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Abstract. Although Machine Learning (ML) is integrated today into various aspects of our
lives, few understand the technology behind it. This presents new challenges to extend comput-
ing education early to ML concepts helping students to understand its potential and limits. Thus,
in order to obtain an overview of the state of the art on teaching Machine Learning concepts in
elementary to high school, we carried out a systematic mapping study. We identified 30 instruc-
tional units mostly focusing on ML basics and neural networks. Considering the complexity
of ML concepts, several instructional units cover only the most accessible processes, such as
data management or present model learning and testing on an abstract level black-boxing some
of the underlying ML processes. Results demonstrate that teaching ML in school can increase
understanding and interest in this knowledge area as well as contextualize ML concepts through
their societal impact.

Keywords: Machine Learning, teaching, K-12.

1. Introduction

Artificial Intelligence (AI) has become part of our everyday life deeply impacting our
society. For many countries, it has also become a major strategy to promote national
competitiveness (Hiner, 2017). And, as the growth of lucrative Al career opportunities
far outpaces the number of interested and capable job seekers, there is a growing need
for Al-literate workers (Forbes, 2019).

Although the existence of Al is well known, hardly anybody understands the tech-
nology behind it (Evangelista et al., 2018). This lack of understanding also causes a
misplaced fear about automation and Al, overshadowing its potential positive impact
on society. Therefore, it is important to popularize a basic understanding of Al tech-
nologies (Touretzky et al., 2019a). This presents new challenges to computing educa-
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tion, providing students starting at an early age with an understanding of AI concepts to
become not just consumers of Al, but creators of intelligent solutions (Touretzky et al.,
2019b; Kandlhofer et al., 2016). Access to basic Al literacy can also reduce the danger
of social or economic exclusion of certain groups of people, especially women and
minorities. Furthermore, Al literacy may encourage more students to consider STEM
careers and provide a solid preparation for higher education and their future career.

While there are many programs today that focus on coding and robotics, K-12
education still needs to embrace the teaching of Al concepts. According to AI4K12
(Touretzky et al., 2019c), this should cover five big ideas for a K-12 audience: percep-
tion, representation and reasoning, learning, natural interaction, and societal impact.
Within this context, an important knowledge area is Machine Learning (ML) (Wol-
lowski et al., 2016; Touretzky et al., 2019a). Machine Learning is the application of Al
that provides systems the ability to automatically learn and improve from experience
without being explicitly programmed (Royal Society, 2017). It powers a huge range
of applications, from speech recognition systems to intelligent assistants, self-driving
cars, healthcare, etc.

Teaching fundamental Al (including Machine Learning) concepts and techniques
has traditionally been done only in higher education (Torrey, 2012; McGovern et al.,
2011). And, although computing education is beginning to be included in K-12 educa-
tion worldwide, these computing programs rarely cover Al content on this educational
stage (Hubwieser et al., 2015). However, in recent years several initiatives and proj-
ects pursuing the mission of K-12 Al education have emerged. In this context, the Al
for K-12 Initiative (Touretzky et al., 2019c) started to develop guidelines for K-12 Al
education. The guidelines are based on a set of big ideas, including teaching computers
to learn from data, the challenges involved in making Al agents interact naturally with
humans, and the positive and negative effects of Al on society. New Al courses, tools,
and tutorials are being launched for teaching Al in schools, in the USA, China, the UK,
and elsewhere.

Yet, these efforts seem to be scattered, making it difficult to obtain an overview on
existing instructional units, as existing reviews on teaching computing focus mostly on
computational thinking (Lye and Koh, 2014; Grover and Pea, 2013; Heintz et al., 2016;
Google, 2016), or related knowledge areas such as Software Engineering (da Cruz Pin-
heiro et al., 2018). Literature providing an overview on how to teach AI/ML in K-12 is
basically nonexistent, as surveys on practices and teaching of Al by focuses on higher
education only (Wollowski et al., 2016).

Thus, in order to analyze the question of whether and which instructional units are
currently available for teaching Machine Learning in K-12, we conduct a systematic
mapping study. The main contribution of this article is the mapping and synthesis of the
characteristics of instructional units (IUs) for ML education from elementary to high
school, regarding their content, context and the analysis of how they were developed
and evaluated. Our results also show that it is possible and beneficial to introduce ML
education in K-12. The overview can help instructors to select and/or curriculum devel-
opers to develop instructional units and we hope that the discussion can further foster the
inclusion of ML education in K-12.
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2. Background

2.1. Artificial Intelligence Education in K-12

Although there have been some historical Al teaching initiatives in schools from the
1970s (Papert & Solomon, 1971; Kahn, 1977) and, even specifically involving neural
networks, in the 1990s (Bemley, 1999), there has been a rapid expansion of computing
education in K-12 worldwide over the last few years. Standardization of what K-12 stu-
dents should know about computing has been supported by the development of several
curriculum guidelines, such as the CSTA K-12 Computer Science Framework (CSTA,
2017). Many instructional units, software tools, and resources have been developed to
make computing accessible for young students ranging from one hour of code program-
ming exercises (code.org) to courses allowing them to learn core computing concepts
while creating meaningful artifacts that have direct impact on their lives and their com-
munities (Tissenbaum et al., 2019).

At the same time, Al has had an increasing impact on society. And, although, some
countries, such as China has mandated that all high school students learn about artificial
intelligence (Jing, 2018), Al education to K-12 students is still not well-defined. Existing
computing curriculum guidelines such as the CSTA K-12 Computer Science Framework
(CSTA, 2017) commonly only cite Al very briefly on the high school level.

In this context, the Al for K-12 Working Group (AI4K12), a joint initiative of the
Association for the Advancement of Artificial Intelligence (AAAI) and the Computer
Science Teachers Association (CSTA) aims at developing guidelines for teaching K-12
students about artificial intelligence. To frame these guidelines, “big ideas” in Al that
every student should know are defined (Touretsky et al., 2019a):

1. Perception: Computers perceive the world using sensors. Students should un-
derstand that machine perception of spoken language or visual imagery requires
extensive domain knowledge.

2. Representation and Reasoning: Agents maintain models/representations of the
world and use them for reasoning. Students should understand the concept of rep-
resentation and understand that computers construct representations using data,
and these representations can be manipulated by applying reasoning algorithms
that derive new information from what is already known.

3. Learning: Computers can learn from data. Students should understand that ma-
chine learning is a kind of statistical inference that finds patterns in data.

4. Natural Interaction: Making agents interact naturally with humans is a substan-
tial challenge for Al developers. Students should understand that while computers
can understand natural language to a limited extent, at present they lack the gen-
eral reasoning and conversational capabilities of even a child.

