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Abstract. Nondeterminism (ND) is a fundamental concept in computer science, and comes in 
two main flavors. One is the kind of ND that appears in automata theory and formal languages, 
and is the one that students are usually introduced to. It is known to be hard to teach. We present 
here a study, in which we introduced students to the second kind of ND, which we term opera-
tive. This kind of ND is quite different from the first one. It appears in nondeterministic program-
ming languages and in the context of concurrent and distributed programming. We study how 
high-school students understand operative ND after learning the nondeterministic programming 
language of live sequence charts (LSC). To assess students’ learning, we used a two-dimensional 
taxonomy that is based upon the SOLO and the Bloom taxonomies. Our findings show that after 
a semestrial course on LSC, high-school students with no previous experience with ND of either 
type, understood operative ND on a level that allowed them to create and execute programs that 
included nondeterminism on various levels and in various degrees of complexity. We believe that 
it is important to expose students to the two types of ND, especially as ND has become a very 
prominent characteristic of computerized systems. Our findings suggest that students can reach 
a significant understanding of operative ND when the concept is introduced in the context of a 
programming course.

Keywords: nondeterminism, project-based learning, live sequence charts.

1. Introduction

Nondeterminism (ND) is a fundamental concept in computer science. In Schwill’s work 
on fundamental ideas of computer science (1994), it is listed under the category of pro-
gramming concepts. As a fundamental idea, ND appears in various domains and con-
texts, falling into what Schwill referred to as the horizontal criterion. ND also meets the 
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other three criteria for fundamental ideas that Schwill defined: It can be taught on vari-
ous levels of complexity (the vertical criterion); its historical development can be traced 
back in the historical development of the discipline (the time criterion), in this case, to 
Rabin and Scott’s work on nondeterministic finite automata (1959), for which they were 
given the Turing Award; and, as a fundamental characteristic of the world, it is related to 
everyday language and thinking (the sense criterion).

ND appears in CC2001 (IEEE/ACM, 2001), but is not given much weight there, and 
is covered mainly in the elective unit on automata theory (AL7). There can be several 
reasons behind the low presence of ND in that curriculum, but we believe that a major 
factor is that ND was far less a prominent characteristic of computerized systems at the 
time that curriculum was developed. However, this has changed, as reflected, for ex-
ample, in a new knowledge area on parallel and distributed computing that was added in 
CC2013 (IEEE/ACM, 2013). The rationale that underlies this new unit is that “Given the 
vastly increased importance of parallel and distributed computing, it seemed crucial to 
identify essential concepts in this area and to promote those topics to the core” [pg. 32]. 
ND, especially of the kind considered in this paper, is one of these essential concepts.

In high-school, ND is probably out of the scope of most learning programs (Armoni 
and Gal-Ezer, 2006). (An example of a high-school program that does include ND is 
the Israeli high-school curriculum (Gal-Ezer et al., 1995).) At the high-school level, the 
relative importance of the concept plays a role, but also its complexity, as high-school 
programs usually deal with less advanced topics. However, if we adopt the rationale of 
CC2013, then concepts such as ND should be introduced on the less advanced levels too. 
As suggested here, this can be done in the context of a programming course, an approach 
that has two apparent advantages. First, it exposes the students to the kind of ND that 
appears in parallel, asynchronous and distributed computing. Second, the context of a 
practical, hands-on programming course is especially appropriate for introductory level 
students. This concurs with the spiral curriculum approach of Bruner (1960), according 
to which, fundamental ideas should be revisited repeatedly within the curriculum and 
throughout the years, each time delving deeper into them.

We note that some researchers view different appearances of ND as manifestations of 
the same thing (this viewpoint is expressed for example in (Armoni and Ben-Ari, 2009; 
Dijkstra, 1976)), but they can also be seen as different types of ND. Here we distinguish 
between two very different types of ND. The first is the one that appears in the context 
of automata theory and formal languages (through nondeterministic automata). On this 
type of ND there is a predetermined criterion for the success of the computation, accord-
ing to which it can be decided whether a specific computation is accepted or not. The 
second type of ND appears in the context of concurrent and asynchronous systems, and 
in nondeterministic programming languages. Examples of such languages include Dijk-
stra’s guarded commands (1975); logic programming languages, such as Prolog, usually 
have a nondeterministic semantics (though Prolog’s search rule actually makes its be-
havior deterministic); some modeling languages, such as Promela (which is mainly used 
for model checking), or scenario-based programming languages, such as live sequence 
charts (LSC) (Damm and Harel, 2001; Harel and Marelly, 2003a) (which is mainly a 
language for reactive system development), also have a nondeterministic semantics. At 
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the core of this type of ND lies the idea of true don’t care, which means that there is a-
priori no preference and all the possible computations are equally good. We refer to this 
second type as operative ND.

The main dichotomy between the two types of ND is as follows: the semantics of 
operative ND is universal by nature, in contrast to the existential semantics of Rabin 
and Scott. That is, in the latter case at least one of the nondeterministic possibilities is 
to be taken (and must lead to success for accepting machines) and in the former all are 
to be taken. Some difference between the two can be also captured by using the tax-
onomy proposed by Armoni and Ben-Ari (2009). Operative ND is meant to be run on 
a machine, and is consistent in terms of success/failure, but not necessarily in terms of 
the specific output. However, while this dichotomy tries to capture the main difference 
between the basic forms of these types of ND without delving into a theoretical (and 
controversial) discussion, it is important to mention that the issue is much more subtle. 
A thorough review of the different approaches to the connection between the semantics 
and execution models of ND programming languages can be found in (Armani and 
Ben-Ari, 2009). Specifically, we refer the reader to the opposing approaches of Hare 
and Pratt, and of Dijkstra.

