Informatics in Education, 2018, Vol. 17, No. 2, 167-206 167

© 2018 Vilnius University
DOLI: 10.15388/infedu.2018.10

Teaching Software Engineering in K-12 Education:
A Systematic Mapping Study

Fernando da CRUZ PINHEIRO,
Christiane Gresse von WANGENHEIM, Raul MISSFELDT FILHO

Department of Informatics and Statistics (INE) — Federal University of Santa Catarina (UFSC),
Brazil

e-mail: fernando.pinheiro@posgrad.ufsc.br, c.wangenheim@ufsc.br,
raul.missfeldt.filho@grad.ufsc.br

Received: July 2018

Abstract. Diverse initiatives have emerged to popularize the teaching of computing in K-12 main-
ly through programming. This, however, may not cover other important core computing compe-
tencies, such as Software Engineering (SE). Thus, in order to obtain an overview of the state of the
art and practice of teaching SE competences in K-12, we carried out a systematic mapping study.
We identified 17 instructional units mostly adopting the waterfall model or agile methodologies
focusing on the main phases of the software process. However, there seems to be a lack of details
hindering large-scope adoption of these instructional units. Many articles also do not report how
the units have been developed and/or evaluated. However, results demonstrating both the viability
and the positive contribution of initiating SE education already in K-12, indicate a need for further
research in order to improve computing education in schools contributing to the popularization of
SE competencies.

Keywords: software engineering, teaching, K-12.

1. Introduction

Currently, the introduction of teaching computing in schools is a worldwide trend (Hub-
wieser, 2012) supported by a number of initiatives such as Code.org (Code, 2018), Code
Club (CodeClubWorld, 2018), Girls Who Code (Girlswhocode, 2018), Black Girls Code
(Blackgirlscode, 2018) or Computag@o na Escola (CNE, 2018), among others. These ini-
tiatives aim to teach computational thinking (Wing, 2008) as an important 21st century
skill, as well as to spark students’ interest in STEM (Science, Technology, Engineer-
ing, and Mathematics) and IT (Information Technology). Most of these initiatives focus
specifically on coding exercises as the main curriculum subject, using age-appropriate
block-based programming environments such as Scratch (Scratch, 2018).

168 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

However, this approach mainly focused on teaching programming, may not cov-
er other important computing core competencies, such as Software Engineering (SE),
which are essential for the development of software (ACM/IEEE, 2013). These compe-
tencies are rarely covered in computing courses in schools, even in high school (Verhoeff,
2006). The inclusion of SE practices with respect to requirements development, software
design, user interface design, testing, configuration management, etc. can help students
gain insight into some of the challenges in real software projects (ACM/IEEE, 2013).
Learning how to program can not be separated from SE. To create software, students
need to learn at least the basic steps of the software process (Bollin and Sabitzer, 2015).
Even in a regular programming course, it is important to address the basics of software
engineering, being helpful to prevent and correct mistakes and, thus, increasing the joy
of programming. On the other hand, teaching programming without attention for SE can
make programming unnecessarily harder and more frustrating, especially when getting
involved in more challenging programming assignments. SE education is responsible
for a broad spectrum of competencies that software engineers need for their professional
life. Being able to produce software in a systematic, controlled and efficient manner in a
variety of contexts requires an extensive knowledge on a range of models, methods and
tools from different SE knowledge areas, together with the understanding necessary to
select and deploy them (ACM/IEEE, 2014). Typically, these competencies are taught in
higher education in undergraduate or graduate computing courses (Shackelford et al.,
2005). So, considering the trend to introducing computing education already in K-12 in
order to popularize computing, it also becomes important to introduce the learning of SE
competencies at this educational stage (Bollin and Sabitzer, 2015). Yet, as it is of course
not feasabile to cover all SE topics on the same level of detail as in higher education due
to curriculum objectives and constraints (Bollin and Sabitzer, 2015), the question that
arises is whether and how SE is taught today in K-12.

