
Informatics in Education, 2015, Vol. 14, No. 2, 175–197
© 2015 Vilnius University
DOI: 10.15388/infedu.2015.11

175

Testing Algorithmic Skills in Traditional and
Non-Traditional Programming Environments

Mária CSERNOCH1, Piroska BIRÓ1,
János MÁTH2, Kálmán ABARI2

1 University of Debrecen, Faculty of Informatics, Hungary
2 University of Debrecen, Faculty of Arts and Humanities, Hungary
e-mail: {csernoch.maria, biro.piroska}@inf.unideb.hu,
{math.janos, abari.kalman}@arts.unideb.hu

Received: February 2015

Abstract. The Testing Algorithmic and Application Skills (TAaAS) project was launched in the
2011/2012 academic year to test first year students of Informatics, focusing on their algorith-
mic skills in traditional and non-traditional programming environments, and on the transference
of their knowledge of Informatics from secondary to tertiary education. The results of the tests
clearly show that students start their studies in Informatics with underdeveloped algorithmic skills,
only a very few of them reaching the level of extended abstract. To find reasons for these figures
we have analyzed the students’ problem solving approaches. It was found that the students, al-
most exclusively, only consider traditional programming environments appropriate for developing
computational thinking, algorithmic skills. Furthermore, they do not apply concept and algorith-
mic based methods in non-traditional computer related activities, and as such, mainly carry out in-
effective surface approach methods, as practiced in primary and secondary education. This would
explain the gap between the expectations of tertiary education, the students’ results in the school
leaving exams, and their overestimation of their knowledge, all of which lead to the extremely
high attrition rates in Informatics.

Keywords: algorithmic skills, spreadsheet, deep and surface metacognitive approaches, self-as-
sessment, school leaving exams.

1. Introduction

That the computer has become ubiquitous is not in question. The question is how effec-
tively we can use it. This simple question, however, starts an avalanche of other ques-
tions. Wing stated that “Computational thinking is a fundamental skill for everyone, not
just for computer scientists. To reading, writing, and arithmetic, we should add compu-
tational thinking to every child’s analytical ability.” (Wing, 2006). Most school curricula
have been changed in the last two decades to support this approach by emphasizing the

M. Csernoch et al.176

importance of the development of digital literacy and competency. In most countries
these competences have been integrated into traditional school subjects and/or a new
subject was introduced. This latter alternative is effectively the equivalent of formal edu-
cation in CSI. However, formal education requires teachers, and teachers require teacher
education. At this point the loop is closed, and we are faced with the chicken and the egg
problem: who teaches the teachers if there are no teachers? In CSI education this is one
of the most crucial questions and for an answer we have to look back in time to the emer-
gence of the subject. The contradictions, both in the science itself and in the developing
commercial world as it has interacted with the science, affect teachers, teacher education
and consequently the development of digital competency and literacy. What should we
teach and how should we teach CSI in and outside of formal education?

The very first question is: “Should we teach students to program?” In 1993 Soloway
claimed that “…those students who wish to major in computer science should learn to
program in school, but for them, learning to program is simply vocational training.” (So-
loway, 1993). However, he did not make it clear which school(s) should be responsible
for teaching programming. He and his colleagues went further, claiming that every-
one should develop algorithmic skills, but non-traditional programming environments
would fit non-professionals better. Twenty years later, however, we are faced with the
problem that non-professional end-users do mainly unplanned, aimless clicking in the
GUI and are satisfied with unchecked, non-bugged results, (Ben-Ari, 1999; Csernoch
and Biró, 2014a, 2014b; EuSprig, 2015; OECD, 2011; Panko and Aurigemma, 2010;
Powell et al., 2008; Tort et al., 2008; Van Deursen and Van Dijk, 2012). This behavior
leads to the extremely high number of documents and programs carrying mistakes and
errors, causing serious financial losses (Panko and Aurigemma, 2010). The other source
of losses is the human factor; the time and the number of participants needed to produce
this questionable result (Van Deursen and Van Dijk, 2012). However, what do we know
about the professionals? About those who – according to Soloway (1993) – are supposed
to learn programming as their vocational training. Is their level of digital competency
higher than the level of the non-professionals? Are they prepared for high level pro-
gramming when they start their tertiary education in Computer Sciences? Do they know
what Computer Sciences are when they enter universities and colleges? We doubt it. We
have come to realize that the terminology usage and the algorithmic skills of students
arriving at the Faculty of Informatics – especially since the number of students in In-
formatics has increased – have not developed to match the requirements of courses in
higher education.

2. Sample

2.1. The Tests of the TAaAS Project

However, neither the realization of the students’ underdeveloped algorithmic skills, nor
the high percentage of dropout CSI students, nor the high number of semesters the stu-
dents spend in their CSI studies (Csernoch and Biró, 2013b; Tan and Venables, 2010) can

Testing Algorithmic Skills in Traditional and Non-Traditional ... 177

indicate exactly what the students do or do not know when they start their tertiary educa-
tion. To see clearly what knowledge the students have brought with them, we launched
the TAaAS project (Testing Algorithmic and Application Skills) in the 2011/2012 aca-
demic year at the Faculty of Informatics of the University of Debrecen, Hungary (Biró
et al., 2014, 2015, Biró and Csernoch, 2013a, 2013b, 2013c, 2014; Csernoch et al., 2014;
Csernoch and Biró, 2013a, 2013b, 2013c, 2014a, 2014b, 2014c).

The TAaAS project is a paper based testing process, which focuses on the level of the
participants’ algorithmic skills, their usage of terminology, and their problem-solving
abilities in different software environments. It runs on different levels. Each level has its
own purposes, but they meet at the end.

Introductory test: Testing BSc, BA, MSc, MS students and student teachers of ●
Informatics on the first week of their first semester.
CAAD test: Testing students’ spreadsheet knowledge after covering spreadsheet ●
with a deep approach metacognitive method, entitled the Computer Algorithmic
and Debugging based approach (CAAD) (Csernoch and Biró, 2015b).

The primary aims of the testing are to reveal the students’ level of understanding, the
connection between the similar tasks presented in the different software environments,
the students’ level of terminology usage, and their level of computational thinking.

2.1.1. Introductory Test
The date of the introductory test is strictly set to the first week of the students’ tertiary
course in order to test the knowledge they have gained in their previous studies, in such
a way as not to be influenced by the curriculum of the new institute. The introductory
test includes two questionnaires:

General information, attitude and self-assessment questionnaire. This takes about ●
10–15 minutes, and then the papers are collected.
Informatics questionnaire, which is the primary test. This takes about 45 minutes, ●
with eleven task of traditional programming, spreadsheet programming, word
processing, handling files, and calculation in different numeral systems.

The general paper includes questions relating to the students’ computer usage habits,
their results in the school leaving exams in Mathematics and Informatics (SLE, 2014),
in competitions testing Informatics, and ECDL (2014), if they have taken part in any.
The other sets of questions focus on the students’ self-assessment: how they evaluate
their knowledge in the different subfields of Informatics, and what further studies they
think they need. With the third group of questions we are testing the students’ approach
towards spreadsheet programming, which is closely related to our CAAD test.