In practice, it seems that students are usually introduced to ND in the context of au-
tomata theory and formal languages (Armani and Gal-Ewer, 2006), so they mostly meet 
ND of the first type. This type of ND is known to be difficult for teaching and learning. 
According to the findings of Armani and Gal-Ewer (2007), students avoid using ND 
in the context of computational models even when the nondeterministic automata they 
are asked to build are simpler than the deterministic ones, and when they do use ND, 
they show difficulties in creating quality solutions. Among other factors, students’ dif-
ficulties are related to the high abstraction level of the concept. This concurs with other 
findings reported by Armani and Gal-Ewer (2004), which show that students perform 
better on the technical aspects than on the theoretical and more abstract aspects of the 
computational models course. Students’ attitudes also play a role. According to (Armani 
and Gal-Ewer, 2007), students sometimes avoid using ND because they perceive nonde-
terministic solutions as illegitimate. The teaching is another factor, of course. According 
to (Armani et al., 2008), ND is sometimes presented in automata theory course in a way 
that can be interpreted by the students as predictable and consistent (i.e., deterministic). 
Finally, Armani and Ben-Ari (2009) state that since ND is not always introduced in vari-
ous contexts, its learning in the context of computational models can lead to a narrow 
perception of the concept, as something that is relevant only in this domain. To over-
come these, the aforementioned researchers suggest to introduce ND early in the cur-
riculum and according to the spiral principle, and to focus on the design of ND automata 
by the students themselves.

With respect to the learning of operative ND, Ben-David Kolkata (2004) identified 
the ND inherent in the execution of concurrent programs as the main source of difficulty 
in learning this subject.

There are studies that address both types of ND (without necessarily distinguish-
ing between them). Giant reported on difficulties in perceiving the concept of don’t-
care (2010), as it appears in the context of solving algorithmic problems. He related the 
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problems found to the ability to move from a concrete to a more abstract perspective, to 
accept an arbitrary ordering or a random starting point, and more. Ben-Ari (2010) de-
scribed an interesting approach for teaching concurrency and ND of the first type, using 
a self-developed tool that is based upon the SPIN model checker.

We concur with the rationale of CC2013, and believe that it is important to introduce 
students to both types of ND. In order to evaluate the feasibility of teaching operative 
ND on the high-school level, we examined the learning process of high-school students 
that were introduced to this concept in the context of a programming course on LSC and 
scenario-based programming. Since operative ND is tightly connected to concurrent and 
asynchronous programming, it is natural to introduce it in the context of such a course, 
as this kind of programming is inherent to LSC. Furthermore, we believe that such a 
course should emphasize learning-by-doing. Numerous sources, e.g. (Schank et al., 
1999), indicated that when engaged in learning-by-doing, also known as hands-on learn-
ing, students gain better and lasting retention of the learned material.

To achieve this, our course followed two pedagogic principles – the “zipper princi-
ple” (Gal-Ezer et al., 1995), and project-based learning. The zipper principle means that 
theoretical lectures are interweaved with hands-on experience in the lab, in which the 
students exercise the learned concepts on a small scale and in a controlled setting. This 
supports gradual, bottom-up learning of the basic programming constructs and the ex-
ecution model. Project-based learning (Blumenfeld et al., 1991) is basically a top-down 
learning approach. Students start from what they want to build, and use their knowledge 
(and if needed, acquire additional knowledge) in order to realize it. This requires the 
learners to synthesize their knowledge, gives it a real-world context, and emphasizes 
collaborative work. Among other things, project-based learning also increases motiva-
tion and engagement. A more detailed description of the course and the pedagogic ratio-
nale that underlies it will be published separately.

Based upon the results of the research that we present below, we believe that high-
school students can indeed reach a significant understanding of operative ND. One ad-
vantage of our approach is that it does not require adding an isolated topic to the curricu-
lum. It can be implemented by extending an existing programming course with the new 
concept. To enable this, the main issue is to choose the appropriate language.

The rest of the paper is organized as follows. In Section 2 we briefly describe LSC. 
In Section 3 we present the research question, the methodology, and the findings. In Sec-
tion 4 we discuss the findings, and in Section 5 we present our conclusions.

2. Live Sequence Charts

In this section we briefly describe the language of live-sequence charts (LSC) and its 
development environment, the Play-Engine. The language was originally introduced in 
(Damm and Harel, 2001) and was extended significantly in (Harel and Marelly, 2003a) 
and (Harel and Marelly, 2003b). LSC is a visual specification language for reactive sys-
tem development. LSC and the Play-Engine are based on three main concepts, which we 
now briefly review.
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2.1. Scenario-Based Programming

LSC introduces a new paradigm, termed scenario-based programming, implemented 
in a language that uses visual, diagrammatic syntax. The main decomposition tool that 
the language offers is the scenario. In the abstract sense, a scenario describes a series 
of actions that compose a certain functionality of the system, and may include possible, 
necessary or forbidden actions.

Syntactically, a scenario is implemented in a live sequence chart. An example is 
shown in Fig. 13.

A chart is composed of two parts – the pre-chart, and the main-chart. The pre-chart 
is the upper dashed-line hexagon, and it is the activation condition of the chart. In case 
that the events in the pre-chart occur, the chart is activated. Execution then enters the 
main chart. This is the lower rectangle, which contains the execution instructions. The 
vertical lines represent the objects, and the horizontal arrows represent interactions be-
tween them. The flow of time is top down. The chart in the example describes a simple 
scenario taken from the implementation of a cruise control. Once the user presses the 
brake pedal, the cruise unit releases control of the brake and the accelerator, and then 
turns itself off.

2.2. The Play-In Method

LSC is supplemented with a method for building the scenario-based specification over 
a real or a mock-up GUI of the system – the play-in method (Harel, 2000; Harel and 
Marelly, 2003a,b) – which is implemented in the Play-Engine. With play-in, the user 
specifies the scenarios in a way that is close to how real interaction with the system oc-
curs. This is illustrated in Fig. 24. The figure shows a GUI of a cellular phone, and a sim-
ple LSC diagram containing a scenario that describes what the display and the speaker 

3 Figure Fig. 1 reproduced from (Alexandron et al., 2013)
4 Figure Fig. 2 reproduced from (Alexandron et al., 2014)

Fig. 1. LSC chart3.
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should do once the user closes the cover of the cell phone. The GUI and the scenario are 
taken from the examples that are supplied with Play-Engine (Harel and Marelly, 2003a). 
The focus here is on how this scenario was ‘programmed’ into the system. This was done 
by clicking on the components of the GUI (i.e., by playing with the GUI).