5. Societal Impact: Al applications can impact society in both positive and nega-
tive ways. Students should be able to identify ways that Al is contributing to their
lives as well as that the ethical construction of Al systems requires attention to the
issues of transparency and fairness.
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Thus, while Al is “the science and engineering of making intelligent machines that
have the ability to achieve goals as humans do”, Machine Learning (ML) is a subfield
of Al dealing with the field of study that gives computers the ability to learn without
being explicitly programmed (Mitchell, 1997). ML algorithms build a mathematical
model based on sample data, known as “training data”, in order to make predictions or
decisions without being explicitly programmed to perform the task. In accordance with
Al4K 12, Machine Learning concepts to be covered in K-12 education should include
(Touretzky et al., 2019c):

e What is learning?

e Approaches to machine learning (e.g., regression algorithms, instance-based algo-
rithms, support vector machines, decision tree algorithms, Bayesian algorithms,
clustering algorithms, artificial neural network algorithms).

Types of learning algorithms by learning style.

Fundamentals of neural networks.

Types of neural network architecture.

How training data influences learning.

Limitations of machine learning.

And, although, currently there are significant efforts underway to address the need
for Al curriculum guidelines (ISTE, 2018) (AI4ALL, 2018), unlike the general subject
of computing, when it comes to Al there is still little guidance available for teaching at
the K-12 level.

2.2. Machine Learning

Machine Learning is the training of a model from data that generalizes a decision against
a performance measure (Mitchell, 1997).

ML algorithms can be classified into several broad categories by their learning style
(Goodfellow et al., 2016). In supervised learning, the algorithm builds a mathematical
model from a set of data that contains both the inputs and the desired outputs. Clas-
sification algorithms and regression algorithms are types of supervised learning. In
semi-supervised learning, a combination of labeled data and unlabelled data is used
in order to make better predictions for new data points than by using the labeled data
alone. In unsupervised learning, the algorithm builds a mathematical model from a set
of data that contains only inputs and no desired output labels. Unsupervised learning
algorithms are used to find structure/patterns in the data, like grouping or clustering the
data points into categories. Reinforcement learning algorithms are given feedback in
the form of positive or negative reinforcement in a dynamic environment and are used,
e.g., in autonomous vehicles.

Building ML applications is an iterative process that involves a sequence of steps,
which typically include (Amazon, 2019):

1. Requirements analysis. During this stage, the main objective of the model and its
target features are specified. This also includes the characterization of the inputs
and expected outputs, specifying the problem.
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2. Data management. During data collection, available datasets are identified
and/or data is collected. This may also include the selection of available generic
datasets (e.g., ImageNet for object detection), as well as specialized datasets for
transfer learning. The type of data depends on the machine learning task (e.g.,
images, sound, text, etc.). They also vary greatly in terms of the number of in-
stances ranging from a few hundred to more than a billion instances. The data
is prepared by validating and cleaning the data and can also be preprocessed
transforming the raw data. Data sets may be labeled in supervised learning by
augmenting each piece of unlabeled data with meaningful tags manually as-
signed by users. The data set is typically split into a training set to train the
model, validation set to select the best candidate from all models and a test set
to perform an unbiased performance evaluation of the chosen model on unseen
data (Ripley, 2008).

3. Feature engineering. Often, the raw data (input variables) and answer (target)
are not represented in a way that can be used to train a machine learning model.
Therefore, feature engineering is the process of using domain knowledge of the
data to create features that make machine learning algorithms work. This may
include feature transformation, feature generation, selecting features from large
pools of features among others.

4. Model learning. Then a model is built or more typically chosen from well-known
models that have been proven effective in comparable problems or domains (e.g.,
(ModelZoo, 2019)) by feeding the features/data to the learning algorithm. The
quality of the model(s) is evaluated in order to understand how to iteratively im-
prove its performance (e.g., in terms of high accuracy, lower error) by testing the
model against previously unseen data (Tharwat, 2019). Hyperparameters, such as
the number of training steps, learning rate, initialization values, and distribution,
etc. are finetuned in order to improve performance.

5. Model evaluation. The quality of the model is evaluated in order to test the
model providing a better approximation of how the model will perform in the real
world, e.g., by analyzing the correspondence between the results of the model
and human labeling.

6. Model deployment. During the production/deployment phase, the model is de-
ployed into a production environment to apply it to new incoming events in
real-time.

There are a number of programming languages that are popular for machine learn-
ing. Among them, Python is the most popular language followed by Java, R, and
C++ (Tricon Infotech, 2019). Especially in the context of K-12 computing education,
block-based programming languages are used (Weintrop, 2019). These environments
improve learnability for novices by favoring recognition over recall; reducing cogni-
tive load by chunking computational patterns into blocks; and using direct manipula-
tion of blocks to prevent errors and enhance understanding of program structure (Bau
et al., 2017). Several of these block-based programming environments also provide
extensions for the development of machine learning solutions, such as for App Inven-
tor, Scratch or SNAP!.
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2.3. Development and Evaluation of Instructional Units

An instructional unit is a set of classes (courses, workshops, etc.) designed to teach cer-
tain learning objectives to a specific target audience. It consists of a set of instructional
materials for both teachers and students designed to provide learning opportunities in a
specific context (Hill et al., 2005).

Instructional units are typically developed in a systematic way using instructional
design (Branch, 2009), in order to make the acquisition of competencies more efficient,
effective, and appealing. Instructional design defines an iterative process of planning
learning objectives, selecting instructional strategies, selecting or creating instructional
material, and applying and evaluating instructional units. During the analysis phase,
the learning needs are identified. As part of the analysis, the goals and objectives of
the instructional unit are determined and the target audience is characterized. Other
influencing factors, such as human and technical resources, infrastructure, cost and
time, are also analyzed. During the design phase, the learning objectives of the instruc-
tional unit are specified. The content to be addressed is defined and sequenced, and
the instructional methods to be used are defined. Instructional methods may include
lectures, demonstrations, exercises, problem-solving activities (labs), online interactive
tutorials, serious games, unplugged activities, etc. It is also defined how the students’
learning will be assessed. During the development phase, the material that will be used
during the instructional unit is selected and/or created in accordance with the defined
instructional strategies. This step may also involve the selection and/or development of
tools to support the instructional unit such as code analyzers. The implementation phase
covers the preparation of the learning environment, the training of the instructors and
the application of the IU in the classroom.

An essential step in the instructional design process is the evaluation of the instruc-
tional unit in order to assess its quality and whether it allows the students to achieve
the defined objectives (Branch, 2009). This evaluation is typically performed through
an empirical study (Wohlin et al., 2012), ranging from non-experimental studies (such
as case studies) to experiments (Shadish et al., 2002). Several types of data collec-
tion instruments can be used, such as observation, questionnaires, interviews, or the
artifacts created by the students themselves as well as test results (Branch, 2009). Ac-
cording to the objective of the evaluation and the nature of the data collected, different
methods of qualitative or quantitative analysis can be used (Freedman et al., 2007).
The analyzed data are then interpreted, answering the analysis questions in order to
achieve the evaluation goal.

3. Definition and Execution of the Systematic Mapping Study

To elicit the state of the art and practice on whether and how Machine Learning educa-
tion is addressed from elementary to high school, we conducted a systematic mapping
study following the procedure proposed by Petersen et al. (2008).
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3.1. Definition of the Review Protocol

The research question is: What instructional units exist for teaching Machine Learning
concepts in the context of elementary to high school (and what are their characteristics)?
This research question is refined in the following analysis questions:

AQ1. Which IUs exist?