2.1.2. CAAD Test
It was realized that the metacognitive problem solving approaches involved in com-
puter related activities have never been mapped. We have found the problem solving ap-
proaches used in other sciences (Case and Gunstone, 2002) and in programming (Booth,
1992), but not a complete typology to cover all computer related activities. To fill this
gap, we have merged the previously published problem solving typologies and made

M. Csernoch et al.178

the necessary amendments (Csernoch and Biró, 2015c). The result is a typology which
consists of two deep approach methods – concept based (Polya, 1954; Booth, 1992; Case
and Gunstone, 2002) and Computer Algorithmic and Debugging (CAAD) based (Booth,
1992, Csernoch and Biró, 2015b) – and three surface approach methods – algorithmic
based (Booth, 1992; Case and Gunstone, 2002), information based (Booth, 1992; Case
and Gunstone, 2002), and Trial-And-Error Wizard (TAEW) based (Csernoch and Biró,
2015b). The latest covers all the unplanned sequences of activities which are carried out
in the GUI (Graphical User Interface), without the users necessarily knowing whether
the output is the result of the original problem or not.

While building her typology for programming approaches, Booth proved as early as
the early 90’s that functional languages are effective as introductory languages (Booth,
1992). The simplicity of these languages allows us to focus on the problem, instead
of the coding details. However, these findings have never reached the wider public. In
the meantime, based on similar theoretical backgrounds, a novel tool, spreadsheet pro-
grams appeared on the market. However, the programmability of spreadsheets has never
reached the wider public, either. These two ends – programming in functional languages
and a user-friendly tool for coding – have met in Sprego (Csernoch, 2012, 2014; Cser-
noch and Biró; 2015a, 2015c; Csernoch and Balogh, 2011).

We have introduced Sprego, which is a deep approach metacognitive method to teach
building algorithms in spreadsheet environment. The core of the method is that spread-
sheet is taught and handled as a programming language (Sestoft, 2010), which would
serve either as an introductory language for professionals or as the ultimate language
for end-user programmers (Biró and Csernoch, 2013a; Csernoch, 2012, Csernoch and
Balogh, 2011; Warren, 2004). The method focuses on the development of algorithmic
skills. As such it breaks with the traditional, but ineffective, TAEW-based (Trial-And-
Error Wizard-based) methods in spreadsheets (Csernoch and Biró, 2014b). Its main idea
is that for novices we introduce as few and as simple functions as possible, and teach
how to create multilevel functions using these simple functions to solve problems. With
the development of the students’ skills the number of functions can be increased, but the
focus is still on simple, not software specified, functions.

With the CAAD-test our goal was to reveal how the students’ deep approach problem
solving abilities are developed in non-traditional programming environments.

2.1.3. Data Sources of the TAaAS Project
In the evaluation phase of the TAaAS project we focus on comparing the results of the
tasks presented in different programming environments, and on the results of the differ-
ent sources and testing methods. The statistical analyses of the data deriving from the
different sources might provide explanations for the unsatisfactory level of our students,
and guidelines for improving the effectiveness and efficiency of our primary and second-
ary CSI education.

Our further aim is to widen the project, and to test students from different institutes
and countries to see the similarities and differences, to reveal which education systems
best support the development of algorithmic skills and computational thinking and which
approaches should be adapted to make the other systems work effectively.

Testing Algorithmic Skills in Traditional and Non-Traditional ... 179

We do not share those extreme opinions which blame birotical (computer-related of-
fice tools) software (Gove, 2012, 2014) for any distracting effect, and consequently, for
making CSI education ineffective. We argue that these programs are harmless; the com-
mercialized world developed on the basis of these programs and teachers’ unconditional
acceptance of the TAEW-based approaches has led us to our current fiasco. We further
argue that since programs are algorithm driven, if we therefore teach any software from
an algorithmic point of view, we would be much more successful, and students’ compu-
tational thinking would develop, which is the ultimate goal.

2.2. Participating Students

The TAaAS project was launched with three major programming BSc courses at the Fac-
ulty of Informatics of the University of Debrecen (DE): Software Engineering (SOE),
System Engineering (SYE), and Business Information Management (BIM), and was re-
peated in the following years under similar conditions, with altogether 950 DE students
taking part (Table 1). The project was extended in the 2013/2014 academic year, when
three more Hungarian institutes joined: Eötvös Loránd University (ELTE, Budapest),
Eszterházy Károly College (EKF, Eger), and the College of Nyíregyháza (NYF, Nyír-
egyháza) (Biró et al., 2014; Csernoch et al., 2014; Csernoch and Biró, 2013b).

The school leaving exams are held at intermediate and advanced levels, and to enter
tertiary CSI education students can choose which level they take (SLE, n.d.). Mathemat-
ics is compulsory, while Informatics is not, which explains the lower number of exams
in Informatics. Due to some students from foreign countries and some uncompleted
questionnaires, the number of students taking the Mathematics exams is lower than the
expected 950 (Table 2).

We have to note here that in Hungary there has been formal CSI education both in
primary and secondary education since the 1995 National Curricula was launched (NAT,
1995, 2003, 2007, 2012; European Schoolnet, n.d.). According to these documents, CSI
studies should start as early as the 1st grade and continue until the 12th grade. However,
the realization of the National Curricula, in the form of the frame curricula (Kerettanterv
2000, 2009, 2013), shows different results, and these CSI classes do not provide enough
space and time for the development of algorithmic skills in traditional programming
environments.

Table 1
The number of students at the Faculty of Informatics of the University of

Debrecen participating in the TAaAS project in the three testing years

SOE SYE BIM Sum

2011/2012 115 86 109 310
2012/2013 108 111 101 320
2013/2014 115 115 90 320
Sum 338 312 300 950

M. Csernoch et al.180

The results of the school leaving exams in Informatics were found significantly high-
er than in Mathematics in all the three majors (Wilcoxon signed rank tests: p < 0.001),
both at intermediate and advanced levels. However, the results of the school leaving
exams do not show significant differences between the three majors in Mathematics
(Kruskal-Wallis probe: χ2(2) = 5.802, p = 0.055). In Informatics significant differences
were found between the three majors (intermediate: χ2(2) = 8.451, p = 0.015, advanced:
χ2(2) = 14.41, p < 0.001), while the comparison of the pairs found only the SOE students’
results differed from those of the BIM students. Given the low number of students taking
the advanced level Mathematics exam, we cannot say anything about the differences, but
their results seem very similar (Table 2).

We can conclude that according to the results in the school leaving exams, the stu-
dents start their tertiary education in CSI with similar knowledge, both in Informatics
and in Mathematics, while their problem solving skills are on a higher level in Infor-
matics than in Mathematics. Based on these data, we can assume that students would
produce similar good results in the test.

2.3. The Tasks of the TAaAS Project

In the present article we compare the results of three of the algorithmic tasks of the
TAaAS tests. The tasks are different in nature.

Task 1: ● An algorithm with a multilevel if structure, which has an X and Y pair for
input, with three possible input values – A, B and 0, and with only four possible
output values – 3, 2, 1 and 0. A table is presented with 9 pairs of inputs, and the
output cells must be filled in. Previous analyses proved that this is the easiest task
among the three (Fig. 1) (Biró et al., 2014, 2015).
Task 2: ● Three pseudo codes and an accompanying picture with the input values
presented. The task is to tell what the codes do (Fig. 2).

