𝑇 = 209𝑠/4 = 52.25               𝑈 = 3.5𝑉 . The calculation in 
Mathematica is shown in Fig. 7.

5. Numerical Differentiation and Curve Smoothing

Finite difference formulas for numerical differentiation are approximations of deriva-
tives at a point. They are used to calculate the value of the first derivative of a function 
for a given 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

, or when the function is unknown and only sampled data is available. 
Geometrically, a finite difference is the slope of a secant through 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

𝑢                𝑎 = 1023𝑢/5                  𝑢1 = 0.5                    𝑢2 = 4.5 

𝑎1 = 102                   𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥                𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖          𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2        𝑃 = 𝑈𝐼.         𝑢(𝑡)              𝑖(𝑡),         𝑝(𝑡) = 𝑢(𝑡)𝑖(𝑡). 

𝑊 =  � 𝑝(𝑡)𝑑𝑡
𝑡2

𝑡1

= � 𝑢(𝑡)𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

. 

𝑃 = 𝑊
𝑇 = 1

𝑇𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

, 

𝑇 = 𝑡2 − 𝑡1 

𝑃 = 1
𝑇𝑈 � 𝑖(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝐴 = ℎ�𝑦𝑖 + 𝑦𝑖−1
2

𝑛

𝑖=1
 

ℎ = ∆𝑥𝑖 = 1/4           

𝑃 ≈ 1
𝑇𝑈 1

4�
𝑦𝑖 + 𝑦𝑖−1

2

20�

𝑖=1
= 2.19226𝑊 

𝑦𝑖        𝑖           𝑇 = 209𝑠/4 = 52.25               𝑈 = 3.5𝑉 

�𝑥, 𝑓(𝑥)�          �𝑥 ± ℎ,𝑓(𝑥 ± ℎ)�  and 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

𝑢                𝑎 = 1023𝑢/5                  𝑢1 = 0.5                    𝑢2 = 4.5 

𝑎1 = 102                   𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥                𝑦 

𝐴 = �𝑓(𝑥𝑖∗)∆𝑥𝑖
𝑛

𝑖=1
 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,    𝑥𝑖∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. 

𝑥𝑖∗ = 𝑥𝑖−1, 

𝑥𝑖∗ = 𝑥𝑖  

𝑥𝑖∗ = 𝑥𝑖 + 𝑥𝑖−1
2 . 

𝑥𝑖∗ = (𝑥𝑖 + 𝑥𝑖−1)/2. 

𝑥𝑖∗ = 𝑥𝑖+𝑥𝑖−1
2 .  

ℎ = ∆𝑥𝑖          𝑖 = 1,2, … ,𝑛 

𝐴 = ℎ�𝑓(𝑥𝑖∗).
𝑛

𝑖=1
 

(𝑥𝑖 , 𝑦𝑖)                  𝑓(𝑥𝑖∗)                  (𝑦𝑖 + 𝑦𝑖−1)/2 

𝑡1        𝑡2        𝑃 = 𝑈𝐼.         𝑢(𝑡)              𝑖(𝑡),         𝑝(𝑡) = 𝑢(𝑡)𝑖(𝑡). 

𝑊 =  � 𝑝(𝑡)𝑑𝑡
𝑡2

𝑡1

= � 𝑢(𝑡)𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

. 

𝑃 = 𝑊
𝑇 = 1

𝑇𝑈 � 𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1

, 

𝑇 = 𝑡2 − 𝑡1 

𝑃 = 1
𝑇𝑈 � 𝑖(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝐴 = ℎ�𝑦𝑖 + 𝑦𝑖−1
2

𝑛

𝑖=1
 

ℎ = ∆𝑥𝑖 = 1/4           

𝑃 ≈ 1
𝑇𝑈 1

4�
𝑦𝑖 + 𝑦𝑖−1

2

20�

𝑖=1
= 2.19226𝑊 

𝑦𝑖        𝑖           𝑇 = 209𝑠/4 = 52.25               𝑈 = 3.5𝑉 

�𝑥, 𝑓(𝑥)�          �𝑥 ± ℎ,𝑓(𝑥 ± ℎ)� , which approximates the value of the first derivative at 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

,

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ)− 𝑓(𝑥)
ℎ . 