So far, several articles present overviews on the teaching of computing. Grover
and Pea (2013) present a systematic review on the teaching of computational think-
ing in K-12. Several authors also provide global views on how teaching computer
science is approached by several countries in K-12 (Hubwieser et al., 2015; Heintz
et al., 2016). Some reviews provide an overview on the adoption of programming
environments such as Scratch (Moreno-Leon and Robles, 2016) and/or specific types
of applications (e.g. robotics) (Bascou and Menekse, 2016). However, none of these
reviews specifically addresses the teaching of SE competencies in K-12. On the other
hand, several reviews analyze the state of the art of teaching Software Engineering in
general (Malik and Zafar, 2012; Shaw, 2000; Mead, 2009) or specific SE topics, such
as processes (Heredia et al., 2015). Other reviews related to SE teaching focus on spe-
cific instructional methods, such as games (Kosa ef al., 2016; Gresse von Wangenheim
and Shull, 2009). However, these reviews focus exclusively on SE education in higher
education.

Thus, in order to analyze the question of whether and how SE teaching is approached
in schools, we carry out a systematic mapping study to identify, select, classify and ana-
lyze published studies. The main contribution of this article is the mapping and synthe-
sis of the characteristics of instructional units (IUs) for SE education in K-12, regarding

Teaching Sofiware Engineering in K-12 Education: A Systematic Mapping Study 169

their content, context and the analysis of how they were developed and evaluated. Our
results show that it may be possible and beneficial to introduce SE education in K-12.
In addition, the overview can help instructors select and/or develop instructional units
in order to integrate teaching SE into their classes, as well as guide curriculum devel-
opers. It can also help instructional researchers and designers to improve IUs identify-
ing improvement opportunites. We also hope that the discussion can further foster the
inclusion of SE education in K-12.

2. Background

2.1. Software Engineering

Software Engineering (SE) is a knowledge area of computing that defines systematic,
disciplined and quantifiable approaches for the development, operation and mainte-
nance of software (IEEE, 2010). SE involves several knowledge areas as presented in
Table 1.

Table 1
SE Knowledge Areas (IEEE CS, 2014)

Knowledge area Description

Software Area concerned with the elicitation, analysis, specification, and validation of software re-
Requirements quirements as well as the management of requirements during the whole life cycle of the
software product

Software The process of definition of the architecture, components, user interfaces, and other charac-

Design teristics of a system or component and the result of process

Software Refers to the detailed creation of working software through a combination of coding, veri-

Construction fication, unit testing, integration testing, and debugging

Software Consists of the dynamic verification that a program provides expected behaviors on a finite

Testing set of test cases, suitably selected from the usually infinite execution domain

Software Refers to all activities required to provide an economically viable software support, cover-

Maintenance ing various techniques (reengineering, reverse engineering, etc.)

Software A life cycle support process that benefits project management, development, maintenance

Configuration and quality assurance activities, as well as customers and users of the final product. The

Management process covers the identification, control, status documentation, software configuration au-
diting as well as the management and delivery of software deliverables

Software Refers to software management activities, such as planning, coordination, measurement,

Engineering monitoring, control and documentation, to ensure that software products and services are

Management delivered in an effective and efficient manner, with desired quality and that benefit the
stakeholders

Software Software engineering processes are concerned with work activities accomplished by soft-

Engineering ware engineers to develop, maintain, and operate software, such as requirements, design,

Process construction, testing, configuration management, and other software engineering processes

Continued on next page

170

F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Table 1 — continued from previous page

Knowledge area Description

Software
Engineering
Models and
Methods

Software
Quality

Professional
Practice of
Software
Engineering
Software
Engineering
Economics

This knowledge area emphasizes on software engineering models and methods that en-
compass multiple software life cycle phases, since methods specific for single life cycle
phases are covered. The models provide an approach to problem solving, a notation, and
procedures for model construction and analysis. Methods provide an approach to the sys-
tematic specification, design, construction, test, and verification of the end-item software
and associated work products

This area addresses definitions and provides an overview of practices, tools and techniques
for software quality assurance, control and quality assessment during development, main-
tenance, and deployment

This knowledge area is concerned with the knowledge, skills, and attitudes that software
engineers must possess to practice software engineering in a professional, responsible, and
ethical manner

Software engineering economics is about making decisions related to software engineering
in a business context

Key Areas Important to Software Engineering

Computing
Foundations

Mathematical
Foundations

Engineering
Foundations

This knowledge area encompasses the development and operational environment in which
software evolves and executes. Because no software can exist in a vacuum or run without a
computer, the core of such an environment is the computer and its various components

This area covers basic techniques to identify a set of rules for reasoning in the context of
the system under study.

This area outlines some of the engineering foundational skills and techniques that are useful
for a software engineer. The focus is on topics that support other knowledge areas while
minimizing duplication of subjects covered elsewhere in this document

For each of these knowledge areas, the Software Engineering discipline provides a
number of processes, models, methods and techniques, as well as tools and notations.

