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Abstract. Students’ performances in introductory programming courses show large variation 
across students. There may be many reasons for these variations, such as methods of teaching, 
teacher competence in the subject, students’ coding backgrounds and abilities, students’ self-dis-
cipline, the teaching environment, and the resources available to students, all of which can affect 
student performance and outcomes. Our observations in teaching programming courses (at Al-
Imam Muhammad Ibn Saud Islamic University in Riyadh) are that many students (up to 50% per 
course) drop out. There is a strong belief by many instructors that such a high dropout rate is due, 
at least in part, to students underestimating the effort needed to finish this course and not following 
instructions as recommended. This paper reviews the factors that affect student performance in an 
introductory programming course (CS1) and aims to discover correlations between various assess-
ment methods, students’ participation and their final performance measured. It analyses mark dis-
tributions across various assessment methods to identify which assessment method best predicts 
final exam marks and overall marks, and gives recommendations for assessment in introductory 
programming courses.

Keywords: teaching programming, computer science education, evaluation and assessment meth-
odologies, marks distribution, motivation, analysis.

1. Introduction1

It has been observed by instructors of the introductory programming course (CS1) in the 
College of Computer and Information Science at Al-Imam Muhammad Ibn Saud Islamic 
University in Riyadh (henceforth, Al-Imam University) that there is a great deal of varia-
tion in students’ performance. Only a few students obtain full marks while many fail to 
pass or drop the course (up to 65%). After reviewing the literature, we have found that 

1 Non-standard abbreviations used in this paper: CS1 – the introductory programming course; MT – mid-
term; ACT: American College Testing.



R.A. Alturki184

the problem is not merely a local challenge at our institution, but rather a universal phe-
nomenon (Corney, Teague, & Thomas, 2010; Hu, Winikoff, & Cranefield, n.d.; Nikula, 
Gotel, & Kasurinen, 2011). For example, (Nikula et al., 2011) reported that more than 
30% of computer science students worldwide in 1999 dropped or failed the introductory 
programming course. Corney et al. (2010) linked failure in introductory programming 
courses to degree withdrawal. These high dropout and failure rates should be a big con-
cern for institutions, instructors and students. Students need to pass the course, which is 
a pre-requisite for all other CS courses, and the delay in graduating resulting from failure 
could be troublesome. Instructors spend considerable time and effort with students in 
lectures and labs to make programming better understood; however, such efforts may 
be considered ineffective considering the high rates of failure and drop out. Colleges 
and departments allocate resources (including instructors, rooms and lab facilities) to 
courses and high rates of dropout and failure use up resources that could presumably be 
put to better use elsewhere. To address and overcome these issues, it is of vital impor-
tance to identify factors that contribute to these outcomes.

In previous research, low success rates in introductory programming have been at-
tributed to many factors, including student motivation (Corney et al., 2010; Nikula et al., 
2011; Teague & Roe, 2008), the intrinsic difficulty of programming and the complexity 
of course structure (Nikula et al., 2011), teaching and learning styles (Benford & Gess-
Newsome, 2006; Corney et al., 2010; Hoda & Andreae, 2014; Keen & Etzkorn, 2009; 
Robins, 2010; Wiedenbeck, LaBelle, & Kain, 2004). Suggestions to overcome such 
problems and improve success rates include using less complex course structures (Keen 
& Etzkorn, 2009; Nikula et al., 2011), employing more collaborative learning (Hanks, 
2005; Mcdowell, Werner, Bullock, & Fernald, 2003; Teague & Roe, 2008; Wood, Par-
sons, Gasson, & Haden, 2013), redesigning course material (Corney et al., 2010) and 
improving teaching style (Hoda & Andreae, 2014; Robins, 2010). Researchers have es-
tablished that failure is not always associated with cognitive ability, but sometimes with 
motivation and teaching style (Teague & Roe, 2008).

We believe that motivation is a key to successfully passing introductory program-
ming, along with proper guidance; it is the key to improving other shortcomings. Mo-
tivation is very hard to measure objectively, but success or failure to pass a course may 
be seen as a reflection of motivation. The most reliable way to get relatively objective 
measurement is to use students’ marks before and during the course. In CS1 courses, 
students are assessed and graded using various instruments: midterm (MT) exams, 
quizzes, assignments, projects, attendance, lab exams and final exams. Using these as-
sessment items to evaluate overall achievement is very important for predicting student 
performance and providing relevant support. Previous marks gained at university, high 
school marks and standardised tests can help predict performance as well. In this study, 
we wish to see if the mark distribution of assessment methods currently used in the 
basic programming course are the best ones to reflect student performance and improve 
their motivation. 