   

A symmetric difference can also be used,𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ)− 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

  

As 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

𝐴 = �𝑓(𝑥�∗)∆𝑥�
𝑛

�=1
 

∆𝑥� = 𝑥� − 𝑥�−1,    𝑥�∗ ∈ [𝑥�−1, 𝑥�]. 

𝑥�∗ = 𝑥�−1, 

𝑥�∗ = 𝑥�  

𝑥�∗ = 𝑥� + 𝑥�−1
2 . 

𝑥�∗ = (𝑥� + 𝑥�−1)/2. 

𝑥�∗ = 𝑥�+𝑥�−1
2 .  

ℎ = ∆𝑥�  gets smaller, the accuracy of the approximation increases, i.e. secant approach-
es the tangent at 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

.

5.1. Real World Example

In engineering practice there are many instances where voltage change rates must 
be measured and calculated, e.g. electric car applications (Kim et al., 2014) or early 
failure detection in electronic components (Sathik et al., 2018). Since battery charg-
ing and discharging may take a long time, it is impractical for a classroom exercise. 
A capacitor charging experiment may therefore be a good substitute. The aim of this 
exercise is to illustrate how the voltage change rate can be calculated by means of 
numerical differentiation. As capacitor charging and discharging are asymptotic pro-
cesses, we can decide to stop charging when the voltage change rate drops below a 
certain threshold. 

 

Fig. 7. Numerical integration in Mathematica
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Capacitor C is charged through a resistor. After charging, it is discharged through an-
other resistor and a red LED. The circuit is presented in Fig. 8. The user can choose be-
tween charging and discharging by toggling the switch S. The voltage on C is measured 
on Arduino. Calculate and graph the charging rate of the capacitor over time. Establish a 
computable stopping condition for charging, based on the voltage change rate.

During charging, the voltage across the capacitor depends on R, C and input voltage 
U according to the formula

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈�(𝑡) = 𝑈(1 − 𝑒−𝑡/��).  

The RC time constant 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏.  gives time required to charge the capacitor to approxi-
mately 63.2% of the charging voltage, or to discharge the capacitor to approximately 
36.8% of its initial voltage. As capacitor charging and discharging are asymptotic pro-
cesses, the time to full charge is infinite. An approximate stopping condition is sometimes 
established as 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏.  However, if the capacitance and resistance in the circuit are 
unknown, one must use a different stopping criterion, based on available numerical data. 

5.2. Solution

If charging voltage U, resistance R and capacity C are known, the problem is easily 
solved in GeoGebra. First, the values 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 , 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹  and 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹  are defined and 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)  is graphed. The constant 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)                𝜏                is calculated and points 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)                𝜏               𝑇1 = (𝜏, 0)              𝑇2 = (5𝜏, 0)   and 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)                𝜏               𝑇1 = (𝜏, 0)              𝑇2 = (5𝜏, 0)  are 
placed on the 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

 axis. Lines perpendicular to the 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

 axis are placed at 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)                𝜏               𝑇1 = (𝜏, 0)              𝑇2 = (5𝜏, 0)  and 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)                𝜏               𝑇1 = (𝜏, 0)              𝑇2 = (5𝜏, 0)  and their 
intersections with 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)  are defined as A and B. It is now easily observed that 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632  
and the ratio 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632  equals 63.2%.
The value 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺  corresponds to the voltage across the capacitor at the end 
of charging. The slope of the graph at that point is found by placing the tangent S to 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)  
at 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 . In the example in Fig. 10 the slope is 0.033. Different values of R yield differ-
ent values of the slope. For example, for 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺  and 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹  the slope is 0.153 and 0.003 
respectively.

 

Fig. 8. Schematic for the capacitor charging experiment
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If the values for R and C are unknown or unreliable, a different criterion is devised 
to stop charging. By sampling the voltage across the capacitor during charging, an array 
of values 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …         is obtained. The slope of the tangent to the charging curve at 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …         is observed for 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …         and charging is stopped as soon as it falls below a certain 
threshold. The slope is calculated numerically by using one of the difference schemes 
for the first derivative.