Table 2
The students’ results in the school leaving exams in Informatics and in Mathematics

SOE SYE BIM Average

 School leaving exam (SLE) – intermediate level

Informatics 84.1
(N=175)

82.2
(N=237)

80.8
(N=193)

82.3
(N=605)

Mathematics 74.1
(N=277)

71.4
(N=265)

74.4
(N=252)

73.3
(N=794)

 School leaving exam (SLE) – advanced level

Informatics 72.5
(N=127)

66.4
(N=37)

55.7
(N=16)

69.7
(N=180)

Mathematics 68.1
(N=22)

70.3
(N=17)

68.9
(N=24)

69.0
(N=63)

Testing Algorithmic Skills in Traditional and Non-Traditional ... 181

Task 3: ● Programmable spreadsheet problems accompanied with a sample table
(Fig. 3). The three tasks to solve with formulas – four in 2013/2014 –, and a mul-
tilevel spreadsheet formula to decode, are similar to Task 2.

Both Tasks 1 and 2 are borrowed from a Hungarian programming competition for
students of 5–8th grades (NT, 2009).

To evaluate Task 2 the different categories of understanding of the SOLO taxonomy
were adapted to the special circumstances of the test:

Ignored (1). ●
Prestructural (2). ●
Unistructural (3). ●
Multistructural (4). ●
Relational (5). ●

The Extended abstract category of the original classification is left out, since it has
no relevance in the test (Biggs and Collis, 1982; Biró and Csernoch, 2014; Clear et al.,
2008; Lister et al., 2006; Sheard et al., 2008).

When handling spreadsheet as an environment for programming in functional lan-
guages, we were able to adapt the SOLO categories to the spreadsheet solutions (Biró
and Csernoch, 2014). Using this method we can compare traditional and non-traditional
programming solutions, the students’ level of understanding, and their approaches to
problem-solving in different environments.

You draw two cards (X, Y) from two
packs. In both packs you can find cards
with the letter A, cards with the letter B
and cards with zero. Give the points in the
last column of the table according to the
algorithm given below!

What do the following programs do? What is stored in variable DB and M?

N=50, measured values:
500,500,500,500,500,600,
600,650,700,750,820,880,
930,1010,1050,980,930,830,
780,720,720,710,700,750,
770,790,820,880,880,820,
760,740,600,500,560,670,
780,820,920,880,860,820,
770,770,760,750,740,740,
730,720.

Task 2.1 Task 2.2 Task 2.3
DB:=0
Loop from i=1 to N
 If X(i)>800 then DB:=DB+1
End loop

DB:=0
Loop from i=2 to N−1
 If X(i)<X(i−1) and X(i)<X(i+1)
 then DB:=DB+1
End loop

M:=0
Loop from i=2 to N
 If X(i)−X(i−1)>M then M:=X(i)−X(i−1)
End loop

What do the following programs do? What is stored in variable DB and M?

N=50, measured values:
500,500,500,500,500,600,
600,650,700,750,820,880,
930,1010,1050,980,930,830,
780,720,720,710,700,750,
770,790,820,880,880,820,
760,740,600,500,560,670,
780,820,920,880,860,820,
770,770,760,750,740,740,
730,720.

Task 2.1 Task 2.2 Task 2.3
DB:=0
Loop from i=1 to N
 If X(i)>800 then DB:=DB+1
End loop

DB:=0
Loop from i=2 to N−1
 If X(i)<X(i−1) and X(i)<X(i+1)
 then DB:=DB+1
End loop

M:=0
Loop from i=2 to N
 If X(i)−X(i−1)>M then M:=X(i)−X(i−1)
End loop

Fig. 1. The code, the input values and the empty cells for the outputs of Task 1.

You draw two cards (X, Y) from two
packs. In both packs you can find cards
with the letter A, cards with the letter B
and cards with zero. Give the points in the
last column of the table according to the
algorithm given below!

What do the following programs do? What is stored in variable DB and M?

N=50, measured values:
500,500,500,500,500,600,
600,650,700,750,820,880,
930,1010,1050,980,930,830,
780,720,720,710,700,750,
770,790,820,880,880,820,
760,740,600,500,560,670,
780,820,920,880,860,820,
770,770,760,750,740,740,
730,720.

Task 2.1 Task 2.2 Task 2.3
DB:=0
Loop from i=1 to N
 If X(i)>800 then DB:=DB+1
End loop

DB:=0
Loop from i=2 to N−1
 If X(i)<X(i−1) and X(i)<X(i+1)
 then DB:=DB+1
End loop

M:=0
Loop from i=2 to N
 If X(i)−X(i−1)>M then M:=X(i)−X(i−1)
End loop

What do the following programs do? What is stored in variable DB and M?

N=50, measured values:
500,500,500,500,500,600,
600,650,700,750,820,880,
930,1010,1050,980,930,830,
780,720,720,710,700,750,
770,790,820,880,880,820,
760,740,600,500,560,670,
780,820,920,880,860,820,
770,770,760,750,740,740,
730,720.

Task 2.1 Task 2.2 Task 2.3
DB:=0
Loop from i=1 to N
 If X(i)>800 then DB:=DB+1
End loop

DB:=0
Loop from i=2 to N−1
 If X(i)<X(i−1) and X(i)<X(i+1)
 then DB:=DB+1
End loop

M:=0
Loop from i=2 to N
 If X(i)−X(i−1)>M then M:=X(i)−X(i−1)
End loop

Fig. 2. The accompanying picture, the input data and the pseudo codes of Task 2.

M. Csernoch et al.182

3. Hypotheses

H1: Students of Informatics start their tertiary education with well-
developed algorithmic skills and computational thinking, with a
firm concept of computers, and with correct terminology usage.

H2: The results of the school leaving exams are able to tell apart the
different levels of knowledge, and serve as a correct measure of
algorithmic skills.

H3: The students of Informatics have the knowledge to provide correct
self-assessment values, indicating their knowledge in the different
fields of Informatics.

H4: The students’ algorithmic skills are software independent.

4. Results

4.1. Classification of Students

4.1.1. Preliminary Groups
The test results and the self-assessment values of the three majors at the University of
Debrecen (SOE, SYE, BIM – preliminary groups) are presented in Fig. 4–Fig. 6.

The students’ self-assessment values are higher in spreadsheet than in programming
in all the three preliminary groups; however, their results in the test proved exactly the

Task 3.1 How many African countries are in the table?

Task 3.2 What is the average population of those countries whose surface area is
smaller than G1?

Task 3.3 How many countries have a surface area greater than G1?

Task 3.4 {=SUM(IF(B2:B236="Europe",IF(LEFT(A2:A236)="A",1)))}

 Fig. 3. The sample table and problems of Task 3.

Testing Algorithmic Skills in Traditional and Non-Traditional ... 183

opposite (Fig. 4). Task 1 is found to be the easiest among the three different kinds of
tasks, and Task 3 the most difficult. BIM is the only group whose spreadsheet result is
slightly above the decoding tasks; in the other groups the results of both Tasks 1 and 2
are better than Task 3.

It is clear from figures Fig. 4 and Fig. 5 that the students’ results in Task 1 are above
both their programming self-assessment values and the results of the other two tasks. The
dominance of Task 1 over Task 2 is the straightforward consequence of the requirements
of the tasks. In Task 1 the students had to do nothing other than pick one out of the four
numbers, while in Task 2 semantically correct natural language sentences had to be writ-
ten after decoding the pseudo codes. The spreadsheet problems were found more difficult
than the students predicted (Fig. 4). However, if we study the most recently published

Fig. 4. The students’ results in the three tasks compared to their self-assessment
values in programming (S-A-P) and spreadsheet (S-A-S).

Task 3.1 How many African countries are in the table?