In fact, many indicators can be used to predict performance in introductory program-
ming courses. The literature in this area has covered various such indicators such as: 
standardised tests (e.g. the ACT) (Brown, 2013; Butcher & Muth, 1985), high school 
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grades (Bergin & Reilly, 2005; Werth, 1986), Grade Point Average (GPA) (Terry R. 
Hostetler, 1983), previous courses taken (Brown, 2013; Campbell, 1984; Werth, 1986), 
prior experience using computers (Wilson, 2002), English and mathematics background 
(Butcher & Muth, 1985; Konvalina, Wileman, & Stephens, 1983; Pillay & Jugoo, 2005; 
Wilson, 2002), overall student comfort and confidence levels (McGill, Volet, & Hobbs, 
1997; Wilson, 2002), and customised tests (Bergin & Reilly, 2005; Farrell, 2006; Kurtz, 
1980; Porter & Zingaro, 2014). Other studies have shown that student behaviour dur-
ing the course is a strong indicator to their performance. For example, The two stud-
ies (McGill et al., 1997; Watson, Li, & Godwin, 2014) have shown that time spent in 
the computer lab has a strong correlation with the final grade. (Denny, Luxton-Reilly, 
Hamer, Dahlstrom, & Purchase, 2010), showed that students who attend more quizzes 
have higher exam scores than those who attend fewer. 

In the introductory programming course, there is also variation among different as-
sessment methods for the same student. For example, a student could have a high mark 
on an assignment and a low mark on the midterm, which can be a sign of something 
wrong. We wanted to know if some assessment methods used in the CS1 course are 
better or worse for measuring a given student’s ability and creating motivation to excel. 
Moreover, different assessment methods have different weights from the overall total 
mark; thus, specifying the right weight for each assessment method is vital for measur-
ing a student’s ability and boosting their motivation.

The introductory programming course at Al-Imam University is taught in the first 
semester of the degree programme, after passing the preparatory year, and is required 
for all majors related to computing, including computer science, information systems, 
and information management. CS1 has also been introduced to the curriculum of other 
degrees in engineering and mathematics. According to the course description, the main 
goal of this course is to introduce problem-solving and programming principles to stu-
dents using C++. The methods of assessment used in the course include written exams 
(e.g., quizzes and midterms) and practical exercises (e.g., lab exams and assignments).

Instructors normally associate failure and dropout with weak background or lack 
of self-discipline on the student’s part and assessment methodology is always a debate 
among instructors as there is no clear evidence as to the best assessment method for mea-
suring students’ abilities in programming. Providing extra counselling and support for 
students at risk is very important; therefore, having a way to predict student performance 
is essential for such a process. In Section 2, we review factors that affect student perfor-
mance in introductory programming followed by a detailed analysis of students’ marks 
in the CS1 course across four consecutive terms with different instructors in Section 3.

2. Factors Affecting Performance

This section reviews the literature on factors that affect the performance of students in 
introductory programming. Literature and research in this area can be classified into two 
main categories: research that focuses on 1) factors associated with students and 2) fac-
tors associated with instructors and/or the learning environment. The factors associated 



R.A. Alturki186

with students are all factors that students have or control like learning style, background 
and cognitive ability. Factors associated with instructors and the environment are those 
factors that instructors have or control, or relate to the teaching environment includes 
teaching style, complexity of course set-up, assessment methods used, teaching room 
facility, other students’ competence level and course description. 

2.1. Factors Associated with Students

Previous studies on factors associated with student performance in introductory pro-
gramming include research on student motivation (Corney et al., 2010; Nikula et al., 
2011; Teague & Roe, 2008), learning style (Benford & Gess-Newsome, 2006; R. M. 
Felder & Spurlin, 2005; Hoda & Andreae, 2014; Keen & Etzkorn, 2009; McGill et al., 
1997; Robins, 2010; Thomas, Ratcliffe, Woodbury, & Jarman, 2002; Wiedenbeck et al., 
2004), prior background and experience (Butcher & Muth, 1985; Konvalina et al., 1983; 
Pillay & Jugoo, 2005; Wilson, 2002) and student comfort and confidence level (McGill 
et al., 1997; Wilson, 2002). A brief description of major work in each of these areas is 
given in this section. 

2.1.1. Motivation 
Previous studies in the correlation between student performance and their motivation 
have shown a strong connection. For example, Corney et al. (2010) redesigned the CS1 
introductory programming course to be more engaging and collaborative in order to 
motivate students. They used a pair-programming (programming in pairs of students; 
PP) method during lab sessions, and redesigned the course to provide more genera-
tive information and engaging content about various technologies like databases, the 
Web, and networking. The main goal was to make programming more interesting and 
more relevant to real-world problems. The changes resulted in higher success rates and 
less dropout; further, they were geared to what industry requires from graduates (to 
be good communicators and team players who are business-minded. The feedback on 
these amendments from their students showed the importance of making programming 
relevant to real problems. 