The experiment was set up on a breadboard according to the schematic (Fig. 9). The 
voltage across the capacitor was measured with analog input pins on the Arduino. Power 
supply on the Arduino was used to charge the capacitor. The capacitor was discharged 
through a different resistor and a red LED. 

 

Fig. 9. Setup for the capacitor charging experiment

 
Fig. 10. Solution of the charging problem in GeoGebra



Đ. Herceg, D. Herceg250

The experiment was conducted several times, with 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 , 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …        

1000𝛺     𝜏 = 10𝑘𝛺 ×  1𝑚𝐹 = 10𝑠     1/5  and 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺  resistors 
used for charging. For brevity, only the last case is described. In this case 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …        

1000𝛺     𝜏 = 10𝑘𝛺 ×  1𝑚𝐹 = 10𝑠     1/5 . Voltage data was sampled in 1/5s intervals and saved into a 
file. The data was read into Mathematica, the values were scaled to the correct voltage 
range using linear interpolation and graphed (Fig. 11).

The symmetric difference formula was used to calculate numerical approximations to 
the first derivative at each sampled point except the first and last, and the resulting data was 
graphed (Fig. 12). Also, sample indices on the 

(𝑥0,𝑦0), (𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 ,𝑦𝑛),   𝑛 = 1,2, … 

𝑛 = 1 

𝐿1(𝑥) = 𝑦0
𝑥 − 𝑥1
𝑥0 − 𝑥1

+ 𝑦1
𝑥 − 𝑥0
𝑥1 − 𝑥0

= 𝑦0 +
(𝑥 − 𝑥0)(𝑦1 − 𝑦0)

𝑥1 − 𝑥0
. 

0𝑉 

𝑢 

𝑎 = 1023𝑢/5 

𝑢1 = 0.5 

𝑢2 = 4.5 

𝑎1 = 102 

𝑎2 = 921 

𝑟(𝑎) = 4(𝑎 − 102)
273 . 

𝑥 

𝑦 

 axis were converted to time in seconds.
The graph in Fig. 12 is jagged due to electronic noise, low precision of the A/D con-

version and possibly other artifacts. It is obvious that the slope of the tangent decreases 
with time, however, choosing a simple threshold for the slope would probably not be the 
best stopping criterion, because a spike due to noise might trigger the criterion too early. 
A better solution would be to use moving average with appropriate window size or to 
numerically smooth the sampled curve.

 

Fig. 11. Voltage across the capacitor while charging.

 

Fig. 12. Result of numerical differentiation.



Arduino and Numerical Mathematics 251

5.3. Curve Smoothing

As discussed in the previous section, the curve obtained by numerical differentiation 
(Fig. 12) should be smoothed before the stopping criterion is applied. If the analytical 
form of the curve is known, then an appropriate linear or nonlinear fitting procedure can 
be applied to fit it to experimental data. If the analytical form is not known, filtering is 
often applied to remove noise and obtain a smooth curve. We chose to apply the Gauss-
ian filter. The GaussianFilter function already exists in Mathematica and is not difficult 
to program in C#. The curve obtained by filtering is shown in Fig. 13. 

With noise removed from the data, the curve is now smooth and the stopping crite-
rion can be applied more reliably.

6. Classroom Experiences

The focus of our research was to determine whether the exercises described in this pa-
per help promote student motivation, skills development and knowledge retention. The 
exercises were introduced into the Numerical mathematics course held at the Faculty of 
Science, University of Novi Sad, during the school years of 2018/2019 and 2019/2020. 
We conducted an experiment, described in detail in Section 7, which confirmed our 
expectations.