One of the motivations behind this ‘programming through the interface’ approach is 
to allow people who are not familiar with LSC (or even with other programming lan-
guages), to program the behavior of an artifact, or parts of it relatively easily.

2.3. The Play-Out Method

LSC has an operational semantics that is implemented by the play-out method (originally 
introduced in (Harel and Marelly, 2003b)). It too is included in the Play-Engine. Play-out 
makes the specification directly executable/simulatable. When simulating the behavior, 
the programmer is responsible for carrying out the actions of the potential end-user and of 
the system environment. Play-out keeps track of the user/external actions, and responds 
to them according to the specification. The play-out algorithm interacts with the GUI to 
reflect the state of the system on the y. For more details see (Harel and Marelly, 2003a).

2.4. Nondeterminism in LSC

LSC is a nondeterministic programming language. At its core, the kind of ND that is 
inherent in the language stems from the idea of don’t care: At each point of the com-
putation, there are some branches that can be taken, where all the branches are equally 
good. To achieve that, the language supplies mechanisms that allow to describe various 
aspects of the system behavior without being forced to introduce determinism into the 
implementation, when it is not derived from the requirements. Here we briefly review 
some of these mechanisms. For more details see (Harel and Marelly, 2003a).

Fig. 2. The play-in method4.
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One example is LSC’s partial order scheme. In LSC, the default ordering (in and 
between charts) is nondeterministic, but in several cases (defined by the partial order-
ing rules) the order of execution between some of the events is mandatory. An example 
can be seen in Fig. 3, in which the order between the two assignments of Key.Value into 
to X1 and X2 is nondeterministic, but due to the sync event (the dashed-line hexagon), 
these two events must happen before the ‘Show’ event, i.e., in a deterministic order.

Another example is LSC’s existential binding of symbolic instances, which allows 
stating that a certain activity should be done by some object, without having to state 
which object. An example can be seen in the left chart in Fig. 4. The ‘Key::’ object (the 
upper dashed-line rectangle) represents any of the 1–9 digit keys.

Other constructs include the must vs. may modality, which allows stating that a 
certain behavior is optional, meaning that it may or may not be executed, depend-
ing on external (thus, nondeterministic) conditions; select, which is a weighted case 
construct, with the weights defining the probability of choosing each of the branches; 
and more.

As a model of computation, LSC also includes parts that implement an asynchro-
nous, thus nondeterministic, semantics. For example, this is the semantics of asynchro-
nous messages.

In the course, the students were introduced on various levels to all the above, except 
for asynchronous messages.

3. The Study

The research question that we studied is how high-school students understand operative 
ND after learning the language of LSC. The motivation was to check whether students 
can reach a significant understanding of operative ND after learning LSC, as learning 
ND in its various flavors in known to be hard for students (see Section 1). As discussed 
below, the students had no previous background or knowledge regarding nondetermin-
ism, and we were not interested in checking whether teaching operative ND through 
LCS is more effective than teaching operative ND with other possible methods. Thus, 
we did not use a comparative design or a pre-post design. Rather, we assessed students’ 
knowledge during and after the teaching process. This approach is inline with other stud-
ies that focus on how certain methods can be used to achieve desired learning objectives. 
One example is the work of Meerbaum-Salant, Armoni and Ben-Ari (2010), who studied 
how the Scratch programming language can be used for teaching basic computer science 
concepts.

The study was carried out on the basis of a course on LSC and its underlying para-
digm, scenario-based programming. The collected data included exam questions, pro-
gramming projects given as a final assignment, and post-interviews held with represen-
tative students. To assess students’ learning, we used a two-dimensional taxonomy and a 
combined quantitative and qualitative methodology.

This section is organized as follows. First we describe the research setting. Second 
we describe the analysis tools and process. Third we present the findings.
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3.1. The Research Setting

The context of the study was a forty-five hours (three hours per week) semestrial course 
given to nineteen 12th grade (age: 17–18) high-school students majoring in computer 
science (gender makeup: 10 girls, 9 boys). The course was developed and executed as a 
pilot course aimed at teaching scenario-based programming and reactive systems devel-
opment with LSC, and it was mandatory for the students of the class that was chosen for 
the experiment. As described in Section 1, the course structure was arranged according 
to two pedagogic principles – the “zipper principle” (Gal-Ezer et al., 1995) (the first half 
of the course), and project-based learning (the second half of the course). The projects 
were developed in groups, under the guidance and assistance of the teacher. There were 
five groups, each of three or four students. The project was to implement a reactive 
system, and the students could either choose the system by themselves, or choose some-
thing from a list that the teacher prepared. Students’ projects included implementing a 
memory game (“Simon”), modeling the behavior of an elevator, etc. The students were 
also given written exams in which they were required to comprehend and modify sys-
tems (or parts of systems) implemented in LSC.

3.1.1. Students’ Previous Experience
Our students experience in computer science included two introductory comput-
ing courses and a course on computer organization and assembly languages, taken in 
grades 10 and 11. During the first semester of grade 12, the students took a course on 
computational models. In order to allow the instruction of the LSC course in the second 
semester of this grade, the computational models course, that usually spans over the en-
tire year (two semesters), was shortened to fit into one semester and thus did not include 
nondeterministic models. Also, during this grade the students took a yearly course on 
software design. In none of these courses they were introduced to the concept of ND or 
concurrent programming.

Teaching ND was also not an explicit objective of the LSC course, but an issue that 
emerged due to the need to explain the nature of LSC and due the fact that the students 
were not familiar with the concept. Thus, the teacher gave the students a formal defini-
tion of the concept at the beginning of the course, and referred to this definition after-
wards when discussing nondeterministic semantic issues (see section 2.4).