High failure and dropout rates were also observed in introductory programming 
classes at Lappeenranta University of Technology in Finland (Nikula et al., 2011). There 
were three possible causes investigated of the high failure rate: the difficulty of program-
ming, course complexity, and student motivation. Motivation was investigated using 
two-factor theory, where factors causing satisfaction (motivators) and dissatisfaction 
(hygiene factors) were applied to students in the course. The results show that students 
with good intrinsic motivation had less difficulty completing the course than other stu-
dents; the problem arose with students who had poor motivation, and it was found that 
these students were enrolled in the course rather arbitrarily and faced few consequences 
for failure. The study concludes that low motivation and immature behaviour is a major 
problem that affects pass rate. Three steps were introduced to tackle the problem and 
increase motivation as following: 1) reduce de-motivators (e.g., the complexity of the 
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course setting), 2) increase intrinsic motivators by making course assignments and proj-
ects more appealing and interesting to students, and 3) introduce extrinsic motivators 
like asking students to submit sections of assignments weekly rather than all at once at 
the end, along with project progress reports . After these improvements, the pass rate 
increased from 44% in 2005 to 68% in 2009. 

Employing a more collaborative and engaging environment is key in improving suc-
cess rate in CS1 course. A survey of difficulties faced during a programming course at 
the University of Queensland in Brisbane (Teague & Roe, 2008), focusing on motivation 
and social issues was conducted. The survey showed that at week 8 of the term, 48% of 
students thought the course was more difficult than expected and most students agreed 
that employing collaborative learning would make the course more engaging and inter-
esting which would help their motivation. 

2.1.2. Learning Style
Learning style is the method by which students prefer to acquire and process knowledge. 
Some students prefer very detailed explanation by the teacher, while others prefer more 
general or abstract explanation first, followed by details as necessary. Some students 
prefer to get information as graphic representations where others prefer it to be verbal. 
The problem happens when there is a mismatch between studying and teaching style as 
the instructor teaches in a style that is different than the recipient is expecting or prefers 
the most. In fact, there are many theories and models about learning styles. One of many 
models of learning style, proposed by (R. Felder & Silverman, 1988) where learning 
styles can be modelled in four main dimensions: 1) active/reflective, 2) sensing/intuitive, 
3) visual/verbal, and 4) sequential/global. Any given person’s style is a mixture of the 
four dimensions, with a different density for each dimension; a person can be of more as 
an active learner than all other traits and can be balanced between any two or more traits. 
(R. M. Felder & Spurlin, 2005) stressed that this model cannot predict performance but 
is intended instead to 1) guide instructors to satisfy the needs of diverse students with 
different learning styles and 2) help students understand their own their learning styles 
and use them more effectively to learn better. 

Thomas et al. (Thomas et al., 2002) have shown that learning styles correlate with 
student performance. They studied the impact of preferred learning styles on the perfor-
mance of students at the Aberystwyth University in Wales. They used the same model 
as (R. Felder & Silverman, 1988) and found that the current system of teaching at their 
university is more suitable for reflective, verbal and sequential learners while active, 
sensing, and visual learners are disadvantaged by it. The study concluded that if the cur-
rent method of teaching is used, the performance of students could be predicted unless 
they employ other methods that satisfy the need for all type of learners. They developed 
a new environment to care for all type of learners, called MAP (Monitoring, Assessment 
and Provision) where different students can make the most of the resources depending 
on their types of learning. They also noted that the combination of student autonomy and 
teacher support in CS1 course is backed by other work (Tanner & Jones, 2000) 

Mental models and self-efficacy are considered important parts of student learning 
style with clear impacts on student performance in any programming course. A mental 
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model is the representation of concepts and ideas related to a given area, such as pro-
gramming, in one’s mind; and self-efficacy is a person’s confidence in his or her own 
ability to succeed in a given context. Wiedenbeck et al. (Wiedenbeck et al., 2004) found 
that a mental model has an impact on students’ success and can improve their self-effica-
cy. Their study suggests to support the good mental model of students to make program-
ming easier to be thought of. One way of supporting the development of a mental model 
that they mention is to use exercises that trace the logic of the program, which has been 
shown to be effective in developing a mental model. Also, the study suggests encourag-
ing self-efficacy by providing course content that matches students’ performance level 
rather than their level of confidence.

Another way to look into learning style is illustrated by Robins in (Robins, 2010) 
where an illustration of high failure in introductory programming course is shown and 
explained in terms of the learning edge momentum (LEM) effect. Learning Edge Mo-
mentum’s (LEM) main idea is to associate student ability to grasp any new concept in 
programming to the last related concept the student learned. That is, students cannot 
grasp advanced topics if prerequisite topics are not understood, especially in program-
ming, which is a very interconnected field. This also helps explain the finding of (Thomas 
et al., 2002) showing students with sequential learning styles to be much better learners 
than other students. Teaching students about this effect will help them understand how 
to manage their studies, which require continuous revision of concepts covered to master 
them before taking on new concepts.