2.1.1. Teaching Software Engineering

Currently, no curriculum guides exist that are specifically aimed at teaching Software
Engineering in K-12. However, in general, based on the SE 2014 curriculum guide for
higher education (SEEK) (ACM/IEEE, 2014), it is expected that students in higher edu-
cation will be able to demonstrate the following competencies:

e Professional knowledge: Show mastery of software engineering knowledge and
skills and of the professional standards necessary to begin practice as a software
engineer.

e Technical knowledge: Demonstrate an understanding of and apply appropriate
theories, models, and techniques that provide a basis for problem identification
and analysis, software design, development, implementation, verification, and
documentation.

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 171

e Teamwork: Work both individually and as part of a team to develop and deliver
quality software artifacts.

e End-user Awareness: Demonstrate an understanding and appreciation of the im-
portance of negotiation, effective work habits, leadership, and good communica-
tion with stakeholders in a typical software development environment.

e Design Solutions in Context: Design appropriate solutions in one or more applica-
tion domains using software engineering approaches that integrate ethical, social,
legal, and economic concerns.

e Perform Trade-Offs: Reconcile conflicting project objectives, finding acceptable
compromises within the limitations of cost, time, knowledge, existing systems,
and organizations.

SE 2014 SEEK (ACM/IEEE, 2014) based on SWEBOK (IEEE CS, 2014), defines
that SE education at the undergraduate level should address the following SE knowl-
edge areas:

e Requirements Analysis and Specification.
Software Modeling and Analysis.

Software Verification and Validation.
Software Process.

Software Quality.

Security.

Professional Practice.

Computing Essentials.

Mathematical and Engineering Fundamentals.

Following SE 2014 SEEK (ACM/IEEE, 2014), students at the undergraduate level
should learn competencies according to Bloom’s taxonomy (Bloom, 1956) at the cogni-
tive levels of: knowledge (remembering previously learned material), comprehension
(understanding information and the meaning of material presented), and application (us-
ing learned material in new and concrete situations).

These curriculum guides for higher education, thus, may indicate SE competen-
cies also relevant to SE education for K-12, yet, with a reduced scope and/or aiming at
lower levels of Bloom’s taxonomy also depending on the specific type of school (such
as technical schools).

2.2. Computing Education in K-12

K-12 education is basically composed of preschool, primary and secundary education
(Table 2)(US Departament Education, 2018).

Currently, computing education in K-12 is often carried out as an extracurricular
activity in the form of clubs, summer camps, workshops, etc. There are also several
Massive Online Open Courses (MOOCs) available online specifically aimed at K-12
(Heintz et al., 2016; Hermans and Aivaloglou, 2017). Computing education has also
been included in several countries in the K-12 curriculum, teaching computing as an in-
dependent discipline and/or by integrating the content in a multidisciplinary way in oth-

172 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Table 2
K-12 educational stages (US Departament Education, 2018)

Age Educational stage 3-stage system

4 Early childhood education Preschool

5 Primary education Elementary school
6

7

8

9

10 Middle school

12 Secondary education

16 High school

er disciplines throughout the curriculum (Heintz ef al., 2016). According to the CSTA,
K-12 Computer Science Framework (2017) teaching computing in K-12 should address
several core concepts and practices as presented in Table 3.

A major focus in this context is on teaching algorithms and programming by teach-
ing students to program various types of software such as games, animations or mobile
applications (Lye and Koh, 2014). Therefore, typically block-based programming en-
vironments, such as Scratch (MITb, 2018), Alice (Alice, 2018) or App Inventor (MITa,
2018) are used with novice students. Block-based programming languages motivate
the learning of programming concepts by focusing on the logic and structures involved
in programming, not requiring the learning of complex syntax and semantics as nec-
essary in textual programming languages (Grover et al., 2015). These environments
also allow students to develop programs more easily, as results typically can be tested
and viewed immediately in the form of animations, games or mobile applications.