AQ2. Which Machine Learning concepts are taught in the IUs?

AQ3. What are the instructional characteristics of the [Us?

AQ4. How were the IUs developed and how was the quality of the IUs evaluated?

Inclusion/exclusion criteria. We considered any instructional unit (course, activity, tu-
torial) that focuses on computer teaching including ML concepts in elementary to high
school published between 2009 and 2019. Instructional units that focus on teaching ML
in higher education and/or instructional units for computing teaching without address-
ing ML concepts were excluded. We also excluded publications such as blogs, videos, or
tools that do not provide an instructional unit.

Quality Criteria. We considered only articles or material for which substantial infor-
mation regarding the teaching of ML concepts, indicating, for example, lesson content,
instructional material, etc. were freely available.

Data source. We examined all published English-language articles or material that are
available on the Web via the most important digital libraries and databases in this field
(including ACM Digital Library, IEEEXplore, Scopus) with free access through the
CAPES Portal'. To increase coverage, we also used Google, which indexes a large set of
data across several different sources (Haddaway et al., 2015), as in this emergent area
several instructional units have not been published as scientific articles. Observing also
the research focus at the MIT media lab in this area, we also searched for publications of
this research group. We have also included secondary literature that has been discovered
based on the primary literature found in order to obtain more detailed information.

Definition of the search string. The search string was composed of concepts related to
the research question, including also synonyms, as indicated in Table 1.

Table 1
Keywords

Main concepts Synonyms

Machine Learning  artificial intelligence, deep learning, data science
K-12 school, kids, teens, children
instructional unit teach, learn, education, course, MOOC

! A web portal for access to scientific knowledge worldwide, managed by the Brazilian Ministry of Educa-
tion for authorized institutions, including universities, government agencies and private companies
(www.periodicos.capes.gov.br).
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From these keywords, the search string was calibrated and adapted according to the
specific syntax of the data source as presented in Table 2:

(teach™ OR education OR course OR MOOC OR learn*) AND (“machine learning”
OR “data science” OR “artificial intelligence” OR “deep learning”) AND (“k-12" OR
school* OR kids OR children OR teen*)

3.2. Search Execution

The search has been realized in October 2019 by the first author and revised by the
co-authors (Table 3). Several searches returned a large number of results even after a
calibration of the search string. This is due to the fact that articles describing how to use
Al techniques for education, such as learning analytics for personalized learning, cor-
respond to the same search terms. Therefore, maintaining the search string we limited
the analysis to only the most relevant ones.

In the first analysis stage, we quickly reviewed titles and abstracts to identify papers
that matched the inclusion criteria, resulting in 98 potentially relevant artifacts. In the
second stage, the materials were fully read to check their relevance with respect to our
inclusion/exclusion criteria. Many articles were excluded due to their focus on using
Al for education, or their focus on “deep learning” as a cognitive activity in the learn-
ing process. We also excluded artefacts related to other educational stages (pre-school
or higher education) (Williams ef al., 2019a; Williams et al., 2019b; Park et al., 2019;
Bennett, 2017; Estevez et al., 2019) and the ones covering Al, but not machine learning
(e.g., (CSUnplugged, 2015; AI4ALL, 2019; Ali et al., 2019; Parsons and Sklar, 2004;
MIT, 2019)). Furthermore, we excluded material only consisting of videos explaining
ML (CS4fn, 2019) or tools ((Agassi et al., 2019; Makeblock, 2019)) or demos (such
as Google Teachable Machine (Google, 2017). We also excluded articles that do not
provide substantial information on the instructional unit on Machine Learning (e.g.
(Kandlhofer et al., 2016)). Duplicates were eliminated and articles describing the same
instructional unit were unified. As a result, 30 instructional units were considered rel-
evant, as shown in Table 4.

3.3. Data Extraction

We systematically extracted data from the articles in order to answer the analysis ques-
tions. Data extraction was hampered in many cases by the way the material was pre-
sented. As several IUs have not been published as articles, information has been ex-
tracted based on the available instructional material, inferring characteristics such as
the learning objectives. In case, no information was available, we indicate this lack as
Not Informed (NI). A detailed description of the extracted data for each of the analysis
questions is presented in Appendix A.
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Search strings for each source
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Source

Search string

ACM https://dlnext.acm.org/
search/advanced

IEEE https://ieeexplore.ieee.
org/search

Scopus  https://www2.scopus.com/

search

Google https://www.google.com/

MIT https://appinventor.mit.

media edu/explore/research

lab https://www.media.
mit.edu/groups/

lifelong-kindergarten/

publications/

[[Abstract: teach*] OR [Abstract: education] OR [Abstract:
course] OR [Abstract: mooc] OR [Abstract: learn*]] AND
[[Abstract: “machine learning”] OR [Abstract: “data science”]
OR [Abstract: “artificial intelligence”] OR [Abstract: “deep
learning”]] AND [[Abstract: “k-12"] OR [Abstract: school*] OR
[Abstract: kids] OR [Abstract: children] OR [Abstract: teen*]]
AND [Publication Date: (01/01/2009 TO *)]

(((“Abstract”:teach*) OR (“Abstract”:education)
(“Abstract”:course) OR (“Abstract”:MOOC)
(“Abstract™:learn*)) AND ((“Abstract”:“machine learning”)
OR (“Abstract”:“data science”) OR (“Abstract”:“artificial

intelligence”) OR (“Abstract”:“deep

AND ((“Abstract™:“k-12") OR

AND ( “k-12” OR school* OR kids

OR
OR

learning”))

(“Abstract”:school*)
OR  (“Abstract”:kids) OR  (“Abstract”:children)
(“Abstract”:teen*)) ) Filters Applied: 2009-2019

TITLE-ABS-KEY ( ( teach* OR education OR course OR
mooc OR learn* ) AND ( “machine learning” OR “data
science” OR “artificial intelligence” OR “deep learning” )

OR

OR children OR

teen* ) ) AND ( LIMIT-TO (PUBYEAR, 2020 ) OR LIMIT-
TO ( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR ,
2018 ) OR LIMIT-TO ( PUBYEAR, 2017 ) OR LIMIT-TO
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR
LIMIT-TO (PUBYEAR, 2014 ) OR LIMIT-TO (PUBYEAR,
2013 ) OR LIMIT-TO ( PUBYEAR, 2012 ) OR LIMIT-TO
(PUBYEAR, 2011 ) OR LIMIT-TO ( PUBYEAR , 2010 )
OR LIMIT-TO ( PUBYEAR , 2009 ) ) AND ( LIMIT-TO

(SUBJAREA, “COMP”))

“machine learning” teach “K-12" OR school

Table 3

Number of identified articles per repository per selection stage

Source No. of search No. of analyzed  No. of potentially ~ No. of relevant
results results relevant results results

ACM 3,948 200 10 8

IEEE 698 200 5 3

SCOPUS 2,373 200 2

Google 39,900,000 500 75 16

MIT media lab 118 118 4 4
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4. Data Analysis

4.1. Which Instructional Units Exist?

As aresult of the research, a total of 30 instructional units covering the teaching Machine
Learning in elementary to high school were identified (Table 4). Some instructional units
focus exclusively on Machine Learning, whereas others approach ML concepts as part
of a more comprehensive Al and/or programming/software engineering course.