2.1.3. Prior Background and Experience
Student background plays a vital part in understanding programming concepts and suc-
ceeding to pass the course. As noted above, researchers have found that previous experi-
ence using computers (Wilson, 2002), programming, problem-solving, and mathemati-
cal and English experience have big impacts on success in programming (Campbell, 
1984; Konvalina et al., 1983; Pillay & Jugoo, 2005; Wilson, 2002). For example, an 
early study (Campbell, 1984) showed that providing a preliminary course in program-
ming led to a significant difference in performance between students who finished that 
course and students who did not. It is not clear if the preliminary course was a filter 
rather than a way to improve and prepare students, as the preliminary course had a very 
high failure rate, and as a result, students with poor performance in this preliminary 
course may have been able to change their majors and not take the CS1 course. Other 
research (Konvalina et al., 1983) supports this notion of the background effect on pro-
gramming performance after studying the measurable factors that affect the withdrawal 
rate. Their results show correlations between certain factors (age, high school marks, 
mathematical experience, and programming experience) and the withdrawing status 
of students. Their results were used to build a predictor model that guided students’ 
placement in the CS1 course, resulting in a significant decrease in the withdrawal rate, 
from 40% to 23%.

Other work supports the correlation between students backgrounds and perfor-
mance in programming is reported by Wilson (Wilson, 2002) . The study was con-
ducted to identify factors that affect student performance in introductory programming 
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CS1 and in particular, to determine which factors could be utilized to increase female 
involvement in computer science. The study revealed that mathematical background 
has a significant correlation with results in the programming course, but that previous 
computer experience (including programming and videogame playing) did not signifi-
cantly affect the overall results in the programming course. Similarly, (Pillay & Jugoo, 
2005) tried to determine the effect of students’ problem-solving ability and language 
skills on their performances in the CS1 course, and showed that having taken previ-
ous courses in mathematics and problem-solving significantly and positively affected 
performance, and that students whose mother tongue was the language of instruction 
performed much better.

2.1.4. Comfort and Confidence Level
The comfort and confidence of a student studying programming have an interesting 
effect on overall performance. Wilson (Wilson, 2002) conducted a study to see what 
factors could affect CS1 students’ performance in order to increase female involve-
ment in computer science. The study revealed that student comfort level to be the most 
significantly correlated with student performance (interestingly, much higher than math 
background). Comfort level was measured in the study using several indices as follow-
ing: “(1) likelihood of asking questions/answering questions in class, (2) likelihood of 
asking questions in lab, (3) likelihood of asking questions during office hours, (4) per-
ceived anxiety while working with the computer on programming assignments, (5) per-
ceived difficulty of the class, (6) perceived difficulty of writing computer programs in 
general, and (7) perceived understanding of concepts in class compared to classmates”. 
(Wilson, 2002) Although comfort level had a high correlation with performance, a 
causal relation cannot be inferred, as students’ comfort level could be a result of their 
ability and their understanding of the course. Another study (McGill et al., 1997) was 
conducted to investigate success factors in a distance learning programming course. 
The study asked students questions at the beginning of the course to identify different 
aspects of their backgrounds and perceptions, revealing that confidence in one’s ability 
to complete the course has a significant correlation with completion rate especially in 
distance learning, where effective teacher support may be more difficult.

2.2. Factors Associated with Instructors or the Learning Environment

Factors associated with instructors include teaching style (Benford & Gess-Newsome, 
2006; Hanks, 2005; Hoda & Andreae, 2014; Mcdowell et al., 2003; Robins, 2010; Wood 
et al., 2013), course and material settings (Keen & Etzkorn, 2009; Pears et al., 2007) and 
instructor ethnicity and interaction (Benford & Gess-Newsome, 2006). A brief descrip-
tion of major works in these areas is reviewed in this section. 

2.2.1. Teaching Style
Teaching style is the way that an instructor delivers or transfers knowledge to students. 
Teaching styles vary across individual instructors, institutions, and countries. Variation 
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in teaching styles and course delivery methods has a clear impact on student perfor-
mances. In a recent work (Vihavainen, Airaksinen, & Watson, 2014), it was found that 
interventions in teaching styles improved success rates by one-third on average, and 
that interventions that employ collaboration and peer support were the most effective in 
improving pass rates. Another study (Benford & Gess-Newsome, 2006) shows a clear 
connection between teaching style and student performance in gateway courses. Teach-
ing style for each course was given a Reformed Teaching Observation Protocol (RTOP) 
score between 0 and 100 to see how traditional/didactic or progressive the teaching 
style used in the delivered courses. Low score means a traditional and didactic teaching 
method is used while high score means a more activity based and progressive method 
is used. The research found that there is a clear connection between the average RTOP 
score and the average student’s achievement. 