Task 3.2 What is the average population of those countries whose surface area is
smaller than G1?

Task 3.3 How many countries have a surface area greater than G1?

Task 3.4 {=SUM(IF(B2:B236="Europe",IF(LEFT(A2:A236)="A",1)))}

 Fig. 5. The students’ results in Tasks 1 and 2 compared to their programming
self-assessment values (S-A-P).

M. Csernoch et al.184

papers dealing with the high number of spreadsheet documents with errors (EuSprig,
205; Panko and Aurigemma, 2010; Powell et al., 2008; Tort et al., 2008), and the undue
length of time spent creating birotical documents (Van Deursen and Van Dijk, 2012), we
can conclude that the results of the test are not surprising at all. Beyond finding evidence
in these papers for the incorrectness of the spreadsheet documents, it is also covertly
evident that end-users either felt so comfortable about their knowledge or are so ignorant
of their non-existing knowledge that it does not occur to them to check their documents,
which is the well-known Dunning-Kruger effect (Kruger and Dunning, 1999).

Fig. 6 clearly shows that the students’ spreadsheet self-assessment values (S-A-S)
greatly exceed their results in the test. Beyond this fact, Task 3.1 shows similar results
to 3.4, while Tasks 3.2 is similar to 3.3 in the three majors (Wilcoxon signed rank tests:
Tasks 3.1 and 3.4, SOE, SYE, BIM: p = 0.3168, p = 0.4699, p = 0.4635; Tasks 3.2 and
3.3: p = 0.02531, p = 0.2642, p = 0.3363, respectively). The only significant difference
was found in the SOE group between Tasks 3.2 and 3.3. The differences between the
pairs are significant (Wilcoxon signed rank tests: pairs Tasks 3.1–3.4 and Tasks 3.2–3.3:
SOE, SYE, BIM: p < 0.001). The differences between these two pairs can be explained
by the nature of the tasks. Task 3.1 is a simplified task using constant and checking
equality in the condition. Task 3.4 is a complete array formula for decoding, which is
easier than creating formulas. On the other hand, both Tasks 3.2 and 3.3 are generaliza-
tions of Task 3.1.

The other characteristic of Task 3.4 is that it is included with the purpose that it
would serve as guideline for solving Tasks 3.1–3.3. However, the analyses of the solu-
tions proved that the students did not realize the connection between these four tasks
(Csernoch and Biró, 2014b). Students learn rules which work only for special problems,
and this is, as such, a surface approach method, referred to as the algorithmic-based
problem solving method in the Gase & Gunstone system (Case and Gunstone, 2002)
and as expedient in Booth system (Booth, 1992). We must note here that the surface ap-
proach methods referred to as algorithmic-based and expedient – in Case & Gunstone’s

 Fig. 6. The students’ results in the spreadsheet task compared to
their spreadsheet self-assessment values (S-A-S).

Testing Algorithmic Skills in Traditional and Non-Traditional ... 185

and Booth’s typologies, respectively – are different from our computer-algorithmic and
debugging (CAAD) deep approach methods (Csernoch and Biró, 2014b; Csernoch and
Biró, 2015c). Consequently, in this analysis we found that students are not able to do ab-
straction – their level of understanding is extremely low (for details see section 4.2.2).

4.1.2. Knowledge-Based Clusters in Task 1
Since Task 1 was found to be the most successful among the three tasks, it was used to
define knowledge-based clusters. Four clusters were easily distinguishable; C1L, C2L,
C3L and C4L, ranging from the best results to the worst, respectively. Those students
who did not try or complete Task 1 are placed in C4L.

The result of C2L is closer to C1L, while C3L is closer to C4L. However, the com-
parison between the results from C2L and C3L revealed a remarkable difference be-
tween the two middle level clusters. Their knowledge is different in nature. As we show
in Fig. 7, C2L indicates an average, uncertain knowledge, without any definable pattern.
Their knowledge is quite arbitrary. However, C3L is different in nature. In certain cases
they do almost as well as C1L, while in other cases their results are disastrous. This be-
havior of C3L led us to the conclusion that these students have limited knowledge. Until
they reach their limit they are able to solve the problems almost perfectly; however be-
yond their limit they try to find escape routes, and this strategy leads them in completely
false directions. In the case of Task 1 C3L did well when the input values of the X, Y
pairs were A and B (Fig. 7, #1, 2, 4, 5), however, when one of the input values was 0 they
concluded that the output should also be 0 (Fig. 7, #3, 6, 7, 8, 9).

Similar results were found when comparing the different Hungarian institutes in the
2013/2014 academic year (for details see Biró et al., 2014). The same four clusters with
the very same characteristics were found in the other institues, which clearly show that

Fig. 7. The results of the three clusters in Task 1.

M. Csernoch et al.186

the results are not specific to the University of Debrecen, but rather a general tendency.
To obtain further data we are planning to test other Hungarian and foreign institutes in
the following years.

4.2. Comparison of the Students’ Results

4.2.1. Results of Task 2
The results of the four knowledge based clusters in Task 2 are presented in Table 3, and
the behavior of the different clusters can be tracked in Fig. 8. The results for the clusters,
similar to the results in Task 1, follow a decreasing order in C1L, C2L, C3L and C4L, re-
spectively. The behavior of C3L, which can be recognized in Task 1, is also detectable in
Task 2; while C2L reaches Level 3 in all the three tasks with the highest percentage, until
C3L stops at Level 1. This is the only level where C3L is above C2L. The knowledge of
C3L in the decoding tasks of advanced primary school students is extremely limited.

4.2.2. Results of Task 3
It is clearly evident, both for the preliminary groups and for the C1L–C4L knowledge
based clusters, that the students’ results in spreadsheet are significantly lower than their
self-evaluation values (Wilcoxon signed rank tests: p < 0.001).

The spreadsheet problems of the test proved to be more difficult than the decoding of
the pseudo codes of Task 2. However, the result for the decoding of the array formula of
Task 3.4 is similar to the decoding of the traditional pseudo codes (Table 3).

Fig. 8. The students’ levels of understanding using the categories of the SOLO-taxonomy.

Testing Algorithmic Skills in Traditional and Non-Traditional ... 187

Using the same knowledge based clusters, C1L–C4L, the results of Task 3 were ana-
lyzed (Table 3). The differences between the clusters are significant, except for Task 3.3
(Kruskal-Wallis: Task 3.1: p < 0.001, Task 3.2: p = 0.034, Task 3.3: p = 0.3804, Task 3.4:
p < 0.001). However, when comparing the different pairs of clusters the differences are
not significant. In fact, only a couple of pairs were found with significant differences:
in Task 3.1 pairs C1L-C3L and C1L-C4L, in Tasks 3.2 and 3.3 none, in Task 3.4 pair
C1L-C4L.

The students were not able to recognize the similarities between Tasks 3.1–3.3 and
Task 3.4, and were not able to copy the solution of Task 3.4 to their formulas, but they
were able to decode it more easily than the traditional loops. This finding strengthens our
previously published results, which showed spreadsheet could be used as an introduc-
tory programming language using CAAD-based deep approach metacognitive methods
(Biró and Csernoch, 2013a; Csernoch and Biró, 2014b).

We have to confront the unfortunate situation that the clusters which worked well for
the categorization of the students in the programming task, do not work in the spread-
sheet task; they are not able to distinguish between the different levels of the students’
spreadsheet knowledge. This means that the students’ spreadsheet knowledge is not con-
nected to their ability to solve logical or programming tasks.