3.2. Assessing Students’ Understanding

To assess students’ learning, we used a two-dimensional taxonomy, which can be viewed 
as a table. Each cell in the taxonomy represents a certain level of learning. By analyzing 
the data, we estimate the extent to which each level of learning was achieved. Our tax-
onomy is a slight variation of the two-dimensional taxonomy of Meerbaum-Salant et al. 
(2010), which was developed to assess students’ learning of computer science concepts. 
It is built upon two existing taxonomies. The vertical axis is based upon Bloom’s tax-
onomy in its revised form (Anderson et al., 2001), and the horizontal axis is based upon 
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the SOLO taxonomy (Biggs and Collis, 1982). The taxonomy is presented in Table 15. 
The table also includes the analysis approach used for each category.

We find this combination appropriate for our purpose because the Bloom and the 
SOLO taxonomies refer to two dimensions that grasp essential properties of the pro-
gramming activity.

Bloom’s taxonomy classifies knowledge according to the ability to perform actions 
in increasing level of cognitive complexity. From Bloom’s taxonomy we chose to focus 
on two categories (out of six): Creating and Applying. We find this subset appropriate for 
our purpose due to several reasons. First, the operational interpretation of these catego-
ries in the context of programming seems relatively natural, and is straightly associated 
with the activities that the course focused on – the understanding of the language seman-
tics and the creation of programs. Understanding of the semantics was operationally de-
fined as the ability to mentally simulate or track algorithms, and was associated with ap-
plying. Creation of programs was interpreted as creating (See more on the interpretation 
below). Debugging, which is more naturally associated with analysing and evaluating 
in the revised Bloom’s taxonomy, was less emphasized in the course. Second, as several 
authors have mentioned, Bloom’s categories can overlap, and the classification of opera-
tions into categories can be ambiguous (Fuller et al., 2007). Thus, we concentrate on one 
intermediate category (applying) and one higher category (creating). This allows us to 
consider the categories in a somewhat broader form, which makes the classification less 
ambiguous, and produces a significant amount of data in each category.

Concentrating on a subset of the categories, or using fewer meta-categories, is an 
accepted approach. See for example in (Lister and Leaney, 2003; Meerbaum-Salant 
et al., 2010).

The SOLO taxonomy puts the focus on the scope of the learning activity, from a local 
to a global and holistic perspective. We find this very natural for describing program-
ming activities, since it is inline with the structure of computer programs which are built 
by composing smaller functional pieces together to obtain higher level functions. From 
the SOLO taxonomy we chose to focus on the three intermediate categories (out of five): 
Unistructural, Multistructural, and Relational. These categories have a relatively natural 
operationalization in the context of ND in LSC (see below). The lowest category of the 
original five (Prestructural) is of less interest for us, since it gives very little information 
about what was learned. The highest category of the original five (Extended Abstract), 
which is mainly about transfer, was not relevant in the context of our course and study. 

5 Table reproduced from (Alexandron et al., 2013)

Table 1
The taxonomy and the analysis conducted on each category5

Unistructural Multistrcutural Relational

Applying Quantitative + Qualitative Quantitative + Qualitative Qualitative
Creating Quantitative + Qualitative  Qualitative Qualitative
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The way we use the SOLO taxonomy is somewhat different from the common use 
of this taxonomy in computer science educationComputer Science Education research 
papers. The SOLO taxonomy is usually used for assessing students’ learning, and per-
formed by comparing students’ answers to a given question versus an optimal answer 
to this question. The assumption is that the question can be answered in a way that 
reveals understanding till the highest SOLO level, so an answer that reveals understand-
ing till a lower level indicates a problem or an insufficient learning. See for example in 
(Lister et al., 2006).

For us, this methodology is less appropriate since it focuses on the highest level 
achieved, while we are also interested in the milestones and the knowledge obtained 
on lower levels. Thus, we looked for evidence of significant learning that occurred on 
several levels. This rationale was applied to the quantitative and qualitative analysis 
that we conducted. In the quantitative analysis, we therefore used exam questions of 
varying levels of complexity, and each question was classified into the highest SOLO 
level that this question measures. In the qualitative analysis, which was based on the 
projects submitted by the students and on the interview held with them, we looked for 
evidence for learning that occurred on each category of the taxonomy. Though this is 
a less common use of SOLO, it actually concurs with Biggs’ ideas, for example of us-
ing the SOLO taxonomy for devising a test containing ordered-outcome items (Biggs, 
1999).

The two taxonomies are hierarchical, and the categories are referred to as inclu-
sive. However, in the combined taxonomy we do not give superiority to either of the 
taxonomies, so we do not assume any hierarchy between categories in addition to the 
hierarchy that can be derived from the individual taxonomies. This is a weaker relation 
than the one suggested in (Meerbaum-Salant et al., 2010), which gave superiority to 
the SOLO taxonomy in order to have a fully ordered taxonomy. For our purpose a full 
order is not required.

3.2.1. Operationalization
As discussed in (Meerbaum-Salant et al., 2010), experts find it hard to agree on the inter-
pretation of the taxonomies for CS tasks. We follow the interpretation suggested in that 
study, and adapt it to LSC. This yields the following operative definitions for the atomic 
components of the two-dimensional taxonomy.

From Bloom’s taxonomy:
Applying: the ability to execute algorithms or code. In the context of LSC, this  ●
is the ability to track and simulate pieces of code that contain a nondeterministic 
element.
Creating: the ability to plan and produce programs or algorithms. In the context  ●
of LSC, this means to implement an LSC program (or pieces of it) that contains a 
nondeterministic element/s.