Robins (Robins, 2010) presents a different view, explaining high failure rates with 
reference to the learning edge momentum (LEM) effect, arguing that instructors who 
understand this effect and help students with poor results will see better results. This 
effect could also explain other reported work about the good performance of students 
with sequential learning style in CS1 course(Thomas et al., 2002). Other reported work 
(Campbell, 1984) show that taking a CS0 course before the CS1 can improve perfor-
mance in the latter, while Hoda and Andreae (Hoda & Andreae, 2014) present findings 
showing that a teaching strategy they developed for the introductory course at Victoria 
University in Wellington reduced failure rates from 45% to 35%. The strategy devel-
oped based on minimizing complexities and dependences in early topics covered, maxi-
mizing the chances of mastering these concepts and skills and providing opportunities 
for early recovery. 

Collaboration in teaching programming has received good attention from research-
ers, who have found that it has quite a strong positive effect on improving students’ per-
formances. One well-reported collaboration technique in teaching programming is pair 
programming (PP). PP allows two people to solve or write a program collaboratively 
by sitting beside each other at the same workstation; one person works as a ‘driver’, 
handling keyboard and mouse in order to write the code, and the other as an observer 
who check the code and give live feedback to the ‘driver’. Pair programming has been 
shown to be an excellent methodology for teaching introductory programming course 
(Hanks, 2005; Mcdowell et al., 2003; Wood et al., 2013) as it makes students more 
engaged and more motivated (Wood et al., 2013). Previous work in PP has shown an 
increase in student confidence (Hanks, 2005; Wood et al., 2013), save time (Wood 
et al., 2013) and contribute in making better programs (Mcdowell et al., 2003). As a 
result, PP is contributing to better pass rates (Hanks, 2005; Mcdowell et al., 2003) and 
attracting more students to majoring in computer science (Mcdowell et al., 2003). One 
limitation of PP is the need for two students to be located in the same place; however, 
one study has shown that results similar to those of PP implementation can be achieved 
using ‘distributed pair programming’ where students work in pairs remotely (Hanks, 
2005). A recent analysis (Vihavainen et al., 2014) has shown that pair programming can 
improve pass rates by at least 10%. Having said that, when comparing pair program-
ming technique solely with other techniques, pair programming could not solve all 
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programming difficulties as any interventions to the programming course should have 
several dimensions that improve current problems.

Peer Instruction (PI) is a pedagogy technique that is used to make students more 
engaged in the course by triggering their self-learning instinct by firstly asking ques-
tion followed by peer discussion and then correcting the answer by instructor. PI was 
firstly used in physics (Crouch & Mazur, 2001){Formatting Citation} and then it has 
become common in other subjects like biology and recently in computer science teach-
ing (Porter, Bailey-lee, & Simon, 2013). There have been many studies to show how 
incorporating such technique can affect students’ performance positively in teaching 
programming. For example, a study by (Beth Simon, Parris, & Spacco, 2013) showed 
an increase in final exam score by around 6% when PI is used. Other study by (Chase 
& Okie, 2000) has shown a dramatic decrease in the dropping and failure rate when PI 
method were used. Leo Porter et al. (Porter et al., 2013) explains that incorporating PI 
method in teaching CS1 course has resulted in reducing failure rates on average by 67% 
(23% reduced to 8%). PI is not only improving results but also increase satisfaction 
among student and instructor when teaching programming. (B. Simon, Kohanfars, Lee, 
Tamayo, & Cutts, 2010). 

2.2.2. Course Set-Up and Environment
Lecture notes and course set-up complexity have considerable impact on student per-
formance in the programming course. Keen and Etzkorn (Keen & Etzkorn, 2009) have 
conducted a case study to see how the complexity of lecture notes can affect student 
performance in programming course; complexity is measured by the number of techni-
cal terms from the field of computer science divided by the total number of words in the 
notes has a clear correlation with students’ performance. With reference to LEM effects, 
Hoda and Andreae (2014) have developed an effective teaching strategy that reduces the 
complexity of a course especially at the early stage of the term to help students master 
the fundamentals, as mentioned above.

Another important issue related to course set-up is programming language choice, 
which plays a considerable role in the way programming concepts are introduced to stu-
dents. There have been many debates about the most suitable language for introductory 
programming instruction (usually Java, C and C++; (Pears et al., 2007), but sometimes 
also other languages like Python and Ruby that have good affordances for novice stu-
dents. The bottom line in choosing a programming language should always be how it 
relates to the course objectives and curriculum goals. The real problem is how to make 
teaching the chosen language as simple as possible, as many instructors tend to teach the 
minor details and forget the major objectives of the course.