Table 3
Core concepts and practices in computer teaching (CSTA, 2017)

Core Concepts Core Practices

» Computer Systems * Promote an inclusive computing culture

* Networking and Internet « Collaborate on computing

* Data and Analysis * Recognize and define computational problems
* Computer Impacts * Develop and use abstractions

* Algorithms and Programming < Create computational artifacts
« Test and refine computational artifacts
* Communicating about computing

Teaching Sofiware Engineering in K-12 Education: A Systematic Mapping Study 173

This allows students to acquire problem solving skills by applying the engineering
development cycle in practice (Lye and Koh, 2014). Advancing computing educa-
tion, commonly text-based programming languages such as as Java, Python or C++
are introduced typically at high school level (Hubwieser et al., 2015). Another popu-
lar approach is teaching robotics technologies such as the Lego Robot programming
language (Starrett, 2007) or PBASIC (Corbett and Nesiba, 2015), a microcontroller-
based version of BASIC.

For computing education in K-12 diverse instructional methods are used varying
from direct instruction (e.g., lectures) to independent studies (Table 4) (Saskatchewan
Education, 1991).

In accordance to learning objectives aiming at teaching the application of algorithm
and programming concepts, a predominance of active learning strategies is observed,
which allows the student to apply the competences to be learned. These strategies in-
clude exercises, such as developing code for a well-defined problem as well as the
adoption of constructivist approaches such as situated learning, project-based learning,
among others, dealing with open-ended and ill-defined problems. According to the in-
structional strategies adopted, several types of instructional materials are used, including
software artifacts (e.g., specification of requirements of a predefined software system,
use cases, user stories, code samples), exercise sheets, slides, videos, examples, among
others (Lye e Koh, 2014). The assessment of the student’s learning is usually done by the
instructor using diverse methods, such as observations, questionnaires, interviews, etc.
For assessing programming assignments, typically, performance-based assessments are
adopted by manually or automatically analyzing the artifacts (e.g., software) created by
the students (Gresse von Wangenheim ef al., 2018). In the context of game-based learn-
ing approaches, the scores of the game may also be used for assessment (Rusu et al.,
2011). Peer assessment is another way, in which the artifacts created by the students are
assessed by their own peers (De Kereki and Manataki, 2016).

Table 4
Instructional Methods (Saskatchewan Education, 1991)

Direct Instruction Indirect Interactive Independent Study Experimental
Instruction Instruction Learning
« Structured Over- + Case Study * Debate * Essay * Field Trip

view * Problem Solving < Role Playing » Computeer Assisted ¢ Conducting
» Explicit Teaching < Inquiry * Brainstorming Instruction Experiment
 Lecture » Reading for * Panel * Reports * Simulation
¢ Drill and Practice =~ Meaning * Peer Practice * Learning Activity ~ * Focused Imag-
* Compare and * Reflective Discus- ¢ Discussion Package ing
Constrast sion * Laboratory Group * Correspondence * Game-based
* Didactic Ques- * Concept Forma- « Co-operative Learn- Lessons learning
tion tion ing Group * Learning Contracts * Field Observa-
* Demonstration » Concept Mapping < Problem Solving * Homework tion
* Guides for Read- < Concept Attain- * Circle of Knowledge < Research Projet * Role Playing
ing, Listening, ment * Tutorial Groups * Assigned Question ¢ Synectics

Viewing

¢ Cloze Procedure

* Interviewing
* Contests

* Learning Centre

* Model Building
 Survey

174 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

2.3. Development and Evaluation of Instructional Units

Instructional units (courses, workshops, etc.) are typically developed in a systematic
way using instructional design (Branch, 2009), in order to make the acquisition of com-
petencies more efficient, effective, and appealing. Instructional design defines an itera-
tive process of planning learning objectives, selecting instructional strategies (including
the design of assessments), selecting or creating instructional material, and applying and
evaluating IUs (Branch, 2009).

Among instructional design models, one of the most popular models is ADDIE
(Branch, 2009), including the following phases: During the analysis phase, the learning
needs are identified. As part of the analysis the goals and objectives of the instructional
unit are determined and the target audience is characterized. Other factors, such as hu-
man and technical resources, infrastructure, cost and time, etc., are analyzed. During the
design phase, the learning objectives of the IU are specified. The content to be addressed
is defined and sequenced, and the instructional methods to be used are defined. It is also
defined how the students’ learning will be assessed. As a result, the sylabus is defined.
During the development phase, the material that will be used during the instructional
unit is selected and/or created in accordance to the defined instructional methods. This
step may also involve the selection and/or development of tools to support the IU such
as code analyzers. The implementation phase covers the preparation of the learning en-
vironment, the training of the instructors and the application of the IU in the classroom.