From the SOLO taxonomy:
Unistructural: local perspective. The interpretation to LSC means acting in the  ●
scope of a single chart. In our case, this syntactic-based criterion was enough, 
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since the charts were simple and short (it is possible that a long, complicated chart 
could not be considered as Unistructural).
Multistructural: a perspective that incorporate multiple LSC charts. ●
Relational: holistic perspective, referring the whole program or a property of it. ●

For example, the combined category of Creating/Relational, in the context of ND, 
describes the ability to create an LSC program in which ND is an essential characteristic 
that affects top-down design decisions. The interpretation of Creating/Multistructural is 
creating a program that contains ND which involves multiple charts. On this level, it is 
enough that ND is the result of a local programming decision or an emerging property 
(as long as the programmer is aware of the nondeterministic semantics of the code).

3.2.2. Mapping the Data into the Taxonomy
As said, our objective was to assess the level of knowledge obtained on each category 
of the combined taxonomy. On the more simple categories (up and left in Table 1), we 
used a quantitative analysis to calculate a score that represents the level of knowledge 
obtained. This score was based on the results of questions given in the course exams. 
The qualitative analysis was used to get deeper understanding of the learning outcomes, 
by finding evidence for learning that occurred on each of the categories. To complete the 
picture, we also describe problems encountered. The qualitative analysis was based on 
the projects and the post-interviews. The type of analysis conducted on each category is 
presented on Table 1.

3.3. Findings

We start with presenting the quantitative findings, and then continue to describe the 
qualitative findings. A summary of the findings is given in section 3.3.3.

3.3.1. Quantitative Findings
The quantitative analysis was based on the exam questions. Overall, we used four ques-
tions, one per category, except for the category of Applying/Unistructural, for which we 
used two questions (since this is the lowest category, more questions fitted it; the ques-
tions are described below, within the subsections describing the findings in the specific 
categories). The analysis was conducted as follows. First, for each category that was 
quantitatively assessed, we graded the question/s belonging to this category (this grad-
ing referred only to the nondeterministic elements of the question, so it was different 
from the exam grading). A full and accurate answer was given 100%, a partial answer 
was given 50%, and a wrong answer was given 0%. Finally, each category was given 
the average score of all answers belonging to it. Because the exam questions were elec-
tive, we could not guarantee that all the questions will be answered by the same group 
of students. However, since we refer to the quantitative results only as a benchmark, 
we preferred to include all the answers, rather than focusing only on the subset of the 
students that answered exactly the same questions.
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To process was validated as follows. The classification of questions into categories 
was validated by an expert who was not part of the research team, and who classified a 
sample of 25% of the questions that were used. This classification was similar to ours. 
To verify the grading, a sample of 33% of students’ answers was graded independently 
by two of the authors, and the grades were compared. The level of agreement was high 
(above 90%).

The questions that were used for each category are shown below. The results are 
summarized in Table 2.

Applying/Unistructural. The question contained a chart describing some scenario 
(taken from the specification of a calculator). The chart is shown in Fig. 36. Due to the 
semantics of LSC, there is no mandatory order between the two actions X1:=Key.Value 
and X2:=Key.Value located in the lower rectangle. The students were requested to i) 
identify whether the code can be executed in several orders, and ii) If so, to supply two 
possible orders. The two sub-questions got the same weight. This question is classified 
as applying because it requires the students to execute a given algorithm, and as uni-
structural because this algorithm resides in the scope of a single chart. This question 
appeared as an item in a question that was mandatory, so all the students that took the 
test (18 out of 19) answered it. We also used in this category a question from another 
exam, in which the students were also required to identify possible orders within a 
single chart (taken from another system). This question was elective, and nine of the 
students answered it.

Applying/Multistructural. The question contained the LSC charts shown in Fig. 4 
(the scenarios were taken from the specification of a cell-phone). The semantics is 
that the left-hand chart launches the event Send(Memory.Number) that activates the 
right-hand chart. There are several possible legal ways to carry out the combined ex-
ecution, since there is no mandatory order between the actions in the right-hand chart. 
The students were requested to i) write the events that will be executed during the run 

6 Figure reproduced from (Alexandron et al., 2013)

Fig. 3. Applying/Unistructural6.



Teaching Nondeterminism Through Programming 13

of these two diagrams; ii) identify whether the code can be executed in several orders, 
and if so, iii) to supply two possible orders. All the sub-questions got the same weight. 
This question is classified as Apply because it requires the students to execute a given 
algorithm, and as Multistructural because this algorithm is captured by the combination 
of two charts.

Creating/Unistructural The given question was as follows: “Add a scenario imple-
menting the following requirement: When the user turns the main switch of one of the 
ovens off, the light and the heating element of this oven are shut down.” This question 
includes a nondeterministic element because there is no mandatory order between the 
action of turning off the oven’s heating element, and that of turning off its light. Thus, 
a proper answer to this question should include a chart that does not restrict the order 
between these actions and allows all legal execution paths. An example of a correct an-
swer is shown in Fig. 5. Due to the semantics of LSC, there is no order between the two 
‘state(Off)’ actions. We consider this question as Create because it requires the student to 
create a new piece of code, and as Unistructural since this is done in the local scope of a 
single chart. The question was elective, and was chosen by ten of the nineteen students.

However, using this question as an operational measure for the creation of nondeter-
ministic code includes a delicate issue. Assume that a student gave a valid answer that 
did not restrict the order between the two actions. Does this mean that the student actu-
ally knew that the code he/she was writing contains this exibility; i.e., that its execution 
is nondeterministic? To make sure that we actually consider only such students, and not 

Fig. 4. Applying/Multistructural.

Fig. 5. Creating/Unistructural.
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students that might have written this code without being aware of its nondeterministic 
semantics, we took only students who showed (on another task) that they can identify 
ND in the context of a single chart. This means students who answered the questions 
classified as Applying/Unistructural (see above) correctly. This process filtered out one 
student who answered this question correctly, but who did not correctly answer the Ap-
plying/Unistructural question. So we remained with nine students, all of whom suc-
ceeded in this question.