Class and university environment have also been reported to affect student perfor-
mance. A study by Benford and Gess-Newsome investigated the factors that could affect 
student performance in gateway courses. Interestingly, the study has shown a clear gap 
among different ethnicity groups and their averaged GPA. When comparing averaged 
GPAs, International students are the highest and African American and Native American 
are the lowest. It has been discussed that such variation could be for many reasons, in-
clude student preparedness and faculty diversity.
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3. Methods

The goal of this study is to discover any correlation between marks on different as-
signments and tests within the programming course. The marks of 138 students were 
analysed across different sections, four terms, and instructors. The course description 
of the introductory programming course (CS140) at Al-Imam University gives a break-
down of marks across written tests (e.g. Quizzes, Midterm and Final) and coding tests 
(e.g. Lab exams and assignments). Written tests are paper based and question types 
include asking student write a code, correct a code and trace a code. Coding exercises 
is computer based and normally ask student to write code or function and shows how 
it compiles and run. The weight of each mark – of these assessment methods – can be 
varied from one time to another. The weights of each assessment method used in the 
course for two periods in the last four terms are given in Table 1 where changes were 
done in the Lab and assignments weights. As can be seen in Table 1, 60%–70% of total 
marks are given to written tests and 30%–40% to practical programming exercises; the 
latter help students gain a better understanding of programming. That explains why 
separate assessment methods to evaluate student participation and progress in practical 
programming are always part of programming course. In our study, we wanted to test 
this notion as variation of students performance across assessment methods is observed. 
Thus, this analysis aims to investigate how marks in exercises, exams, and participation 
correlate with each other, which assessment methods are most effective in measuring 
student performance, and what is the best weight for each method.

In order to compare different marks for the assessment methods that have different 
weights, marks were standardized as percentages for analysis. For example, if quizzes 
were marked to have 10 as the highest mark, quizzes marks gained will be divided by 
10 and then multiplied by 100 in order to have a percentage number between 1–100%. 
An example of that is illustrated in the table below (Table 2) which shows the marks for 
3 students as numbers (to the left) and as percentages (to the right) for four assessment 
methods. 

After marks were standardized as percentages for analysis, we compared marks by 
subtracting the percentage of each mark with all other marks for the same student which 
resulted in having a percentage number that shows how a specific mark varies across 

Table 1
The weight of marks in the programming course

Assessment method Period 1 Period 2

Quizzes   10%   10%
Assignments   10%     0%
Midterm (MT)   20%   20%
Lab   20%   30%
Final Exam   40%   40%

Total 100% 100%
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other marks. Also we have averaged the variation of each mark with other marks for all 
students, and obtained the average deviation to see how marks deviate from the aver-
age of the variation. Also, we determined whether variations were positive (indicating 
over-assessment) or negative (under-assessment). 

An example of how variations were calculated for quizzes in comparison to other 
marks is shown in Table 3 below. The data in Table 3 below is made-up for three stu-
dents and does not represent real data. The table first represents the marks obtained on 
four assessment methods for three students (A, B, and C), as percentages. The marks in 
percentages in the first four data columns are taken from Table 2. Then, the last three 
columns show variation of other marks in comparison to quizzes. For example, for 
student A, the quizzes mark is lower than the assignments mark by 5% and higher than 
the midterm and the final by 45% and 70% respectively. Student C data show different 
results: the quizzes mark is lower than the assignments, midterm, and final marks by 
5%, 21%, and 18% respectively. The last two rows of the table calculate the average 
and average deviation of the absolute values of the first three rows. The higher the aver-
age of the deviation, the greater is the gap between marks, and the lower the deviation 
of the variation, the greater is the correlation with the quizzes. The data illustrated in 
the table shows correlation between assignments and quizzes marks. 

Table 2
Illustration of method used to weight marks

St
ud

en
t Marks as number Marks as Percentage

Quiz  
(max 10)

Assign-
ment
(max 10)

Midterm 
(MT)
(max 20)

Final
(max 60)

Quiz Assignment Midterm
(MT)

Final

A 9.5 10 10 15 9.5 / 10 x 100
= 95%

10 / 10 x 100
= 100%

10 / 20 x 100
= 50%

15 / 60 x 100
= 25%

B 6   7   8 20 60% 70% 40% 33%
C 5   5.5 14.25 41 50% 55% 71% 68%

Table 3
Example of marks variations from quizzes

Student Mark as Percentage Variation from Quizzes
Quiz Assign- 

ment
Midterm 
(MT)

Final Assignments Midterm 
(MT)

Final

A 95% 100% 50% 25% 95-100=-5% 95-50=45% 95-25=70%
B 60% 70% 40% 33% 60-70=-10% 60-40=20% 60-33=27%
C 50% 55% 71% 68% 50-55=-5% 50-71=-21% 50-68=-18%
Average of absolute 
value

51% 56% 40% 32% 5% 22% 29%

Average deviation of 
absolute value

26% 29% 20% 19% 3% 12% 21%
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4. Results and Discussion

The analyses of student marks in the CS1 programming course offered at Al-Imam Uni-
versity is showed and discussed in this section. Firstly, we analyzed the performance 
of students for one instructor across three terms as in section 4.1, followed by analysis 
of students’ performances for different instructors in the same term where most of the 
teaching materials and assessment methods were unified as in section 4.2. We summaries 
our findings at the end of this section 4.3.