The exercises were also used as motivational examples in our other courses: a C# 
programming course and an Arduino programming course held for students at the Fac-
ulty of Science, and also in three courses on Arduino programing, which we held for el-

 

Fig. 13. The filtered curve.
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ementary school and high school teachers during 2018. In these cases, no formal testing 
was conducted. Instead, we held informal conversations with the students throughout the 
courses, and the teachers were given a questionnaire, in order to collect their opinions 
and insights. The feedback from all participants was generally positive, with the majority 
agreeing that they liked the practical and tangible approach to the subject matter, as well 
as horizontal curriculum integration. We present some of the most interesting remarks 
and comments, which will help us improve our approach to teaching in the future. 
“It is frustrating when a program sometimes writes floating‑point numbers with a 
decimal point and sometimes with a comma.” Upon being explained why this hap-
pens, namely, that the decimal separator depends on regional settings of the operating 
system, the students concluded that “a scientist needs not know such intricate details 
outside their domain of interest”. In their view, having to write extra code to solve some-
thing that should not be a problem in the first place is “extraneous”. This is one example 
where the flexibility of the software platform, i.e. support for various languages and 
cultures, effectively becomes an obstacle to the programmer.
“Integer division is causing numerical errors” While mapping the values read from 
Arduino to voltages, most of the students encountered numerical errors stemming from 
integer division. The students previously took a C# programming course which covered 
integer and floating-point data types, as well as the differences between integer and float-
ing-point division. Despite that, they were expecting the division to work in the same 
way as in Mathematica, unaware of the implications of using only integer values in C# 
expressions. This error was easily remedied by casting integers to a floating-point data 
type. Obviously, theoretical knowledge from previous courses does not always transition 
to practical knowledge and some repetition is necessary.
“I don’t like having to dimension the arrays beforehand.” This statement pertains 
to the creation of arrays in C#. The programmer can choose between fixed-length ar-
rays and variable-length lists. The arrays provide the fastest element access but must 
be defined beforehand, while lists can expand as new elements are added, but element 
access is somewhat slower. We explained the differences between arrays and lists to the 
students and suggested them to use arrays when execution speed is the primary goal. The 
lists should be used when the number of elements is not known beforehand, or during 
development, when flexibility is more important. Even after being explained this, some 
students maintained that gains in computational speed may not be worth the confusion 
that stems from two different implementations of arrays in C#. 

One interesting consequence of using both lists and arrays is that the number of ele-
ments in an array is kept in its Length property, while lists use the Count property for 
the same purpose. This has led to some confusion among the students, who noticed that 
Mathematica “does it right” by providing a simple Length function. 
“Why isn’t there scalar product in C#” pertains to C# that the students wrote to calcu-
late convolution necessary for the Gaussian filter. The students preferred having vector 
and matrix operations already implemented in the language or in libraries, instead of 
having to write the code by themselves. After we explained that there were, in fact, many 
available software libraries, the students wanted to know why we avoided using them. 
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This led to a lengthy discussion about the issues which may arise by including third-
party code into one’s own project: Is the said code reliable? Can it be easily checked 
and verified for correctness? Does it carry too much unnecessary weight or further de-
pendencies? In the end, we concluded that, for the purpose of this task, it was easier to 
write our own code.

Finally, we asked the students to ponder the following points and then form their 
opinion on the usefulness of C# in solving the presented problems:

Can you write the solution in C# right away? ●
Is it easier to solve one problem in  ● Mathematica?
If you had to solve many problems, or problems with large amounts of data, would  ●
you then consider solutions in C# to be the most practical?

The consensus among the students was that, for research, everyday work and study, 
scientific software such as Mathematica and GeoGebra is more suitable than a general-
purpose programming language. If we shift our focus to high-performance computing 
and processing of large amounts of data, the balance shifts in favor of languages such 
as C# and C++.

7. The Experiment

An experiment was carried out in order to determine whether our examples promote stu-
dent motivation, skills development and knowledge retention. We observed 33 students 
in two parallel groups. There were 16 students in the control group (C) and 17 in the 
experimental group (E). The control group was instructed in a classical way, with two 
hours of lecture for each topic, followed by two hours of exercises. Theoretical lessons 
on interpolation, numerical integration and numerical differentiation were presented in 
lectures, followed by practice sessions in which the students solved computational prob-
lems on paper with the help of Mathematica. Data for the problems was arbitrarily gen-
erated, without connection to the real world. Lectures for the experimental group were 
organized around the examples presented in this paper in the same time frame as for the 
control group. Lectures started with a theoretical introduction followed by demonstra-
tions by the lecturer and hands-on exercises. During practice sessions the students were 
assigned problems similar to those presented in the exercises described in the paper. 
Exercises were conducted in a computer lab and data for the experiments was acquired 
from measurements using Arduino hardware. Problems were solved on computers, using 
Mathematica, Arduino and C# IDEs. 