This issue is related to a more general dilemma, which, in turn, is related to what 
can be considered the ‘creation of ND’ in LSC. In LSC, creating nondeterministic code 
is sometimes easier than creating deterministic code, and creating a nondeterministic 
program can be sometimes done without understanding its underlying nondeterministic 
semantics. Thus, we had to decide whether we consider as creating all the cases where 
ND is created, or only the cases were we can confidently say that ND was consciously 
created and understood. We chose the more restrictive option. This interpretation forced 
us to exclude some of the findings, but it is more consistent with the taxonomy (a point 
also referred to in the discussion).

Summary of the quantitative results. Table 27 summarizes the score calculated for 
each category. N stands for the number of answers considered. As can be seen, students’ 
achievement on these categories are satisfactory.

3.3.2. Qualitative Findings
The qualitative analysis was based on students’ final projects in LSC, and on the post-
interviews held with four representative students (one student per group, except for one 
group of three students that did not submit its project). With the exception of student #4, 
who was chosen mainly because of her enthusiasm and dominance in the team, the other 
students were chosen more or less at random, based on their availability.

The qualitative analysis was validated with an expert who is a CS education re-
searcher and was not part of the research team. The expert was given one of the four 
projects (the Simon project), and the interview that was held with the representative of 
the group that created this project (student #4). The expert was then requested to analyze 
in depth the data, map it to the appropriate category/ies of the taxonomy, and explain the 
mapping. The expert’s mapping was similar to ours, but she backed it up with a different 
argument. Overall, the process reinforced our confidence in the findings, and enriched 
them with another perspective.

7 Table reproduced from (Alexandron et al., 2013)

Table 2
The quantitative results7

Unistructural Multistructural Relational

Applying   83%, N = 26 76%, N = 18
Creating 100%, N = 9
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In general, the lower level categories (such as Applying/Unistructural) were relevant 
to all the projects. The higher level categories were relevant to some of the projects, 
since the nature of the projects put an upper bound on the level of dealing with ND in the 
project. Our findings indicated that all the students reached a sufficient level of under-
standing in the lower- to intermediate-level categories, and that the students who created 
projects that included ND on a level that fell into the higher categories, also reached a 
sufficient level of understanding on that levels. This is demonstrated below by examples 
illustrating the knowledge that was built in all the categories, together with examples 
illustrating some difficulties that were observed. The analysis is presented top-down, 
from the higher level category to the lower level one. This ordering was chosen in the 
purpose of facilitating the presentation, since the description of the high-level categories 
includes a description of the projects, which helps to understand the context in which the 
low-level categories reside.

Creating/Relational: This is the highest category of the taxonomy. Below we first show 
how learning that belongs to this level was manifested in one project, and then how 
the design decisions taken by the students in another project reveal some difficulties 
involved in understanding ND on this level.

Student #4 and her teammates developed a variation of the ‘Simon’ memory game. 
The game works as follows: The user is given a random sequence of four colors, and 
is then required to repeat this sequence by heart. In case of success, a new random se-
quence is given. The crux of the game is the nondeterministic output of the program, so 
creating a program that is arranged around this main theme required an abstract view 
and a global understanding of the role of ND in the program. The fact that the students 
perceived this element as the essence of their project was manifested in their design de-
cisions. Except for its nondeterministic behavior, they did not insist on any of the other 
apparent characteristics of the original game (color, sound, form, increasing length of the 
sequence). Thus, we consider this kind of creation to be relational.

Obviously, this game can be implemented in various programming languages. How-
ever, it seemed that with LSC creating a program that uses ND as a programming means 
was straightforward for them. This is exemplified by a contradicting example. The stu-
dent mentioned that she built Minesweeper game in the Assembly language course. This 
game also has a nondeterministic property (the location of the bombs on the board). 
When asked what the difference between the projects was, the student said:

S: I didn’t make it random [the Minesweeper in Assembly], there was 
only one board, it was always the same game, so if you remembered 
the location of the bombs you could always win... 

With LSC the student did implement this basic property of the game. In fact, the 
student (and her teammates) implemented this property twice, using two different non-
deterministic features of the language (this was due to a bug in the development environ-
ment, which the students found when debugging their system. The debugging process is 
described and analyzed in the next category). This process, in which the same abstract 
property was implemented twice using different mechanisms, reinforced our belief that 
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the use of ND in this project revealed a high level learning, and that this learning was 
related to the nondeterministic nature of LSC.

A difficulty related to learning ND on this level was revealed in the project of one 
of the groups. This group modeled the behavior of an elevator (we later refer to it as the 
‘elevator group’). However, they didn’t know how to address the requirement that users 
on different floors can call the elevator simultaneously. To overcome this, they designed 
their system under the assumption that the system can receive a new request only after the 
previous one was handled. Though concurrency is the main issue behind this relaxation 
of the requirements, ND and concurrency are closely related, as we noted before. The fact 
that the students preferred not to deal with this requirement indicates that they had a dif-
ficulty (at least according to their subjective feeling) in creating a system that addresses it. 
On the other hand, it also indicates that they were able of recognizing the implications of 
this requirement on the complexity of the system and the scenarios it needs to handle.

The findings suggest that when introduced through a nondeterministic programming 
language, it might be easier for students to adopt ND as a tool in their programming ‘tool 
box’. However, we can still expect to see difficulties related to ND in this level in the 
context of concurrency.

Applying/Relational: During the development process, the semantics of the language 
are used to develop a program that achieves the desired goals. The implementation 
process can be described as ‘cyclic refinement through simulation’ (Alexandron et al., 
2011): In each implementation step, the program is executed and the gap between its 
real behavior and its desired behavior (as expected by a mental simulation) is assessed. 
Then, another implementation cycle is carried out, to add functionality, fix bugs, etc. 
Thus, building a program involves a mental simulation of the developed artifact, and this 
mental activity falls into what we defined as applying.