4.1. One Instructor Across Terms

This section presents and analyses student marks across three consecutive terms with 
the same instructor using the same teaching method and mark distribution (weighting). 
It compares each assessment method (assignments, quizzes, midterm exam, lab exams, 
and final exam) against the others, and these methods are compared with the total mark 
to see how they correlate. Figures Fig. 1 to Fig. 6 plot the variation of marks against 
each other, where the X-axis represents the fixed assessment method mark and the Y-axis 
shows the percentage of variation for all marks with fixed marks on the X-axis.

The variation of marks from quizzes is plotted in Fig. 1, which shows variation of 
four assessment methods and total marks against the quizzes marks. The general trend 
shows that as the quizzes marks increase, variation is also increasing. Variations start 
with negative values between –20 and –10% when the quizzes marks are around 0, and 
become positive for higher marks, between 40% and 100% variation around full marks. 
The negative variation mean that quizzes marks are lower than other marks and vice 
versa. The overall trend of the figure shows that quizzes marks are normally lower than 
lab marks for students who achieved less than 70% in quizzes but higher for students 
who achieved more than 70%. Also, the figure shows that assignments variation is high-
est overall, showing a range of –60 to 100%. The reason for such variation is caused by 
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students earning 0 in their assignment either because of not submitting or plagiarising, 
which entitled them to have the lowest mark of 0. 

Fig. 2 plots marks variation from assignments marks. The general trend increases 
from negative for low assignments marks to become positive for higher marks. That 
means students who achieved zero or low marks in assignments are normally achieving 
better marks in other assessment methods. Many students achieved highly in assess-
ment methods such as midterm and final but got zero on the assignments. That varia-
tion could give an indication of low motivation to do assignments or of the plagiarism 
behaviours that led to the low results. As assignment marks increase above 40%, they 
become higher than those for other assessment methods, which we believe is normal, as 
students have more time to work on the assignment and learn from fellow students how 
to solve it. However, this flexibility in assignments should have a higher impact, as many 
students probably aim to solve the assignment for the sake of marks but not for the sake 
of understanding and mastering programming. 

The mark variation from the midterm is shown in Fig. 3, with a general increase from 
negative for low midterm marks to positive for higher marks. The figure shows high 
variation of assignment marks, which can again be attributed to the considerable number 
of students who achieved zero. It is interesting to note that the variation of lab marks is 
always negative when midterm marks are less than 55% and become positive afterwards. 
That means lab marks are higher than midterm marks for students who achieved less 
than 55% on their midterm. This could be because the lab environment is more casual 
than the midterm and lets students think more and more effectively, learn and get help 
from other students in particular, students of a low level in programming. The variation 
of the final exam from the midterm is lowest across all marks, which could be because of 
the similar nature of the two exams (written exams that explicitly test students’ knowl-
edge of certain programming concepts). 

Fig. 4 plots variations from lab marks, showing a clear gap between students’ marks 
gained in the lab. This may be due to the casual marking procedures in the lab, where 
marks are always rounded. It is very clear that lab marks do not correlate with other 
marks, as the variation is always high and inconsistent. For example, some students 
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achieved well in the final exam, and so the variation of their final marks from their lab 
marks is extremely different. This variation of marks could give an indication of the 
importance of the lab as a method of teaching and of making students more comfortable 
in studying. However, the weight of the lab should be reduced in order not to affect the 
real performance of students. 

The variations of final exam marks from other assessment methods are plotted in 
Fig. 5, where a clear correlation with the total marks is clearly identified. This correlation 
is because the final exam accounts for a big percentage (40%) of total marks and because 
variations of other assessment methods cancel each other out in the total marks. The mid-
term is the most closely correlated assessment method with the final exam, with several 
cases showing final exam marks higher than midterm marks. This is logical, as normally 
students with low marks in midterm try to work harder after the first midterm. The high-
est variation from the final exam marks is in lab marks, where final marks are always 
lower than lab marks except for students who achieved above 80% on their final. 

Fig. 6 plots the total marks earned in the course against individual assessment meth-
ods. As seen in the previous figures, the final exam and midterm are the best proxies for 
total marks, and labs and assignments the worst.

4.2. Different Instructors in One Term

This section presents and analyses students’ marks across different sections of the course 
taught by different instructors in the same term. Major course instructions were unified 
by unifying exercises, quizzes, lab exams, midterm exam and final exam. As in the pre-
vious section, we compare each assessment method’s marks against the others. (Note 
that assignments were not used this term). Then, each method’s marks are compared 
with the total marks. Figures Fig. 7 to Fig. 11 plot the variation of marks, where the X-
axis represents the fixed assessment method mark and the Y-axis shows the percentage 
of variation from that mark for the other assessment methods marks. 
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The variations of marks from quizzes are plotted in Fig. 7, where the general trend 
shows that as the quizzes marks increase, the variation is also increasing. Variations start 
with negative values between –5% and –45% when quizzes marks are around 0 and be-
come positive for higher quizzes values, up to 88% for some students.