An essential step in the instructional design process is the evaluation of the in-
structional unit in order to assess its quality and whether it allows the students to

Table 5

Common types of research design (Shadish, Cook, and Campbell, 2002)
(Gresse von Wangenheim and Shull, 2009).

Type of study Design Representation
X=Treatment
O=Measurement
R= Rrandom task

Case study Only one post-test X0
Case study Only one post-test / pre-test 0XO
Quasi experimental ~ Static comparison group X0
(0)
Static group pre-test / post-test 0XO
(0) (0)
Series of times 00XO0O
Experimental Randomized post-test only RXO
R (0)
Randomized pre-test / post-test ROXO
RO (0)

Randomized with pre-test / post-test control group R O X1 O
ROX20

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 175

achieve the defined objectives (Branch, 2009). This evaluation is typically performed
through an empirical study (Wohlin ef al., 2012). Different research designs can be
adopted ranging from non-experimental studies (such as case studies) to experiments
(Table 5).

In order to reach the evaluation objectives, the measurement must be explicitly de-
fined in a way that draws a link between the objectives and the data collected and also
generates a framework to analyze and interpret the data with the corresponding objec-
tives (Wohlin ez al. 2012). Several types of data collection instruments can be used,
such as observation, questionnaire, interviews, or the artifacts created by the students
themselves as well as test results (Branch, 2009). In case of online courses, data can also
be collected in the form of log files. According to the objective of the evaluation and the
nature of the data collected, different methods of qualitative or quantitative analysis can
be used (Freedman et al., 2007). The analyzed data are then interpreted, answering the
analysis questions in order to achieve the evaluation goal.

4. Definition and Execution of the Systematic Mapping Study

To elicit the state of the art and practice on whether and how SE education is addressed
in K-12, we conducted a systematic mapping study following the procedure proposed by
Petersen et al. (2008).

4.1. Definition of the Review Protocol

The research question is: Are there (and what are their characteristics) instructional units
that teach Software Engineering competences in the context of K-12? This research
question is refined in the following analysis questions:

AQ1. Which IUs exist?

AQ2. Which SE competences are taught in the [Us?

AQ3. What are the instructional characteristics of the IUs?
AQ4. What are the context characteristics of the IUs?
AQS5. How were the IUs developed?

AQ6. How was the quality of the IUs evaluated?

Inclusion/exclusion criteria. We considered only peer-reviewed articles whose fo-
cus is to teach computation including SE competencies in K-12. Articles that focus on
teaching computing in higher education and/or articles that present IUs for computer
teaching without addressing SE concepts were excluded. We have also included second-
ary literature that has been discovered based on the references of the primary literature
found (Verhoeff, 2006).

Quality Criteria. We considered only articles that present substantial information
regarding the teaching of SE competencies, indicating, for example, lessons content,
instructional material, etc.

176 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Data source. We examined all published English-language articles that are available
on Scopus (www.scopus.com) with free access through the CAPES Portal'. We also
searched online education sites, including Udemy (www.udemy . com), Edx (www.edx.
org), Khanacademy (www.khanacademy.org), Coursera (www.coursera.org) in or-
der to discover instructional units taught as MOOC:s.

Definition of the search string. The search string was composed of concepts related
to the research question, including also synonyms, as indicated in Table 6.

From these keywords, the search string was calibrated and adapted according to the
specific syntax of the data source as presented in Table 7. As a result of the calibration
process, we also identified as relevant synonyms for the term “Software Enginerring”
the terms UML and “software development process”. The search of online courses was
done via the MOOCs’ sites limiting the category and subcategory to Information Tech-
nology and Software Development, respectively.

4.2. Search Execution

The search has been executed in March 2018 by the authors. The search has been done
in two steps. In the first step the search was done via Scopus with the objective of find-
ing articles about existing IUs. This search returned 466 articles (Table 8). From the
search results, potentially relevant articles were selected according to the inclusion and
exclusion criteria, quickly analyzing the title, abstract and keywords. As a result, 29 po-
tentially relevant articles were identified. In the second selection stage, we analyzed the
full text of the pre-selected articles to analyze their compliance with the inclusion/exclu-
sion criteria and the quality criterion. As a result, 15 relevant articles were identified. All
authors discussed the selection of papers until a consensus was reached.