Considering these results, we selected another spreadsheet task in the test in order to
create new knowledge-based clusters: ‘What is the capital city of the largest country?’
– Task 3.0. The characteristic of this spreadsheet task is that it requires both a knowl-
edge of basic spreadsheet functions – index(), match() and max() – and the ability to
handle multilevel functions, and as such, is related to Mathematics, to programming and
to spreadsheet.

Three knowledge-based clusters were recognizable using Task 3.0: C1S, C2S and
C3S, moving from the best to the worst, respectively (Table 4, Fig. 9). Those students
who scored 0% in Task 3.0 make up C3S, and there is an extremely high number of these
students (452 students, 47.58%), compared to those in C4L (256 students, 26.95%).

Table 3
The results of the four clusters in Tasks 2 and 3 based on the logical task (Task 1),
and the self-assessment values in programming (S-A-P) and spreadsheet (S-A-S)

C1L C2L C3L C4L

N 279 205 210 256
S-A-P (%) 46.9 35.9 32.4 23.0
Task 1 (%) 99.8 70.3 51.2 0
Task 2.1 (%) 57.3 39.1 37.6 18.7
Task 2.2 (%) 46.1 23.7 20.8 9.5
Task 2.3 (%) 38.8 21.7 17.6 7.7
S-A-S (%) 75.3 72.4 74.5 71.5
Task 3.1 (%) 38.5 28.8 26.1 24.7
Task 3.2 (%) 13.5 8.9 9.1 7.4
Task 3.3 (%) 19.3 15.7 11.5 11.8
Task 3.4 (%) 41.0 29.3 32.4 23.4

M. Csernoch et al.188

This might explain why only two more clusters were distinguishable on the basis of
Task 3.0.

Similar results were found using the C1S–C3S clusters as with the C1L–C4L clus-
ters. There are significant differences between the results of the three clusters; however
the comparison of the pairs hardly show any differences between the three clusters
(Kruskal-Wallis: p < 0.001). We found the following pairs with significant differences:
Task 3.1 is the only problem where all the pairs are significantly different; in Task 3.2,
3.3 and 3.4 pairs C1S-C3S and C1S-C3S, which means that only C3S is different from
the others, while we cannot deduce anything from the two better groups. We can con-

Table 4
The results of the three clusters based on Task 3.0 and

their self-assessment values in spreadsheet (S-A-S)

C1S C2S C3S Average

N 185 313 452 950
S-A-S (%) 79.6 74.5 70.5 73.5
Task 3.0 (%) 47.64 9.78 0.00 12.5
Task 3.1 (%) 49.64 36.41 17.41 29.95
Task 3.2 (%) 17.67 15.22 2.98 9.87
Task 3.3 (%) 25.76 20.30 5.25 14.86
Task 3.4 (%) 47.57 37.91 21.17 31.82

Fig. 9. The results of the three S clusters in solving the spreadsheet tasks,

applying the SOLO categories of understanding.

Testing Algorithmic Skills in Traditional and Non-Traditional ... 189

clude that selecting a spreadsheet task as the basis for the knowledge based clusters
proved no better than selecting a logical task (Task 1). These results further strengthen
our previously published results which showed that students solve spreadsheet prob-
lems with surface approach methods, without supporting their solutions with algo-
rithms. For better understanding and better results in solving spreadsheet problems
CAAD-based deep approach methods should be applied. To obtain proof for this result
we applied the SOLO categories of understanding to the spreadsheet solutions (Biró
and Csernoch, 2014).

Fig. 9 presents the levels of understanding in the spreadsheet tasks of the different
S clusters. Unfortunately, in all the three tasks the most frequent level is 1, Ignored.
From now on we focus on the non-zero results. C3S stops at Level 1, in all the four
spreadsheet tasks. A couple of students in the cluster solved Task 3.4 at Level 5, and
some non-zero solutions were found for Task 3.1, but almost nothing for Tasks 3.2 and
3.3. In C2S and C3S in Task 3.1 the most frequent level of understanding is 3, Unistruc-
tural understanding. The difference between the two clusters is that C2S stops at this
level, while C1S reaches Level 5. In Task 3.2, which is a three folded generalization of
Task 3.1, both C2S and C3S stop at Level 3, so they are at the Prestructural and Uni-
structural levels. In C1S in Task 3.3, which is a two folded generalization of Task 3.1,
the most frequent level is 3, but we can find solutions both at Levels 4 and 5. On the
other hand, in C2S Level 2 is the most frequent, and the others follow in descending
order. In Task 3.4 the pattern is simple: as the number of clusters increases the level of
understanding decreases.

It is remarkable that Level 4 is the least frequent. This means that spreadsheet knowl-
edge, unlike traditional programming, can hardly be categorized as Multistructural. Stu-
dents either know the solution or they do not. We argue that it should not be like this,
and that TAEW-based methods have led the students to this state. Beyond this, we have
proved that when teaching spreadsheet with a CAAD-based method the importance of
Level 4 increases (Csernoch and Biró, 2014b).

4.2.3. School Leaving Exams
With the comparison of the students’ results in the test and in the school leaving exams
we wanted to see what is gained or lost by not considering the Informatics school leaving
exam as a compulsory requirement for entering tertiary studies in Informatics.

Both the L and S knowledge based clusters were used to compare the students’ re-
sults in the test to their results in the school leaving exams. Table 3, Figures 10 and 11
show that there are differences between the clusters in terms of the results of the school
leaving exams. The question was whether these differences are significant, and whether
the results of the school leaving exams are able to distinguish between the levels of the
students or not.

At advanced level Informatics only the C1L result was found to be significantly
higher than that of the other clusters (Kruskal-Wallis probe: advanced: χ2(3) = 14.53, p
= 0.002, intermediate: χ2(3) = 8.7, p = 0.012). In the comparison of the pairs at interme-
diate level C1L is different from the others, while at advanced level C1L can be distin-
guished both from C2L and C3L.

M. Csernoch et al.190

Table 5
The L clusters’ results in the school leaving exams

C1L C2L C3L C4L

 School leaving exam (SLE) – intermediate level

Informatics 84.1
(N=154)

80.6
(N=135)

82.1
(N=147)

82.2
(N=169)

Mathematics 77.2
(N=225)

69.7
(N=177)

72.2
(N=179)

73.1
(N=213)

 School leaving exam (SLE) – advanced level

Informatics 74.6
(N=85)

65.1
(N=40)

65.1
(N=28)

66.3
(N=27)

Mathematics 75.1
(N=24)

62.7
(N=10)

64.0
(N=10)

67.2
(N=19)

Fig. 1.

Fig. 2.

Fig. 10. The results of the C1L–C4L and the C1S–C2S knowledge-based clusters
in the school leaving exams in Informatics at intermediate and advanced levels.

Fig. 1.

Fig. 2. Fig. 11. The results of the C1L–C4L and the C1S–C2S knowledge-based clusters

in the school leaving exams in Mathematics at intermediate and advanced levels.

Testing Algorithmic Skills in Traditional and Non-Traditional ... 191

Analyzing the connection between the S clusters and the results of the school leav-
ing exams in Informatics, both at intermediate and advanced level, significant differ-
ences were found (Kruskal-Wallis probe: advanced: χ2(2) = 17.88, p < 0.001, interme-
diate: χ2(2) = 10.16, p < 0.001). Comparison of the pairs shows that C1S is different
from both C2S and C3S at both levels but that there is no difference between the C2S
and C3S pairs.