Table 4

Instructional units for teaching Machine Learning in elementary to high school

Reference Name of the IU  Brief description Source

(Al Family Al Family Challenge to families to learn about https://www.curiositymachi-ne.org/
Challenge, Challenge Al technology and solve a problem about/

2019) in their communities using Al tools.

(ai4children, Al 4 children Services that allow you to teach Al https://www.ai4children.org/

2017) to children using Scratch.

(AlinSchools, Al in Schools A program that aims to demystify http://aiinschools.com/

2019) the topic of AL

(Apps for Apps for Taster workshop for students to gain https://www.appsforgood.org/

Good, 2019a)

(Apps for
Good, 2019b)

(Burgsteiner
etal., 2016;
Burgsteiner,
2016)

(Cognimates,
2019)

good: Machine
Learning in a
day

Apps for
good: Machine
Learning course

IRobot:
Teaching

the Basics

of Artificial
Intelligence in
High Schools

Cognimates

an understanding of how machine
learning impacts on their lives.

It provides an overview of diverse
ML topics and aims at student teams
to design and build a prototype that
solves a problem they care about
using ML algorithms.

Al-course covering major Al topics
(problem-solving, search, planning,
graphs, data structures, automata,
agent systems, machine learning).

An Al education platform for build-
ing games, programming robots and
training Al models.

courses/ml-in-a-day

https://www.appsforgood.org/
courses/machine-learn-ing

Burgsteiner, H., Kandlhofer, M.,
Steinbauer, G. (2016).. IRobot:
Teaching the Basics of Artificial
Intelligence in  High  Schools.
Proc. of the Sixth Symposium on
Educational Advances in Artificial
Intelligence, Phoenix, AZ, USA.
Burgsteiner, H. (2016). Design and
Evaluation of an introductory artificial
intelligence class in high schools.
Diploma thesis, TU Graz, Austria.

Druga, S., Vu, S.T., Likhith, E., Qiu. T.
(2019). Inclusive Al literacy for kids
around the world. Proc.s of FabLearn,
New York, NY, USA.

Druga, S. (2018). Growing up with Al
: Cognimates : from coding to teaching
machines. Thesis: S.M., Massachusetts
Institute of Technology, Program in
Media Arts and Sciences.
http://cognimates.me

Continued on next page
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Brief description

Source

Reference Name of the IU

(CS4FN, CS4FN —

2011) Computer
Science for Fun

(Curiosity- Curiosity

machine, Machine — build

2019) a neural network

(Elements of  Elements of Al

AL 2019)

Machine Learn-
ing: An Intro-
ductory Unit of
Study for Secon-
dary Education

(Essinger and
Rosen, 2019)

(Evangelista ~ Why are we not

etal,2018) teachingmachine
learning at high
school?

(Fryden Fryden

curriculum, Curriculum

2019)

(Hitron et al., Can Children

2019) Understand
Machine
Learning
Concepts?

(Ho and Classroom

Scadding, Activities

2019) for Teaching
Artificial

Intelligence to
Primary School
Students

Diverse activities to teach computer
science and AI/ML.

Design challenge to build a prototype
of an unplugged artificial neural
network that can classify different
objects.

Online course to encourage as
broad a group of people as possible
to learn what Al is, what can (and
can’t) be done with Al, and how to
start creating Al methods.

Example scenarios that give
motivation to the students for
learning k-means algorithm,

including a recycling sorting and a
biology problem.

Workshop for the introduction to
ML through a series of problem-
based activities.

Website to support anyone to learn
about Machine Learning, especially
neural networks.

Proposing a gesture recognition
research platform, designed to
support learning from experience by
uncovering ML building blocks to
perform physical gestures, iterating
between sampling and evaluation.

Classroom activities for teaching
basic Al concepts in order to
demonstrate that some seemingly
complex concepts such as facial
recognition and machine learning
can be explained in terms of simple
computer algorithms that simulate
specific human-like behaviors.

http://www.cs4fn.org/teachers/
activities/braininabag/braininabag.pdf
http://www.cs4fn.org/ai/snap/
http://www.cs4fn.org/teachers/
activities/sweetcomputer/
sweetcomputer.pdf

https://www.curiositymachine.org/
challenges/126/

https://course.elementsofai.com/4

Essinger, S. D., Rosen, G. L. (2019).
Machine Learning: An Introductory
Unit of Study for Secondary Edu-
cation. Proc. of the 50th ACM Tech-
nical Symposium on Computer Sci-
ence Education, Minneapolis, MN,
USA.

Evangelista, 1., Blesio, G., Benatti, E.
(2018). Why Are We Not Teaching
Machine Learning at High School?
A Proposal. Proc. of the World
Engineering Education Forum -
Global Engineering Deans Council,
Albuquerque, NM, USA.

http://www.fryden-learning.com/
fryden-curriculum

Hitron, T. et al. (2019). Can Children
Understand Machine Learning Con-
cepts?: The Effect of Uncovering
Black Boxes. Proc. of the CHI Confe-
rence on Human Factors in Computing
Systems, Glasgow, Scotland UK.

Ho, J. W. K., Scadding, M. (2019).
Classroom Activities for Teaching
Artificial Intelligence to Primary
School Students. Proc. of the Int.
Conference ~ on Computational
Thinking, Hong Kong, China.

Continued on next page
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Table 4 — continued from previous page

Reference Name of the ITU  Brief description Source
(Kahn and eCraft2Learn Programming guides that describe https://ecraft2learn.github.io/ai/
Winters, extensions to the Snap! programming Kahn, K., Winters, N. (2018). Al
2018) language to enable children (and Programming by Children. Proc. of
(Kahn et al., non-expert programmers) to build the Constructionism Conference,
2018) Al programs. Vilnius, Lithuania.
Kahn, K., Megasari , R., Piantari, E.,
Junaeti, E. (2018). Al Programming
by Children using Snap! Block Prog-
ramming in a Developing Country.
European Conference on Technology
Enhanced Learning, Delft, Nether-
lands.
(MIT App Introduction to Course teaching the basics of http://appinventor.mit.edu/explore/
Inventor, Machine Learn- machine learning and the creation resources/ai/image-classification-
2019) ing: Image Clas- of the students’own apps that look-extension
sification implement these concepts through
image classification.
(MLA4Kids, Machine Learn-  Online tutorials guiding children to https://machinelearningforkids.
2019) ing for Kids create a game or interactive project co.uk/#!/worksheets
that demonstrates a real-world use
of artificial intelligence and machine
learning.
(Mobasher Data Science Summer data science academy Mobasher, B. er al. (2019). Data
etal.,2019)  Summer Acade- aimed to broaden the participation Science Summer Academy for
my for Chicago of underrepresented groups in Chicago Public School Students. ACM
Public ~ School computing by teaching a variety SIGKDD Explorations Newsletter,
Students of data science methods and their 21(1).
applications, including data visua-
lization, distance-based methods,
classification, clustering, and others.
(Narahara Personalizing Proposal for a new framework for Narahara, T., Kobayashi, Y. (2018).
and homemade hands-on educational modules to Personalizing homemade bots
Kobayashi., bots with plug introduce ideas in Al and robotics with plug and play Al for STEAM
2018) and play Al for for an autonomous toy car. education. Proc. of SIGGRAPH Asia
STEAM  edu- Technical Briefs, Tokyo, Japan.
cation
(ReadyAl, Ready Al AI+ME is an online experience ReadyAl Al+Me
2019) Al+Me intended to provide young learners https://edu.readyai.org/courses/aime/
with the basics of AL
(Sakulkue- Kids making AI: Approach for STEM education Sakulkueakulsuk, B. et al (2018).