Table 6
Keywords
Keyword Synonyms
Software Engineering UML, software development process
K-12 school
Teaching learn, MOOC
Table 7

Search String

Source Search String

Scopus (“software engineering” OR uml OR “software development process”) AND
(school OR “K-12") AND (teaching OR learn OR MOOC)

! A web portal for access to scientific knowledge worldwide, managed by the Brazilian Ministry on Ed-
ucation for authorized institutions, including universities, government agencies and private companies
(www.periodicos.capes.gov.br).

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 177

Table 8

Amount of articles per selection stage

Source Initial search results Selected after 1° stage Selected after 2° stage

Scopus 466 29 15

Several 1Us found in the initial search were excluded, not presenting instructional
units, such as for example IUs that only report the importance of SE education in K-12
(e.g., Bell et al., 2014; Bollin ef al., 2016) or do not present details about SE teaching
(e.g., Azenkot et al., 2011).

In a second step, we also searched for MOOCs aiming at teaching SE on K-12 level.
Relevant courses were selected using the same inclusion/exclusion criteria. As a result
of this additional research one relevant IU was found (De Kereki and Manataki, 2015).
Other courses for computing education in K-12 have been disregarded, if not explicitly
covering SE concepts (e.g., course provided by the Technovation Challenge (Technova-
tion, 2018)) and/or details of the IUs were not accessible (e.g., afsenyc.org).

Another IU was found by analyzing the references of the primary literature found in
the searches (Verhoeff, 2006).

5. Data Analysis

To answer the analysis questions, we extracted relevant information from the encoun-
tered articles and course material as specified in Table 9.

The articles were read and the data were extracted by the authors. Extraction of
the data was complicated in several cases by the way the studies were reported. As the
publications in this area do not follow any structured protocol, the information to be ex-
tracted is not always presented explicitly. In these cases, information was inferred from
the article, including for example, the description of the learning objectives, language of
the IU, and the pre-requisites.

Table 9

Specification of the extracted information

Analysis question Information extracted Description
AQI1. Which IUs exist? Reference Bibliographic reference
AQ?2. Which SE com- Learning objective(s) with Identification of the objective(s) describing what the
petences are taught in respect to SE learner should learn with respect to SE
2
the IUs? SE knowledge area(s) SE knowledge areas addressed by the IU
SE methods/technique(s) SE methods/techniques addressed by the IU
SE tool(s) SE tools adopted for teaching in the TU

Continued on next page

178

Table 9 — continued from previous page

F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Analysis question Information extracted

Description

AQ3. What are the
instructional character-
istics of the IUs?

General learning objective of
the IU

General description
Education mode

Programming environment(s)
Instructional method
Instructional material

Assessment method(s)/
instrument(s)

Language(s)
License
AQ4. What are the

context characteristics
of the IUs?

Educational stage
Duration of the IU
Pre-requisites

AQS. How were the Development method of the
1Us developed? U

AQ6. How was the
quality of the IUs
evaluated?

Research design

Factor(s) evaluated
Data collection method(s)

Sample size
Replicated studies

Data analysis method(s)

Findings

Identification of the learning objective of the IU in
general

Brief overview of the IU presenting its main charac-
teristics

Identification of the education mode (in-class or dis-
tance/online)

Programming language/platforms used in the [U
Instructional method(s) used in the TU
Instructional material used in the TU

Method(s)/instrument(s) used for assessing students’
learning in the U

Language(s) in which the IU is available
Usage license of the IU

Educational stage for which the 1U is designed
Duration of the IU (number of hours/classes)
Pre-requisites of students with respect to computing
competencies

Indication of the method used for the development of
the IU

Indication of the type of study (research design) ad-
opted for the evaluation of the IU
Indication of the factors that were evaluated

Indication of the data collection method(s) adopted
for the evaluation of the IU

Number of data points used for the evaluation

Indication of possible replications of the evaluation in
various contexts

Indication of the data analysis method(s) used for the
evaluation of the [U

Description of the main results, strengths and weak-
nesses of the IU identified

We also observed that the majority of the articles do not describe how the IUs were
developed as well as lack information regarding their evaluation, for example, not ad-
dressing threats to validity. In case the article does not present any information to be
extracted, we indicate the lack of this information as not informed (NI).

AQ1. Which IUs Exist?

As a result of the research, a total of 17 instructional units focused on computing edu-
cation were identified that also approach the teaching of software engineering in K-12

(Table 10).