The comparison of the students’ results in the test and in the Informatics school leav-
ing exams clearly shows that the school leaving exams, especially at the intermediate
level, are not able to distinguish between the different levels of knowledge. The best
students do better in these exams, while there are no significant differences between
the others’ results. The connection between the school leaving exams and the S clusters
tends to be stronger than with the L clusters, a result which led us to the conclusion that
school leaving exams in Informatics, especially at intermediate level do not support the
algorithmic approaches, and as such should not serve as a selector for entry to tertiary
CSI education.

Consequently, not making the Informatics school leaving exam a requirement for en-
rolling on a course, nor as a measure to distinguish between students, is not a great loss.
Although in itself this is bad news, since it questions the reliability of this exam, on the
other hand, it seems a wise decision not to include it as a compulsory subject.

When comparing the results in the Mathematics school leaving exams and the clus-
ters, we must first of all note that a very low number of students take the advanced level
exams (Table 5). At intermediate level the school leaving exams, both in the L and S
clusters, show significant differences (Kruskal-Wallis probe χ2(3) = 25.79, p < 0.001,
χ2(2) = 10.16, p < 0.001). When comparing the pairs in Mathematics in the L clusters
C1L was found to be different from the other three clusters, but no other pairs were
found which differed from each other. In a similar way, in the S clusters C1S is different
both from C2S and C3S, but there is no difference between C2S and C3S.

We can conclude that neither the Informatics nor the Mathematics school leaving
exam at intermediate level are able to tell apart the different levels of the students’ algo-
rithmic skills and programming abilities. While the school leaving exams at intermediate
level were not able to distinguish between the different majors, the advanced Informatics
and our knowledge based clusters performed better.

4.2.4. Clusters and the Majors
We have seen that the school leaving exams were not able to distinguish between the
different majors (Table 2). However, the knowledge based L clusters clearly show that
the SOE students are present in the first clusters in the highest percentage, while BIM
students appear in the lowest clusters in the highest percentage (Table 6). The BIM and
the SOE students move in opposite directions. The SYE students in the L clusters are
almost equally distributed (Pearson’s Chi-squared test: χ2(6) = 100.1, p < 0.001).

It is difficult to discover anything more about the connection between the majors and
the S clusters because of the extremely high number of Level 1 performances produced
by the students in the spreadsheet problems (Table 7): in all the three majors the percent-
age of the students who were not able to solve Task 3.0 is between 45 and 50% (C3S).

M. Csernoch et al.192

The tendencies are the following: the percentage of the BIM students in the C1S cluster
is the lowest, while their percentage in C3S is the highest. The percentage of the SOE
students in C1S is the highest, while the SYE students lie between BIM and SOE. These
results are similar to those found with the L clusters.

However, more SYE than SOE students are classified as C2S (Pearson’s Chi-squared
test: χ2(4) = 15.32, p = 0.004). The differences using the S clusters are statistically sig-
nificant; however, these clusters are not able to distinguish the majors as well as the L
clusters.

5. Conclusions

Testing the first year students of Informatics when starting their tertiary education in
Hungary proved that students arrive from secondary education with underdeveloped al-
gorithmic skills, and a low level of understanding programming tasks; consequently, the
H1 hypothesis is not proved. Our high level of expectation was mainly based on the high
results achieved in the school leaving exams in Informatics. The reason that H1 must
be rejected is that we have proved by the analyses of the students’ results in the test that

Table 6
The number of students in the C11–C4L clusters compared to the majors

C1L C2L C3L C4L Total

BIM 47
 15.68%

 58
 19.33%

 71
 23.67%

 124
 41.33%

300
 31.58%

SYE 78
 25.00%

 74
 23.72%

 74
 23.72%

 86%
 27.67%

312
 32.84%

SOE 154
 45.56%

 73
 21.60%

 65
 19.23

 46
 13.61%

338
 35.58%

Total 279 205 210 2560 950

Table 7
The number of students in the C1S–C3S clusters compared to the majors

C1S C2S C3S Total

BIM 40
 13.33%

111
 37.00%

149
 49.67%

300
 31.58%

SYE 64
 20.51%

109
 34.945

139
 44.55%

312
 32.84%

SOE 81
 23.96%

 93
 27.51

164
 48.52%

338
 35.58%

Total 185 313 452 950

Testing Algorithmic Skills in Traditional and Non-Traditional ... 193

the school leaving exams in Informatics do not measure the students’ algorithmic skills.
These exams are able to distinguish the best students from the others, but are not able to
indicate the differences between the different levels of weakness. Consequently, we also
have to reject H2. Our results also suggest that spreadsheet problems are solved with
TAEW-based methods, and not through a deep-structural algorithmic approach.

It was found that the students’ self-evaluation in programming is quite acceptable.
However, we have proved in our previous analyses that the best students are aware of
their knowledge, while the worst evaluate their knowledge at approximately the same
level as the best (Biró et al., 2015), which is in accordance with the well-known Dun-
ning-Kruger effect (Kruger and Dunning, 1999). However, the spreadsheet self-assess-
ment values greatly exceed the students’ real knowledge. Based on the Dunning-Kruger
effect, we can conclude that in spreadsheet the students’ low level of knowledge pre-
vents them from forming a reliable self-assessment. The H3 hypothesis only works with
the best students in programming, and not with any of the preliminary groups, nor the S
the knowledge-based clusters.

Our analyses have proved that the students can only think in algorithms in traditional
programming environments. They do not regard the recent developments in IT as being
driven by algorithms; they solve problems in these non-traditional environments with
surface approach methods and are not able to do generalizations and abstractions. Con-
sequently, our H4 hypothesis must be rejected.

Considering the results of the analyses, if the universities rely heavily on the school
leaving exams, their course structure and focus should be changed. On the other hand,
methods must be developed and introduced in primary and secondary education which
focus on the development of the students’ algorithmic skills in different environments
and in different computer related activities; the development of students’ algorithmic
skills should be independent of computer environments and computer related activities.

Beyond our local gains and losses, the state of CSI in primary and secondary edu-
cation, its effectiveness, its efficiency, and its global methodological questions require
more data collection and analyses. The problem is not Hungarian specific, it is border.
Beyond considering the methodology of CSI, there is a great need for international and
national standards of terminology, which should be CSI and methodology driven, in-
stead of being commercially based.

Acknowledgements

The research was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project.
The project has been supported by the European Union, co-financed by the European
Social Fund.

The research was partly supported by the Hungarian Scientific Research Fund under
Grant No. OTKA K-105262.

M. Csernoch et al.194

References

Ben-Ari, M. (1999). Bricolage forever! PPIG 1999. 11th Annual Workshop. 5–7 January 1999. Computer-
Based Learning Unit. University of Leeds, UK. Retrieved April 12, 2014.
http://www.ppig.org/papers/11th-benari.pdf

Biggs, J.B., Collis, K.E. (1982). Evaluating the Quality of Learning: The SOLO Taxonomy. Academic Press,
New York.

Biró, P. Csernoch, M., Abari, K., Máth J. (2014). First year students’ algorithmic skills in tertiary Computer
Science education, In: Papadopoulos, G.A. (Ed.), Proceedings of the 9th International Conference on
Knowledge, Information and Creativity Support Systems, Limassol, Cyprus, November 6–8. 301–306.