This was manifested, for example, in the behavior of student #4 and her teammates. 
As described above, ND played a central role in the project of these students. They first 
tried to achieve the desired randomized behavior using one nondeterministic feature of 
the language – existential symbolic instances. However, there was a bug in the develop-
ment environment that caused this feature to actually behave in a deterministic manner, 
so it gave the same output each time. The students were very surprised because they ex-
pected to see nondeterministic behavior, and the deterministic behavior surprised them:

I: In the first [attempt] you had a different solution, which uses exis-
tential symbolic instances, right?
S: Yes, but we saw that it always randomizes the same thing, and we 
wanted it to be a real randomization.

So, based on the cognitive model described above, the fact that the student had a 
(valid) expectation of the program’s behavior is an indication of a mental simulation 
that in this case involves a nondeterministic property. Thus, we interpret it as applying. 
Also, the assessment process required that the students: i) Have the notion of a single 
execution of the program, which is composed of a sequence of events, as an instance 
(i.e., an object of thought; capturing an algorithm as an ‘object’ is considered a high level 
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of abstract thinking (Perrenet et al., 2005)), and ii) Compare between such instances of 
several runs. This is a ‘meta’ perspective. Thus, we consider this behavior as relational.

A difficulty related to learning nondeterminism on this level, in the context of con-
currency, was revealed in the interview with student #2, who was part of the ‘elevator 
group’. As described in the previous section, this group built their system under the as-
sumption that it does not need to handle concurrent calls from the user. In the interview, 
the student was asked to describe the system behavior in case the system indeed receives 
concurrent calls, and was not able to supply a sufficiently detailed answer. We interpret 
this task as applying, since the question was to mentally simulate the system behavior, 
and as relational because it requires a meta-perspective of the system (the student does 
not know which modules can be affected, so he needs to consider the entire system).

Creating/Multistructural: Into this category we ascribe design and/or coding of pro-
gram modules that contain multiple LSC diagrams, and in which ND plays an important 
role. An example is given in the project of student #1 and her teammates. The student 
modeled a coffee machine. In this project ND served as an abstraction means, in the 
sense that it allowed the students to define simultaneous scenarios without committing to 
specific execution order between the scenarios in places where no specific order was re-
quired. The project included two diagrams that are activated simultaneously as response 
to a certain system event. Once the activation event is launched, either of the charts can 
progress, which means that the interleaving of the executed events is nondeterministic. 
The order of execution can very between runs, and the program is correct under all the 
possible orders. The students relied on the fact that the scenarios can progress simultane-
ously, that there is no mandatory order between them, and that this does not affect the 
correctness of the program:

I: So both scenarios can progress simultaneously?
S: Yes.
I: And does it matter?
S: I don’t think so.
I: but is it something that you considered? Did you think whether the 
charts will be activated together or not?
S: Yes, but they can be activated together without interfering each 
other [...]

So, we see that when programming with LSC programmers learn to use ND as an 
abstraction means, and that the ND built into LSC helps them to reduce the cognitive 
load involved in programming by allowing them to ignore unnecessary implementation 
details such as the order of execution. However, we also saw evidence of difficulties 
in creating knowledge on this level. For example, student #2 showed that he is able of 
mentally simulating ND in the context of several charts (this example is also discussed 
in the next category, Applying/Multistructural), but he then mentioned that actually only 
one of these nondeterministic behaviors was desired, but that he did not know how to 
solve it. This means that the student had a problem with creating. However, to be more 
specific, the problem was with removing ND, not with creating ND.
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Applying/Multistructural: We interpret a mental simulation of the program as ‘Apply-
ing’. When such a mental simulation involves multiple charts, and includes a nondeter-
ministic element, we ascribe it to the category of Applying/Multistructural. An example 
was given in the behavior of student #2. As described on the previous category above, 
the student’s project included unwanted nondeterminism between two charts. In the fol-
lowing excerpt, the student demonstrates that he is capable of simulating the nondeter-
ministic execution.

I: So I understand that you wanted the elevator to be shut down only 
after all of this [the scenario in chart E] happens, right?
S: Yes, but I understand that there is nondeterminism here, if it opened 
the elevator, so this might happen before that [i.e., before the chart is 
over].

So, the student understood that an execution that involves two charts can take various 
routes, and he was mentally able to simulate these routes. In this case, the student also 
specifically used the term ‘nondeterminism’.

Creating/Unistructural: This level refers mainly to a programming activity that takes 
place in the scope of a single chart. For example, student #4 used the nondeterministic 
features of LSC to achieve randomization in the Simon project. As described above, the 
first attempt did not succeed, due to a bug in LSC’s development environment. To by-
pass this and achieve randomization, the student used select, which is a different feature 
of LSC, which has nondeterministic semantics. Select allows the developer to supply a 
list of weighted choices, with the execution engine randomly picking one of the choices 
according to the weights. The student’s description indicates that she understood this 
semantics and used it as the randomization core of the program:

I: Let’s look at the diagram that does the random choice of the 
squares. This diagram is called ‘Random’. Can you explain to me 
what it does?
S: I noted that square ID’s were 1 to 4, so I made it choose with a 
probability of 25% a number between 1 and 4, and to do it four times. 
Every time it chose a place [i.e., an ID], it opened another diagram 
that highlighted this place [i.e., the square with this ID]...

Since this semantic expression operates in the scope of a single chart, we consider 
this as Create/Unistructural. Again, this is an explicit use of nondeterminism to achieve 
randomization. The use of nondeterminism as an abstraction means, which allows writ-
ing a scenario without committing to a specific order between (some of) the events in the 
scenario, was seen in all the projects.

Applying/Unistructural: This is the lowest level of knowledge that we measured. It 
refers to the ability to mentally simulate a piece of code that includes a nondeterministic 
element. As this is a relatively local and low-level operation, it was assessed mainly us-
ing the exam questions (see the quantitative analysis). However, we would like to show 
one example that illustrates the hierarchy of the taxonomy, and how this hierarchy cor-
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responds to the operational definitions that we used. Consider the behavior of student #2 
that was described in the Apply/Multistructural category: The student mentally simulat-
ed the nondeterministic execution of two charts (i.e., a Multistructural level activity) by 
composing the nondeterministic execution of the two single charts (i.e., an Unistructural 
level activity). So, the more global perspective is composed of more local perspectives, 
and thus contains them.