akulsuk et al.,
2018)

(Sperling and
Lickerman,
2012)

Integrating ma-
chine learning,
gamification, and
social ~ Context
in STEM Edu-
cation

Integrating Al
and machine le-
arning in softwa-
re  engineering
course for high
school students

at the intersection of machine
learning, gamification, and social
context through an agricultural-
based Al challenge that aims at
students to learn the process of
creating machine learning models
in the form of a game.

Proposal for a software engineering
curriculum for high-school students
that includes subjects in artificial
intelligence and machine learning.

Kids making Al: Integrating Machine
Learning, Gamification, and Social
Context in STEM Education. Proc.
of IEEE Int. Conference on Teaching,
Assessment, and Learning for
Engineering, Wollongong, Australia.

Sperling, A., Lickerman, D. (2012).
Integrating Al and machine learning in
software engineering course for high
school students. Proc. of the 17th ACM
Annual Conference on Innovation and
Technology in Computer Science
Education, Haifa, Israel.

Continued on next page
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Reference Name of the IU  Brief description Source
(Srikant and  Introducing Data science workshop to expose Srikant, S., Aggarwal, V. (2017).
Aggarwal, Data Science to  students to the full cycle of a typical Introducing Data Science to School
2017) School Kids supervised learning approach. Kids. Proc. of the ACM 48th SIGCSE
Technical Symposium on Computer
Science Education, Seattle, WA,
USA.
http://www.datasciencekids.org/
(Tang, 2019; Empowering Workshop to teach core machine Tang, D. (2019). Empowering
Tang et al., novices to under- learning concepts with image Novices to  Understand and
2019) stand and use classification using a web interface Use  Machine Learning With
Machine Learn- that allows users to train and test Personalized Image Classification
ing with perso- personalized image -classification Models, Intuitive Analysis Tools,
nalized image models on pictures taken with and MIT App Inventor, M.Eng
classification computer webcams and an thesis, Electrical Engineering and
models, intuitive extension for MIT App Inventor Computer Science, Massachusetts
analysis  tools, that allows users to use the models Institute of Technology, Cambridge,
and MIT App to classify objects in their mobile MA, USA.
Inventor. applications. Tang, D., Utsumi, Y., Lao, N. (2019).
PIC: A Personal Image Classification
Webtool for High School Students.
Proc. of the IJCAI EduAl Workshop,
Sicily, Italy.
(TechGirlz,  Artificial Workshop in which students will https://www.techgirlz.org/topic/
2018) Intelligence: learn about how machine learning artificial-intelligence-computers-
How Computers techniques such as artificial neural learn/
Learn networks learn from data to answer
real-world questions.
(Vachovsky =~ Toward  More A summer program to recruit high Vachovsky, M. E. et al (2016).
etal.,2016)  Gender Diver- school girls to computer science, Toward More Gender Diversity in
sity in CS thro- specifically to AL Project topics CS through an Artificial Intelligence
ugh an Artificial include computer vision, robotics, Summer Program for High School
Intelligence NLP, and computational biology. Girls. Proc. of the 47th ACM Technical
Summer Prog- Symposium on Computing Science
ram for High Education, Memphis, TN, USA.
School Girls
(Van App Inventor for A workshop that aims to democratize Van Brummelen, J. (2019). Tools to
Brummelen, Conversational  conversational Al technology by Create and Democratize Conversa-
2019) Al teaching students to create Alexa tional Artificial Intelligence, M.S.
(Van Skills developing conversational thesis, Elect. Eng. Comput. Sci.,
Brummelen App Inventor apps. Massachusetts Inst. of Technol.,
and Abelson, Cambridge MA, USA.
2018) Van Brummelen, J., Abelson, H.
(Van (2018). What’s conversational AI?’
Brummelen with MIT App Inventor and Amazon
etal.,2019) Alexa. Proc. of Amazon Research

Days, Boston, MA, USA.

Van Brummelen, J., Shen, J. H.,
Patton, E. W. (2019). The Popstar,
the Poet, and the Grinch: Relating
Artificial  Intelligence to  the
Computational Thinking Framework
with Block-based Coding. Proc. of
the Int. Conference on Computational
Thinking, Hong Kong, China.

Continued on next page
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Table 4 — continued from previous page

Reference

Name of the TU

Brief description

Source

(Zhu, 2019)

(Zimmer-
mann-
Niefield
etal.,2019a;
Zimmer-
mann-
Niefield

et al.,2019b)

An Educational
Approach to Ma-
chine Learning
with Mobile Ap-
plications

Sports and ma-
chine learning:
how youngpeop-
le can use data
from their own
bodies to learn
about machine
learning

Course to introduce students to
what machine learning can do and
allow them to build mobile ML
applications with App Inventor.

Workshop to introduce youth to
making ML models within the
context of their athletic interests
by building models of their own
physical activity using wearable
Sensors.

Zhu, K. (2019). An Educational
Approach to Machine Learning
with Mobile Applications. M.Eng
thesis,  Elect. Eng.  Comput.
Sci., Massachusetts Institute of
Technology, Cambridge, MA, USA.

Zimmermann-Niefield, A., Shapiro,
R.B, Kane, S. (2019a). Sports and
machine learning: How young
people can use data from their
own bodies to learn about machine
learning. XRDS: Crossroads, 25(4),
44-49,

Zimmermann-Niefield, A., Turner,
M., Murphy, B., Kane, S.K., Shapiro,
R.B. (2019b). Youth Learning
Machine Learning through Building
Models of Athletic Moves. Proc. of
the 18th ACM Int.Conference on
Interaction Design and Children,
Boise, ID, USA.

This shows that so far very few IUs approach Machine Learning education in K-12.
Most of them are also very recently due to the increasing importance of AI/ML as well
as the increasing trend of computing education in K-12 worldwide (Fig. 1).
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Fig. 1. Amount of IUs focusing on ML in schools published per year.
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4.2. Which Machine Learning Competencies are Taught in the [Us?

The IUs teach competencies varying from presenting what is ML, to specific ML tech-
niques as well as the impacts of ML. Among the topics most frequently approached by
the IUs are artificial neural networks and an introduction to what is learning (Fig. 2).
Several IUs also present other ML algorithms such as decision tree and/or instance-
based algorithms typically using unplugged activities. A few IUs also approach the topic
of social implications and ethical concerns.