7.1. Initial Testing 

To establish a baseline, a test was given to both groups immediately before the experi-
ment. The students solved computational problems in the classical way, earning a maxi-
mum of 100 points. During the test, some students did not complete all the assignments 
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and gave up just as they scored enough points for the passing grade. Comparing the re-
sults using the t-test, we confirmed that there was no statistically significant difference 
(

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …        

1000𝛺     𝜏 = 10𝑘𝛺 ×  1𝑚𝐹 = 10𝑠         p 

𝑝 = 0.93        𝑝            with the 95% confidence level) in test scores between the groups (Table 1).

7.2. Final Testing

The second test was given at the end of the experiment. Both groups did the test on pa-
per with the help of Mathematica. During the test it was obvious that the experimental 
group was more determined to complete their assignments. Comparing the results for 
the control and experimental groups, the null hypothesis can be rejected with the 95% 
confidence level, since 

𝑓�(𝑥) ≈ 𝑓(𝑥 ± ℎ) − 𝑓(𝑥)
ℎ . 

𝑓�(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ . 

𝑈𝐶(𝑡) = 𝑈(1 − 𝑒−𝑡/𝑅𝐶). 

𝜏 = 𝑅𝐶                    𝑡stop ≈ 5𝜏. 

𝑈 = 5𝑉             𝑅 = 1𝑘𝛺               𝐶 = 1000𝜇𝐹 

𝑈𝐶(𝑡)        𝜏      𝑇1 = (𝜏, 0)      𝑇2 = (5𝜏, 0)         

𝑈𝐶(𝑡)                     𝑈𝐶(𝜏) = 3.161                    𝑈𝐶(𝜏)/𝑈 = 0.632 

𝑈𝐶(5𝜏) = 4.966𝑉                𝑡 = 5𝜏                  220𝛺                    10𝑘𝛺 

(𝑖, 𝑢𝑖),   𝑖 = 1,2, …       𝑖 = 2,3, …        

1000𝛺     𝜏 = 10𝑘𝛺 ×  1𝑚𝐹 = 10𝑠         p 

𝑝 = 0.93     𝑝 = 0.043 < 0.05   𝑝            (Fig. 2). It can be concluded that there is a 
statistically significant difference in test scores between the groups. 

The results of the experiment highlight the better results of the experimental group 
in mastering the presented learning topics. We noticed that the motivation was higher 
in the experimental group, which can be attributed to the more engaging and tangible 
approach to the subject matter, the use of interesting new technologies and dealing with 
real-world experimental data. 

8. Conclusions

Interpolation, numerical integration and numerical differentiation are important topics 
in Numerical Mathematics, which are often taught only theoretically and demonstrated 
using some arbitrary data. By employing inexpensive Arduino hardware and mathemat-
ics software such as GeoGebra and Mathematica, a teacher can help students establish a 
connection between real world problems and mathematics and motivate them with inter-
esting examples in which discovery plays a significant role. Imperfections and inaccura-

Table 1
Baseline test scores

Group No. of students Average points Std. deviation t p

C 16 61.25 23.95 0.08 0.93
E 17 60.59 21.82

Table 2
Test scores after the experiment

Group No. of students Average points Std. deviation t p

C 16 68.75 22.61 -2.11 0.043
E 17 83.52 15.31
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cies which occur in experiments also stress the difference between theory and practice 
and highlight the need for a pragmatic way of solving problems. The same applies to the 
choice of the software for solving problems, as both the specialized scientific software 
and the general programming languages have their advantages and disadvantages. Obvi-
ously, one must decide the priorities. Do we aim for mathematical clarity or speed of 
computation? Are we willing to sacrifice the simplicity of specialized scientific software 
for the versatility of a general programming language? The answer to these and similar 
questions is not simple, and it depends on stated aims and goals. 

A significant advantage of the Arduino platform is its low cost, ubiquity and avail-
ability of software. Having in mind the positive feedback given by the participants of 
our classes, as well as the results of the experiment, we are planning towards developing 
more exercises based on Arduino and integrating them into the curriculum.
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