3.3.3. Summary of Findings
To summarize the findings, we saw that:

Students were able of understanding nondeterministic systems on a level that al-i). 
lowed them to mentally simulate parts of the systems or the systems as a whole, 
in a way that considered the nondeterministic element of the system. On this level 
we found some evidence of problems when ND was associated with a high-level 
of concurrency in the level of the entire system.
Regarding the ability to create nondeterministic systems, we found that:ii). 

Almost all the students were able to create ND in the local scope of a specific a. 
module, or in the wider scope of several modules. In this context ND was 
usually used as an abstraction mechanism, which enabled hiding unnecessary 
implementation details as the order of execution.
Some of the students demonstrated the ability to create ND in the scope of a b. 
whole system. However, we saw some evidence of students trying to avoid 
dealing with ND on the level of the entire system when it was associated with 
a high-level of concurrency.

4. Discussion

We believe that teaching operative ND in the context of a programming course that 
includes hands-on experience of building and executing systems promotes meaningful 
learning of the concept. Our course followed two pedagogic principles, the zipper ap-
proach, and project-based learning (see Section 1).

The zipper approach (Gal-Ezer et al., 1995), which emphasizes small intervals in 
which basic programming constructs are learned and exercised simultaneously in the 
lab, allows the students to build a functioning mental model of the basic components of 
the language and its execution model. Since even some of the most basic components of 
LSC have nondeterministic semantics, ND is there from the start. This creates a learning 
environment in which ND is the “normal situation”, as suggested by Dijkstra ((Dijkstra, 
1976), p. xv). When this is the case, the students can gradually develop their understand-
ing of the concept, and along the way, get used to the idea of using it. This is opposed 
to the way ND is introduced in courses on automata theory, as an extension to the basic 
model, which requires the students to substantially extend their mental model in one 
leap, yielding a cognitive difficulty. It also gives the students a feeling that ND is not 
the normal situation, potentially causing him/her to resist accepting ND as a legitimate 
solution (such an attitude was reported in (Armoni and Gal-Ezer, 2007)).
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Another characteristic of LSC that promotes the meaningful learning of operative ND 
are the various appearances of the concept and the different levels of complexity therein. 
For example, the issue of nondeterministic order within a chart, and between charts, is 
mathematically the same, but cognitive-wise, the latter is harder. However, dealing with 
the former first gives scaffoldings to deal with the more complex appearance. The fact 
that the concept appears in various ways (through different constructs – see Section 2.4) 
allows using it while solving different kinds of programming problems. This provides 
diverse opportunities for learning the concept, what is known to support transfer.

Arranging the second half of the course around projects allowed us to achieve several 
educational goals. First, working on projects emphasizes creation on all levels (from 
low- to high-level). Since ND is very prominent in LSC, this inherently involves the 
creation of ND, through different constructs and on various levels of complexity. It is 
reasonable to assume that creation activities in which ND is both inherent and significant 
promote the understanding of ND on the level that falls into Bloom’s Creating. Indeed, 
we believe that a major strength of our approach is promoting the use of operative ND 
on this level. This is in contrast to the difficulties that were reported in using ND on this 
level in the context of automata theory.

Second, project-based learning promotes assembling the disconnected pieces of knowl-
edge. As a result, the students develop a higher level of understanding, and we feel that 
this is another advantage of the suggested approach. It is widely believed that a high-level, 
unified view of the learning subject supports its retention and is a prerequisite for non-
specific transfer. However, verifying this was not in the scope of the present research.

Third, there is no doubt that projects increase students’ engagement and motivation. 
Especially, this seems to be the cae when the students can choose the project on their 
own, and when the language allows them to create systems that are meaningful and 
interesting for them (as opposed to languages that force them to spend a lot of time on 
low-level details). For example, two of the groups continued to work on their projects 
even after the course ended, although they were fully aware of the fact that this work 
was not going to be assessed.

Together, all these established a learning framework that seems to promote meaning-
ful learning of operative ND. We thus believe that operative ND can be taught on the 
level of high-school and undergraduate programs, using LSC or some other appropriate 
nondeterministic programming language with similar properties.

We would like to stress two issues that arise from the findings and should be consid-
ered when applying the results of this study for developing learning materials.

First, a main advantage of our approach is that it allows the students to deal with 
operative ND on the level of creating, which is considered the highest level of learning 
in Bloom’s taxonomy. Thus, it is very important to arrange the learning, or parts thereof, 
around projects and hands-on activities.

Second, in some ways, creating a nondeterministic program in LSC is easier than 
creating a deterministic one. As discussed in Section 3.3.2 (Creating/Multistructural), 
we saw a difficulty in removing ND and creating deterministic code. While this provides 
an opportunity to deal with a different aspect of the subject, it indicates a potential issue 
that can emerge when using a language in which ND is the default behavior.



Teaching Nondeterminism Through Programming 21

5. Summary and Conclusions

We have studied how high-school students understand operative ND after taking a se-
mestrial course in which they learned the nondeterministic programming language of 
live sequence charts (LSC).

Our findings show that after the course, the students demonstrated a significant un-
derstanding of operative ND, on a level that allowed them to mentally simulate nonde-
terministic programs on different level of complexities, and to create nondeterministic 
programs by themselves.

We believe that it is important to expose students to operative ND, which is inherent 
in nondeterministic programming languages like LSC, and in concurrent programming, 
and not only to the kind of ND that appears in automata.

Thus, we suggest to consider embedding the teaching of operative ND somewhere 
along the stream of programming courses, using a nondeterministic programming lan-
guage like LSC. An interesting question for further research is the effect of learning 
operative ND on the learning of the kind of ND that appears in automata theory. Namely, 
whether learning operative ND first can improve students’ achievements in the parts that 
deal with ND in courses on automata theory.
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