The majority of the IUs focuses on supervised learning algorithms (Fig. 3), only very
few approach other types of learning.

And, although several IUs approach the topic of neural networks, they typically
present this content in an abstract way and/or through practical applications. We also
observed that the degree of abstraction of the ML concepts varies between the IUs.
Whereas some [Us only teach a general understanding of ML mechanisms and its appli-
cations, most IUs cover one or more ML algorithms typically by presenting an example,
demonstration or hands-on activity in order to provide a deeper understanding.

A general strength observed in the encountered IUs is their strong focus on dem-
onstrating the application of ML in practice, typically presenting various application
examples in order to gain the attention of the students (Fig. 4). This includes mainly
the demonstration of the application of ML for classification in computer vision tasks,
such as facial or gesture recognition (Hitron et al., 2019) for diverse domains, includ-
ing recycling, biology, etc. Several IUs present various application domains (e.g., (Zhu,
2019)) including also sentiment analysis for examples of tweets, conversational Al (e.g.,
creating Alexa skills (Van Brummelen and Abelson, 2018)), robotics or games (e.g.,
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Fig. 2. Frequency of ML topics covered by the IUs.
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(Zhu, 2019)). Some units also integrate ML into robotics activity, such as creating a self-
learning lawn bowling robot (Ho and Scadding, 2019) or running toy cars on a physical
track (Narahara and Kobayashi., 2018).

3
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Supervised Unsupervised Semi-supervised Reinforcement NI
learning learning learning learning
Fig. 3. Frequency of type of learning style covered by the IUs.
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Fig. 4. Frequency of application domains covered by the IUs.
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The IUs also vary largely in terms of levels of learning they are designed to achieve
in accordance with Bloom’s Taxonomy (Bloom et al., 1956). Several instructional units
focus exclusively on lower learning levels (remembering and understanding), whereas
some [Us also approach the level of synthesis taking students to create their own ML
model. On this level, various IUs adopt a computational action approach (Tissenbaum
et al., 2019) aiming at the development of an ML solution for a problem in the commu-
nity (Al Family Challenge, 2019; Apps For Good, 2019b). Few IUs approach the highest
level of learning evaluation by making judgments based on evidence of different ML
models or techniques and/or how training data influences learning.

Observing the complexity of ML concepts, several Uls cover only the most acces-
sible processes, such as data management (such as (Mobasher ef al., 2019) (Srikant and
Aggarwal, 2017)). On the other hand, a considerable number of Uls also cover model
learning and testing, yet, on very different levels of depth. Most of these IUs present
several ML concepts only on an abstract level black-boxing some of the underlying ML
processes. In these cases, the model learning process may be approached by only execut-
ing a pre-defined model learning process without any need for further interaction (e.g.
(ML4Kids, 2019)). Very few IUs systematically introduce ML performance measures,
such as a correctness table, confidence graph, presenting accuracy often in a more super-
ficial way. Only a small number of IUs also include the deployment of the created ML
models, for example as part of games of mobile applications.

Different ML frameworks or tools are used on this educational stage visioning
the abstraction of several stages and complexity of ML models (Fig. 6). For example,
ML4kids (2019) provides an abstract interface permitting young people to easily train
a neural network. On the other hand, several IUs directly use general ML frameworks
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Fig. 5. Frequency of ML processes covered by the IUs.
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such as TensorFlow and Jupyter Notebooks that are not specifically developed for this
educational stage.

As typically used in computing education in K-12, IUs on ML also adopt predomi-
nantly block-based programming languages such as Scratch (6 IUs), Snap! (1 IU) or App
Inventor (5 IUs). Six [Us also directly use Python.

Hands-on activities of the IUs mostly work with image data for classification tasks.
These vary from paper images in unplugged activities to digital images ranging from
Disney princesses and faces to chocolate chip cookies.

codelab
IBMWatson
Jupyter Notebook

Machine Learning for Kids
mobilenet

spreadsheets TenSOFFlOW

Fig. 6. Frequency of the ML frameworks/tools adopted.
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Fig. 7. Frequency of type of data used in the IUs.
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Some units focusing on sports-related themes also use time series of images/accel-
eration graphs for the classification of gestures. For example, by applying ML to sports,
students collect data from their own bodies using wearable sensors playing softball
(Zimmermann-Niefield et al., 2019a). Several [Us adopting a computational action ap-
proach (Tissenbaum et al., 2019) in open-ended project-based activities leave the type
of image used open depending on students’ choice of the application domain. Other
IUs also use datasets based on texts (e.g. tweets), audio clips, genes, etc. During the IU
presented by Sakulkueakulsuk ef al. (2018), students collect data on features (skin color,
texture, etc.) of mango fruits.

4.3. What are the Instructional Characteristics of the [Us?

As the teaching of ML competencies is currently not typically included in computing
education, the majority of the IUs are proposed as extracurricular activities, workshops,
courses, summer camps, challenges or individual activities. Only MIT (2019) and Sper-
ling and Lickerman (2012) propose a curricular unit as part of a computing/software
engineering course. Only 3 online courses have been encountered (ReadyAl, 2019; Ele-
ments of Al, 2019; Kahn and Winters, 2018).

According to the students’ current lack of knowledge regarding computing and/
or ML, most IUs are aimed at beginners with no prior computing/ML competencies,
with the exception of Tang et al. (2019) requiring prior App Inventor experience. Only
ML4Kids (2019) and Curiositymachine (2019) propose also instructional units on the
intermediate and advanced level.

Amount of IUs

Challenge Tutorial Course Workshop ~ Activity  Curriculum  Summer
unit camp

Fig. 8. Frequency of type of data used in the IUs.
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Most of the IUs are focused on teaching ML in high school (Fig. 9). Also, several Uls
are available for elementary and/or middle school level indicates that the insertion of ML
education can be beneficial already on these earlier educational stages.

Very few IUs focus on specific groups of students such as girls (Vachovsky et al.,
2016), underrepresented groups in computing by targeting economically disadvantaged,
African American, Hispanic, and female students (Mobasher et al., 2019) or specifically
at further education (Apps for Good, 2019a) (Apps for Good, 2019b). The Al Family
Challenge (2019) is designed for families, teaching Al not only to the children but also
to other family members.

The duration of the IUs varies largely from short and focused activities (45 minutes)
to long-term courses of 100 hours, yet, with the majority being rather short units of few
lessons. Several initiatives also offer instructional units of different durations, such as a
one-day taster workshop (Apps for Good, 2019a) as well as a 12-sessions course (Apps
for Good, 2019b).

With respect to the instructional methods, there is a strong predominance of active
learning approaches aiming at the achievement of learning objectives on the application
level. These range from tasks with a well-defined specification of the tasks for which an
expected solution exists to tasks with ill-defined problems without a previously known
solution, which aims at a higher cognitive level to take the students to create their own
practical solution.