The overall picture of the figure show that quizzes marks are normally lower than 
lab marks, especially for students who achieved less than 50% in quizzes, and that this 
changes to –+20% variation for students with high marks in quizzes. It is very interesting 
to note that as quizzes marks increase, variation with the final exam increases as well. 
That means that students who achieved highly in their quizzes are not always doing so 
well in their finals. As a result, quizzes cannot be used to represent final exam results. 

Fig. 8 shows variation from the midterm exam, where the midterm is always higher 
than the final exam and where, as the midterm mark increases, the variation increases 
slightly as well. The variation with lab marks is always negative, which means lab marks 
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in most cases are higher than midterm marks. The variation of total marks from midterm 
marks is the lowest across all marks; thus, overall total results can be estimated easily 
from the midterm results.

Fig. 9 plots the marks variations from the lab marks, where variations increase as 
lab marks do, from negative for low lab marks to positive for higher lab marks. Unlike 
other marks, there is a gap observed for the low lab marks, as lab instructors did not 
give low marks in most cases. This gap does not align with the other marks, for instance 
midterm and final marks, which are distributed across the axis. Lab marks in most cases 
are higher than final exam marks; this is true also for MT and quizzes marks in relation 
to lab marks that are higher than 83%.

Figures Fig. 10 and Fig. 11 plot variations against final exam and total marks respec-
tively. It is clear that final exam marks correlate with total marks, which is expected, as 
the final exam accounts for 40% of the total. Final marks are clearly always lower than 
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other marks, which gives an indication of the difficulty of the exam in comparison to the 
other assessment methods. The midterm correlates second most closely with total marks, 
and labs and quizzes the least. 

4.3. Summary

The summary of the two experiments (one Instructor across terms and different instruc-
tors in one term) is given in this section. The results show slight differences between the 
trends in the two data sets, which makes it hard to generalize across them in most cases. 
However, there is some clear evidence of important issues and of correlations between 
some assessment methods. Figures Fig. 12 and Fig. 13 give a summary of the results of 
marks analysis for both experiments combined. Fig. 12 averages the marks variation of 
each assessment method against all other assessment methods, while Fig. 13 averages 
the deviation of the averaged marks variation for each assessment method. The two fig-
ures together show that quizzes and lab marks have the highest variation and deviation 
from final exam marks and that in most cases quizzes and lab marks are higher than final 
exam marks. This is as expected, as quizzes and lab exams are normally easier than the 
final, relate to more recently explained material, and have a less formal structure. The 
midterm results in the two figures are very interesting: they show that the midterm is the 
best indicator for total results, as it has the least variation and deviation when compared 
with total marks. That is probably because the midterm is always in the middle (between 
finals on one hand and labs and quizzes on the other) in term of difficulty, number of 
topics covered, and time allotted. 

The results of the first experiment, where assignments were given to students, indicate 
low motivation to do the assignments, as many students achieved zero scores in them but 
performed well on exams and in the course as a whole. The lab marks in many cases ei-
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ther underestimated good students or overestimated poor students, as clearly seen in Fig. 
9 where many students achieved low results in lab while achieving high or good results 
in quizzes and other assessment methods; this indicates the importance of lowering lab 
weights. Lab Marks are still valuable for learning and should be retained to encourage 
students to attend and participate but not to not to assess their programming skills. 

5. Conclusion

Previous work on factors that affect student performance in introductory programming 
courses clearly shows the importance of many factors that have direct or indirect effects, 
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including student motivation, confidence, comfort level, background and teaching style. 
Our analyses of marks gained during the CS1 course for different instructors across dif-
ferent terms show a clear correlation between certain marks within the course, mainly 
midterm, final and total marks. Lab and assignment marks do not correlate with other 
marks and are highly variable. Quizzes can be considered a slightly better way to mea-
sure student performance as they correlate slightly with total marks. Such results could 
be related to the studying culture in Saudi Arabia and to students’ previous perceptions 
of studying, i.e. students normally take exams seriously, but devote less attention to as-
signments and lab work. 

Simplifying the course structure and reducing its complexity have proven to have a 
positive effect on performance. Reducing complexity can be achieved by focusing on 
the fundamental concepts in programming and reducing the volume of course materi-
als. In addition, students probably need to be offered simpler mark distributions (that 
is, fewer assessment methods) as a complicated assessment framework might distract 
them from the main goal of the course. We suggest reducing the weights of labs, as-
signments and quizzes, and increasing the weights of final and midterm exams. We 
plan to extend this work by studying students’ motivation towards programming at 
Al-Imam University to see how that affects their performance. As previous work shows 
the benefits of a CS0 course prior to the CS1 course, we also want to see how marks in 
preparatory year courses might allow better guidance for students and whether these 
marks can be used as predictors for student success in CS1. In addition, we plan to see 
if there is gender variation in programming course marks and variations as all students 
in this study were male. 
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