Biró, P. Csernoch, M., Máth, J., Abari, K. (2015). Algorithmic skills transferred from secondary CSI studies
into tertiary education, World Academy of Science, Engineering and Technology International Journal of
Social, Education, Economics and Management Engineering, 9(2), 292–298.

Biró, P., Csernoch, M. (2013a). An algorithmic approach to spreadsheets. In: András, B., Endre, K. (Eds.),
Interdiszciplináris Pedagógia és a Fenntartható Fejlődés. DE Neveléstudományok Intézete, Debrecen,
310–321.

Biró, P., Csernoch, M. (2013b). Deep and surface structural metacognitive abilities of the first year students
of Informatics. In: 4th IEEE International Conference on Cognitive Info-communications, Proceedings.
Budapest, 521–526.

Biró, P., Csernoch, M. (2013c). Programming skills of the first year students of Informatics. In: XXIII. Inter-
national Conference on Computer Science 2013, EMT, 154–159. (In Hungarian).

Biró, P., Csernoch, M. (2014). Deep and surface metacognitive processes in non-traditional programming
tasks. In: 5th IEEE International Conference on Cognitive Info-communications Conference, 4–5. Nov,
2014, Vietri sul Mare, Italy. IEEE, 49–54. DOI: 10.1109/CogInfoCom.2014.7020507

Booth, S. (1992). Learning to Program: A Phenomenographic Perspective. Acta Universitatis Gothoburgen-
sis, Gothenburg, Sweden.

Case, J., Gunstone, R. (2002). Metacognitive development as a shift in approach to learning: an in-depth study.
Studies in Higher Education, 27(4), 459–470.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M., Sheard, J., Simon, B., Thompson, E. (2008). Reliably
classifying novice programmer exam responses using the SOLO taxonomy. In: S. Mann, M. Lopez (Eds),
21st Annual Conference of the National Advisory Committee on Computing Qualifications (NACCQ 2008).
Auckland, New Zealand.

Csernoch, M. (2012). Introducing conditional array formulas in spreadsheet classes. In: EDULEARN12 Pro-
ceedings, Barcelona, Spain. 2–4 July, 2012. IATED, 7270–7279.

Csernoch, M. (2014). Programming with Spreadsheet Functions – Sprego. Műszaki Könyvkiadó, Budapest.
(In Hungarian: Programozás táblázatkezelő függvényekkel – Sprego).

Csernoch, M., Balogh, L. (2011). Algorithms and Spreadsheets. Magyar Tehetségsegítő Szervezetek Szövet-
sége, Budapest. (In Hungarian: Algoritmusok és Táblázatkezelés – Tehetséggondozás a Közoktatásban az
Informatika Területén).

Csernoch, M., Biró, P. (2013a). Teachers’ Assessment and Students’ Self-Assessment on The Students’ Spread-
sheet Knowledge. In: L. Gómez Chova, A. López Martínez, I. Candel Torres (Eds.), EDULEARN13: Pro-
ceedings of the 5th International Conference on Education and New Learning Technologies, July 1st–3rd,
2013 – Barcelona, Spain. International Association of Technology, Education and Development, IATED,
949–956.

Csernoch, M., Biró, P. (2013b). Testing algorithmic and application skill. In: Szlávi, P., Zsakó, L. (Eds.), IN-
FODIDACT 2013: Informatika Szakmódszertani Konferencia, Zamárdi, Hungary, 21–22. November. 1–20.
(In Hungarian: Algoritmikus és alkalmazói készségek tesztelése).

Csernoch, M., Biró, P. (2013c). The investigation of the effectiveness of Bottom-up techniques in the spread-
sheet education of students of informatics. In: Kozma, T., Perjés, I. (Eds.), New Research in Education
Studies. ELTE Eötvös Publisher, Budapest. 369–392. (In Hungarian).

Csernoch, M., Biró, P. (2014a). Digital competency and digital literacy is at stake. ECER 2014 Conference,
1–5. September, 2014, Porto, Portugal. The Past, Present and Future of Educational Research in Europe.
University of Porto, 1–4.
http://www.eera-ecer.de/ecer-programmes/conference/19/contribution/31885/

Csernoch, M., Biró, P. (2014b). Spreadsheet misconception, spreadsheet errors. In: Juhász, E., Kozma, T. (Eds.),
Oktatáskutatás Határon innen és túl. HERA Évkönyvek I., Belvedere Meridionale, Szeged, 370–395.

Testing Algorithmic Skills in Traditional and Non-Traditional ... 195

Csernoch, M., Biró, P. (2014c). The power in digital literacy and algorithmic skill. INTE 2014 Conference,
25–27. June, 2014, Paris, Procedia – Social and Behavioral Sciences. Accepted.

Csernoch, M., Biró, P. (2015a). Sprego programming. Spreadsheets in Education (eJSiE). 8(1), art. 4.
http://epublications.bond.edu.au/cgi/viewcontent.cgi?article=
1175&context=ejsie

Csernoch, M., Biró, P. (2015b). Computer Problem Solving. TMT, Tudományos és Műszaki Tájékoztatás,
Könyvtár- és információtudományi szakfolyóirat, 62(3), 86–94. (In Hungarian: Számítógépes problé-
mamegoldás).

Csernoch, M., Biró, P. (2015c). Sprego Programming. LAP Lambert Academic Publishing. ECDL Foundation.
Retrieved 10 June, 2014 from http://www.ecdl.com/

Csernoch, M., Biró, P., Máth, J., Abari, K. (2014). What do I know in Informatics? In: Kunkli, R., Papp, I., Rut-
kovszky, E. (Eds.), IF2014 Conference, 27–29 August, 2014, Debrecen, Hungary. University of Debrecen,
Faculty of Informatics, Debrecen, 217–230. (In Hungarian: Mit tudok informatikából?).

van Deursen A., van Dijk J. (2012). CTRL ALT DELETE. Lost productivity due to IT problems and inadequate
computer skills in the workplace. Universiteit Twente, Enschede.
http://www.ecdl.org/media/ControlAltDelete_LostProductivityLacko-
fICTSkills_UniverstiyofTwente1.pdf

ECDL Magyarország. Retrieved 10 June, 2014 from http://njszt.hu/ecdl
European Schoolnet: Transforming education in Europe. Country Reports. Retrieved 15 May, 2015 from

http://www.eun.org/observatory/country-reports
EuSprig (2015). EuSpRIG Horror Stories. Retrieved 15 May, 2015 from

http://www.eusprig.org/horror-stories.htm
Gove, M. (2012). Michael Gove speech at the BETT Show 2012. Published 13 January 2012. Retrieved 15

July, 2014 from
https://www.gov.uk/government/speeches/michael-gove-speech-at-the-
bett-show-2012

Gove, M. (2014). Michael Gove speaks about computing and education technology. Published 22 January
2014. Retrieved 15 July, 2014 from
https://www.gov.uk/government/speeches/michael-gove-speaks-about-com-
puting-and-education-technology

Kerettanterv 2000. http://www.nefmi.gov.hu/kozoktatas/tantervek/kerettanterv-2000
Kerettanterv 2009. Az oktatási és kulturális miniszter 2/2008. (II. 8.) OKM rendelete a kerettantervek kia-

dásának és jóváhagyásának rendjéről, valamint egyes oktatási jogszabályok módosításáról szóló 17/2004.
(V. 20.) rendelet módosításáról. Magyar Közlöny, 2008. február 8., 20. szám II. kötet.