We also encountered a considerable number of IUs using unplugged activities adopt-
ing diverse materials for activities teaching mostly data management (partly supported
by spreadsheet tools) or decision tree algorithms (e.g., (Curiositymachine, 2019)). Other
activities also explore how biology and specifically animal brains can be the inspira-

Amount of IUs

Elementary  Middle  Elementary High school Middle and Elementary, NI
school school and middle high school middle and
school high school

Fig. 9. Frequency of IUs per educational stage.
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tion for a new way to program computers using paper cards (CS4FN, 2011). Another
unplugged example is “Be the machine” (Fryden curriculum, 2019), a team role-playing
game that teaches how ML works, in which each member of the team assumes a different
role to manually train an ML model.

Although focusing more on active learning, several IUs also include other direct in-
structional methods such as lectures, videos, and demonstrations, especially in the initial
part of the IU as well as the foundations of neural nets (Fig. 10). Examples include the
Digit Classifier Tool, Drawing Completion Tool, Teachable Machine, and Tensorflow
Playground. Interactive methods such as challenges and discussions were also used. Apps
for Good (2019a) also study cases to achieve an understanding of ML. (Vachovsky et al.,
2016) and (Mobasher et al., 2019) also included invited talks with professionals from IT
companies and/or field trips in order to amplify the students’ perspective on ML.

According to this variety of instructional methods, several types of instructional mate-
rial are adopted (Fig. 11). Instructional videos, tutorials, etc. are specific to [Us designed
as online courses. Several [Us also use worksheets to record the students’ experiences.
However, in general, we observed a lack of information regarding the instructional ma-
terial, their availability and license, which makes it difficult for others to use them. With
only one exception the materials are available in one language only (predominantly in
English), which may also limit a broader adoption of IU in other countries that require
instructional material in the native language at this educational stage.

The majority of the IUs does not cover the assessment of the students’ learning.
Only Al Family challenge (2019) and AlinSchools (2019) propose a rubric/assessment
sheet for a performance-based assessment analyzing artifacts created by the students.
Sakulkueakulsuk et al. (2018) allocate scores based on the accuracy of the ML models
developed. As an alternative, Al Family challenge (2019) and Elements of AI (2019)
also adopt quizzes or exercises for the students’ assessment.

13

Amount of IUs

Fig. 10. Instructional methods used for ML education.
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Fig. 11. Types of instructional material used.

4.4. How Were the IUs Developed and Evaluated?

To achieve effective learning outcomes, IUs need to be developed systematically fol-
lowing instructional design models. However, we observed a general lack of informa-
tion in relation to the way the IUs were developed. Very few publications mention any
information on this issue. For example, the IU proposed by Hitron ef al. (2019) is based
on prior work in the constructivism school of thought and in cognitive psychology. The
IU designed by ReadyAl (2019) is based on the 5 big ideas as being proposed by the
Al4K12 guidelines. Sakulkueakulsuk et al., 2018) based the IU on the “Four P’s of
Creative Learning” framework developed by MIT Media Lab and the IU designed by
Zimmermann-Niefield et al. (2019a) is based on Interactive Machine Learning (Fie-
brink, 2019). None of the encountered IUs provides more complete information on the
methodology used for its development.

Most IUs were evaluated by means of a case study (Fig. 12). In these studies, the
evaluation was systematically defined and, during and after the treatment (teaching
ML), data was collected in relation to the objective of the evaluation. Only one study
adopted a more rigorous research design. Hitron ef al. (2019) conducted an experiment
comparing the students’ understanding in three conditions: learning activity uncovering
Data Labeling only, Evaluation only, or both. Two IUs indicate a more informal way of
evaluation (ReadyAl, 2019) (Sperling and Lickerman, 2012), without detailed defini-
tion. In addition, no information on evaluation was being encountered for a consider-
able number of IUs.

Most studies evaluate more than one quality factor (Fig. 13). Learning is the most
evaluated quality factor. This shows that, in fact, the main concern is the learning ef-
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Amount of IUs

Case study Series of case study Experiment Informal NI

Fig. 12. Types of studies adopted for the evaluation of the IUs.

career comfort level
Community eagerness to learn
Interest in Al interest in lessons
learning atmosphere ML KnOWledge
quality of instructional unit

Fig. 13. Quality factors being evaluated in the studies.

fect provided by the IUs. Several studies also assess the degree of interest in a STEM/
computing career motivated by the IU. Besides evaluating the impact of the IUs, several
evaluations also included the measurement of feedback on the IU itself as well as the
observed strengths and weaknesses.

Data regarding the evaluation is collected in several ways (Fig. 14). Most of the data
is collected via questionnaires at the end of the IU. Few studies also extract data based
on the performance-based assessment of artifacts created by students during the IU,
tests, interviews or observations.

Taking into consideration the less rigorous research designs adopted, most studies
only perform qualitative data analyses and/or descriptive quantitative analyses. Only
three studies report the usage of statistical tests (Cognimates.me, 2019; Vachovsky et al.,
2016; Hitron et al., 2019). Evaluations were performed with samples ranging from 9 to
7500+ participants, but the majority with rather small samples with less than 50 par-
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Fig. 14. Data collection methods used for the evaluation of the IUs.

ticipants. Only two studies were replicated: (Cognimates.me, 2019) in several schools
worldwide and (Srikant & Aggarwal, 2017) in 4 cities in the US and India.

In general, we observed a lack of information provided on how the IUs were devel-
oped and evaluated indicating the need for a more systematic adoption of methods for
the development of such instructional units.

5. Discussion

Considering the recentness of ML, we were surprised to encounter already 30 instruc-
tional units aiming at teaching ML concepts in schools. Observing, that most of these have
been developed in 2019 we also expect this number to further increase in the near future.

These 1Us mostly focusing on beginners at any educational stage from elementary
to high school also indicates the recognition of an early exposure of students to ML
concepts, not limited only to high school as typically indicated by general computing
curriculum guidelines.

Being an emergent topic, most of the IUs are proposed as extracurricular units rang-
ing from 1-hour taster workshops to semester-long courses. Providing diverse instruc-
tional materials available for free they also facilitate their application in practice. Several
IUs also provide customized frameworks and tools in order to teach ML at this edu-
cational stage using e.g., block-based programming environments. However, as so far
most [Us are only available in English, this may hinder their direct application in other
countries. Another issue is an almost complete lack of information on the assessment
of the students’ learning, which is important as feedback to the learner and instructor in
order to guide the learning process.
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The IUs teach competencies varying from presenting what is ML, to specific ML
techniques as well as the impacts of ML. However, we observed that several IUs pres-
ent ML concepts only on an abstract level, black-boxing some of the underlying ML
processes even as part of hands-on activities in order to reduce complexity. However, in
some cases, this high level of black-boxing may limit the students to explore and con-
struct mental models on ML (Hmelo and Guzdial, 1996) as also pointed out by Hitron
et al. (2019). Therefore, adopting non-black-boxed processes may be imperative to ac-
quire an effective understanding of ML. On the other hand, considering the complexity
of ML, it is also important to not overwhelm novice learners (Resnick et al., 2000).
Therefore, it will be important to identify a balance between black-boxed processes and
uncovered processes as well as a learning sequence based on the complexity of the con-
cepts. As some of the ML concepts seem more accessible than others it seems important
to analyze their difficulty using statistical methods such as the Item Response Theory
(DeMars, 2010) in order to systematically guide the scaffolding process.