Kerettanterv 2013. Kerettantervek. A kerettantervek kiadásának és jóváhagyásának rendjéről szóló 51/2012.
(XII. 21.) számú EMMI rendelet mellékletei. http://kerettanterv.ofi.hu/

Kruger, J., Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing one’s own in-
competence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–
1134.

Lister, R., Simon, B., Thompson, E., Whalley, J.L., Prasad, C. (2006). Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy. In: Proceedings of the 11th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education. New York, USA, 118–122.

NAT 1995. 130/1995. (X. 26.) Korm. rendelet a Nemzeti alaptanterv kiadásáról. Retrieved 15 July, 2010 from
http://www.jogtap.hu/iskolai-jogkereso/130-1995-KORM.pdf.
http://e-oktatas.barczi.hu/extra/tudasbazis/f-jk/130-1995-korm.html

NAT 2003. 243/2003. (XII. 17.) Korm. rendelet a Nemzeti alaptanterv kiadásáról, bevezetéséről és alkal-
mazásáról. Retrieved 15 July, 2014 from
http://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=a0300243.kor

NAT 2007. A Kormány 202/2007. (VII. 31.) rendelete a Nemzeti alaptanterv kiadásáról, bevezetéséről és alka-
lmazásáról szóló 243/2003. (XII. 17.) Korm. rendelet módosításáról. Retrieved 15 July, 2014 from
http://www.zipernowsky.hu/letoltes/kerettanterv/nat_070815.pdf

NAT 2012. 110/2012. (VI. 4.) Korm. rendelet a Nemzeti alaptanterv kiadásáról, bevezetéséről és alkalmazásáról.
Retrieved 15 July, 2014 from
http://www.njt.hu/cgi_bin/njt_doc.cgi?docid=149257.218573

NT (2009). Nemes Tihamér National Competition of Informatics 2008–2009 round I, 5–8th grade. Exercices.
(In Hungarian: Nemes Tihamér Országos Informatikai Verseny 2008–2009 I. forduló, I. korcsoport, 5–8.
osztály. Feladatok). Retrieved May 17, 2013 from
http://nemes.inf.elte.hu/2009/nt09-1f1.doc

M. Csernoch et al.196

OECD (2011). PISA 2009 Results: Students on Line: Digital Technologies and Performance (Volume VI).
http://dx.doi.org/10.1787/9789264112995-en

Polya, G. (1954). How To Solve It. A New Aspect of Mathematical Method. (2d ed.) Princeton University Press,
Princeton, New Jersey.

Panko, R., Aurigemma, S. (2010). Revising the Panko-Halverson taxonomy of spreadsheet errors. Decision
Support Systems, 49(2), 235–244.

Powell, S.G., Baker, K.R., Lawson, B. (2008). A critical review of the literature on spreadsheet errors. Deci-
sion Support Systems, 46(1), 128–138.

SLE. School leaving exams in Hungary – Tasks and correcting guides. (In Hungarian: Központi írásbeli fela-
datsorok, javítási-értékelési útmutatók). Retrieved June 15, 2014 from
http://www.oktatas.hu/kozneveles/erettsegi/feladatsorok

Sestoft, P. (2010). Spreadsheet technology. Version 0.12 of 2012-01-31. IT University Technical Report ITU-
TR-2011-142. IT University of Copenhagen, December 2011.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., Whalley, J.L. (2008). Going SOLO to assess
novice programmers. SIGCSE Bull., 40(3), 209–213.

Soloway, E. (1993). Should we teach students to program? Communications of the ACM. 36(10), 21–24.
Tan, G., Venables, A. (2010). Wearing the assessment ‘BRACElet’. Journal of Information Technology Educa-

tion: Innovations in Practice, 9.
Tort, F. Blondel F.and Bruillard, É. (2008). spreadsheet knowledge and skills of French secondary school

students. In: Mittermeir, R.T., Sysło, M.M. (Eds.), ISSEP 2008, (LNCS 5090). Springer-Verlag, Berlin,
Heidelberg, 305–316.

Warren, P. (2004). Learning to program: spreadsheets, scripting and HCI. In: Proceedings of the Sixth Austral-
asian Conference on Computing Education – vol. 30. Darlinghurst, Australia, 327–333.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
DOI: 10.1145/1118178.1118215

M. Csernoch was born in 1963 in Szentes, Hungary. She received her MSc in 1986 at
Kossuth Lajos University, PhD in 2006 and Habil. in 2012. Currently she works as as-
sociate professor at the University of Debrecen, Faculty of Informatics in Hungary.

Her research interests are didactics of Informatics – specialized in developing algo-
rithmic skills, computational thinking, and teaching programming languages –, compu-
tational linguistics and computer aided language teaching and learning.

P. Biró was born in 1983 in Ditro, Romania. She received her M.Sc. degree in Computa-
tional Mathematics in University of Babes-Bolyai, Faculty of Mathematics-Informatics.
Currently she works as assistant lecturer in the University of Debrecen, Faculty of In-
formatics in Hungary.

Her research interests are didactics of Informatics, algorithmic thinking, high level
programming languages and computer aided education.

J. Máth was born in 1959 in Cegléd, Hungary. He received his PhD in 1997 at Kossuth
Lajos University. Currently he works as assistant professor in the University of Debre-
cen, Faculty of Arts and Humanities in Hungary.

His research interests are statistics, knowledge space theory and cognitive load theory.

K. Abari was born in 1971 in Debrecen, Hungary. He received his PhD in 2013 at Uni-
versity of Debrecen. Currently he works as senior lecturer in the University of Debrecen,
Faculty of Arts and Humanities in Hungary.

His research interests include Speech Research (acoustic characteristics of speech
sounds), Statistical Analysis (functional data analysis) and Statistical Software (R).

Testing Algorithmic Skills in Traditional and Non-Traditional ... 197

Algoritminių įgūdžių testavimas tradicinėse ir netradicinėse
programavimo aplinkose
Mária CSERNOCH, Piroska BIRÓ, János MÁTH, Kálmán ABARI

Projektas „Algoritminių ir taikomųjų įgūdžių testavimas“ buvo pradėtas 2011–2012 akademi-
niais mokslo metais, buvo tiriama pirmųjų metų informatikos studentų algoritmavimo įgūdžiais
tradicinėse bei netradicinėse programavimo aplinkose bei kaip jų informatikos žinios persikėlia
iš vidurinės mokyklos į universitetą. Tyrimo rezultatai aiškiai parodė, kad studentai pradeda in-
formatikos studijas su labai neišvystytais algoritminiais įgūdžiais, tik keli studentai demonstruoja
geresnius rezultatus. Norint rasti priežastis, buvo išanalizuoti studentų taikomi problemų sprendi-
mo metodai. Nustatyta, kad studentai dažniausiai naudoja tik tradicines programavimo aplinkas,
skirtas plėtoti informatinio mąstymo ir algoritminius įgūdžius. Be to, jie nenaudoja konceptų ir
algoritmais grįstų metodų netradicinėse su kompiuteriu susietose veiklose. dažniausiai taiko ne-
veiksmingus paviršinius metodus, kurie naudojami pradinėse ir vidurinėse mokyklose. Tai gali
paaiškinti atotrūkį tarp aukštųjų mokyklų lūkesčių ir mokinių baigiamųjų egzaminų rezultatų bei
to, kaip mokiniai patys įvertina (pervertina) savo žinias.