A general strength observed in the encountered IUs is their strong focus on demon-
strating the application of ML in practice, typically presenting various application exam-
ples in order to gain the attention of the students. Furthermore, several IUs also covers
the learning of how to apply ML concepts to practical problems with respect to the most
diverse tasks from the context of the students, ranging from the classification of Disney
princesses to the feature extraction of mango fruits for classification. However, only a
few IUs go so far to guide the students to develop their own ML solution for a problem
in the community adopting a computational action approach (Tissenbaum et al., 2019).

In addition, it is possible to observe the existence of a concern with social aspects
involved in the application of Al concepts during the practical activities. Some studies
lead the student to reflect on the usage of Al in of today’s society (Elements of Al, 2019;
Tang, 2019). Others address moral issues and the impact of AI on humans (AlinSchools,
2019; Apps for Good, 2019a; ReadyAl, 2019; Touretzky et al., 2019¢c). Some studies also
focus on the democratization of Machine Learning/Artificial Intelligence teaching, in
order to impact society not only on content but on the approach used, seeking to involve
minorities (Mobasher et al., 2019) (Vachovsky et al., 2016). (Van Brummelen, 2019).

Another issue we observed is the lack of support for the training of instructors in order
to prepare them adequately for the application of the IUs in the classroom. Besides a few
1Us providing lesson plans and guides no further training is provided as part of the 1Us.
Taking into account that today there is a lack of K-12 teachers with computing background,
most computing education is applied in a multidisciplinary way by teachers trained in
other disciplines. Therefore, the motivation and training of in-service teachers become es-
sential for a larger-scale adoption of ML education. This includes not only computing and
ML knowledge but also knowledge of relevant pedagogical and technological content.

In general, we observed a lack of systematic presentation of the IUs and the way they
were developed and evaluated. As many have not been published as scientific articles,
no further information on their impact is available, which leaves the achievement of
the learning goals questionable. However, considering the recentness of this topic, we
expect more rigorous studies soon observing the large increase of IUs just this year. The
systematic development of such IUs will also further supported by the development of
curriculum guidelines currently underway.
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Threats to validity. Some threats may affect the validity of our mapping study. We,
therefore, identified potential threats and applied mitigation strategies in order to mini-
mize their impact. Systematic mappings may suffer from the common bias that positive
outcomes are more likely to be published than negative ones. However, we consider
that the findings of the articles, whether positive or negative, have only a minor influ-
ence on this systematic mapping since we sought to characterize the approaches rather
than analyze their impacts on learning.

Another risk is the omission of relevant studies. In order to mitigate this risk, we
carefully constructed the search string to be as inclusive as possible, considering not
only core concepts but also synonyms. Furthermore, considering the recentness of the
topic studies, we also searched for any IU available online, not only considering scien-
tific articles, in order to reduce the risk of excluding existing IUs. On the other hand,
our observation that most IUs are available in one language only (predominantly in
English), may be due to the fact that based on our search using an English search string
only returned IUs available in English.

Threats to the selection of relevant IUs and data extraction were mitigated by pro-
viding a detailed definition of inclusion/exclusion and quality criteria. We defined and
documented a rigid protocol for the study selection and all authors performed the selec-
tion together, discussing the selection until consensus was reached. Data extraction was
hindered in some cases, as the relevant information was often not presented explicitly
and, therefore, in some cases had to be inferred. However, this inference was made by
the first two authors and carefully reviewed by the third author.

6. Conclusion

In this article, we present the state of the art and practice of teaching Machine Learn-
ing in elementary to high school. We have identified 30 IUs mainly focused on be-
ginners for any of these educational stages. The results of our review indicate the
importance of this topic to the rapid increase of IUs developed this year. Being an
emergent topic, most of the IUs are proposed as extracurricular units ranging from
1-hour taster workshops to semester-long courses. The 1Us teach competencies vary-
ing from presenting what is ML, to specific ML techniques as well as the impacts
of ML with an emphasis on artificial neural networks. Observing the complexity of
ML concepts, several Uls cover only the most accessible processes, such as data
management or cover model learning and testing on an abstract level black-boxing
some of the underlying ML processes. The IUs provide diverse instructional materials
available for free as well as customized frameworks and tools in order to teach ML
at this educational level, using e.g., block-based programming environments as well
as Python and general ML frameworks. As a result of our study we, thus, expect to
contribute to the mapping of these emergent 1Us, facilitating the teaching of ML in
practice. However, observing a lack of teacher training and more information on the
development and evaluation of these IUs, it also becomes obvious that there is a need
for further research in this area.
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Appendix A.

Content covered in the instructional units
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Reference

Approaches to machine learning

Types of learn-
ing algorithms

by learning '%5‘ 8 %0 E
style 2 3 E E
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s £ 2 <
— Q <
g EE 2 32
= g 5 £ 5 3 3
% £ £ £5 8 8%
25 g = § = o3 E g 5
E=s 238 & 8 B 5 8¢ wo 8%
S g8 8 E® o z - .2 5 & £ £ 2 £ &
2o 728 283868 E 358 ¢
2325353 : 223 E5E8E8 3 5
S H g8 272 5 8 ZEE Tz E 2 2
= 9 27 0 = =2 b 5 & 5 5 § o & € =
Z2 x 5 Q0 A T Z Other a2 & T /@m0
(AI Family Challenge, 2019) X X X X
(ai4childre, 2017) X
(AlinSchools, 2019) X X X X X
(Apps for Good, 2019a) X X X X X X
(Apps for Good, 2019b) X X X X X X X X X X X X
(Burgsteiner et al., 2016; X X X
Burgsteiner, 2016)
(Cognimates, 2019) X X
(CS4FN, 2011) X x
(Curiositymachine, 2019) X X X
(Elements of Al 2019) X X X X X X
(Essinger & Rosen, 2019) X
(Evangelista et al., 2018) X Bagging/random forest X X X
Fryden curriculum X X X
(Hitron et al., 2019) X Dynamic Time Warping
(DTW) algorithm
(Ho & Scadding, 2019) X X
(Kahn & Winters, 2018) X X X X
(Kan et al., 208)
(MIT, 2019) X
(ML4Kids, 2019) X X X
(Mobasher et al., 2019) X X X X
(Narahara & Kobayashi., 2018) X
(ReadyAl 2019) X X
(Sakulkueakulsuk et.al, 2018)  x X X
(Sperling & Lickerman, 2012)  x X LMS algorithm,
Genetic algorithms
(Srikant & Aggarwal, 2017) X X
(Tang, 2019; Tang et al., 2019)  x X
(Techgirlz, 2018) X X
(Vachovsky et al., 2016) X Background subtraction X
algorithm
(Van Brummelen, 2019) (Van ~ x X X
Brummelen & Abelson, 2019)
(Van Brummelen et al., 2019)
(Zhu, 2019) X X X x x Long short-term memory X X X X
(LSTM), Ensemble learning
(Random forest)
(Zimmermann-Niefield et al., Dynamic Time Warping X
2019a) (Zimmermann-Niefield (DTW) algorithm

et al.,2019b)
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