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 179

Table 10
Instructional Units

Reference

(Bollin and
Sabitzer,
2015)

(Collofello,
2002)

(Corbett and
Nesiba, 2015)

(De Kereki
and Manataki,
2016)

(Fronza et al.,
2017)

(Fronza et al.,
2016)

(Fronza et al.,
2015)

(Hermans and
Aivaloglou,
2017)

(Kohler et al.,
2012)

(Missiroli
etal.,2017)

(Missiroli
etal., 2016)

(Rusu, A
etal.,2011)

(Rusu et al.,
2010)

(Sarkar and
Bell, 2013)

Bollin, A; Sabitzer, B. (2015) Teaching Software Engineering in schools on the right time to
introduce Software Engineering concepts. In: Proceedings of the Global Engineering Education
Conference, Tallinn, Estonia, pp. 518-525.

Collofello, J. S. (2002) Creation, deployment and evaluation of an innovative secondary school
software development curriculum module. In: Proceedings of the 32nd Annual Frontiers in
Education, Boston, MA, USA, pp. 1-4.

Corbett, K.; Nesiba, N. (2015) Programming design process: Providing K-12 students with a
structure to attain programming goals. In: Proceeding of the Frontiers in Education Conference,
El Paso, TX, USA, pp. 1-4.

De Kereki, I. F.; Manataki, A. Code Yourself! An introduction a programming. Available on:
<https://pt.coursera.org/learn/intro-programming>. Acess: 05 Mar. 2018.

De Kereki, I. F.; Manataki, A. (2016) “Code Yourself” and “A Programar”: a bilingual MOOC
for teaching Computer Science to teenagers. In: Proceeding of the Frontiers in Education Con-
ference (FIE), Erie, PA, USA, pp. 1-9.

Fronza, I.; Ioini, N.; Corral L. (2017) Teaching Computational Thinking Using Agile Software
Engineering Methods: A Framework for Middle Schools. ACM Transactions on Computing
Education, v. 17, n. 4, pp 1-28.

Fronza, I.; Toini, N.; Corral L. (2016) Blending Mobile Programming and Liberal Education in
a Social-Economic High School. In: Porceedings of the IEEE/ACM International Conference
on Mobile Software Engineering and Systems, Austin, TX, USA, pp. 123-126

Fronza, 1.; El loini, N.; Corral, L. (2015) Students want to create apps: leveraging compu-
tational thinking to teach mobile software development. In: Proceedings of the 16th Annual
Conference on Information Technology Education, Berlin, Germany, pp. 21-26.

Hermans, F; Aivaloglou, E. (2017) Teaching software engineering principles to K-12 students:
a MOOC on Scratch. In: Proceedings of the 39th International Conference on Software Engi-
neering: Software Engineering and Education Track, Buenos Aires, Argentina, pp. 13-22.

Kohler, B; Gluchow, M; Brugge, B. (2012) Teaching Basic Software Engineering to Senior
High School Students. In: Proceeding of the IADIS International Conference e-Society, Mu-
nich, Germany, pp. 149.

Missiroli, M.; Russo, D.; Ciancarini, P. (2017) Agile for Millennials: A Comparative Study. In:
Proceedings of IEEE/ACM st International Workshop on Software Engineering Curricula for
Millennials (SECM), Buenos Aires, Argentina, pp. 47-53

Missiroli, M.; Russo, D.; Ciancarini, P. (2016) Learning Agile software development in high
school: an investigation. In: Proceedings of the 38th International Conference on Software,
Austin, TX, USA, pp. 293-302,

Rusu, A. ez al. (2011) Employing software maintenance techniques via a tower-defense serious
computer game. In: Proceedings of the International Conference on Technologies for E-Learn-
ing and Digital Entertainment, Berlin, Germany, pp. 176—184.

Rusu, A. et al. (2010) Learning software engineering basic concepts using a five-phase game.
In: Proceedings of IEEE Frontiers in Education Conference, Washington, DC, USA, pp. 1-6.

Sarkar, A; Bell, T. (2013) Teaching black-box testing to high school students. In: Proceedings
of the 8th Workshop in Primary and Secondary Computing Education, Aarhus, Denmark, pp.
75-78.

Continued on next page

180 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Table 10 — continued from previous page

Reference

(Serrano Serrano, M.; Serrano, M. (2013) Requisitos ao Codigo: Uma Proposta para o Ensino da Enge-
and Serrano, nharia de Software no Ensino Médio. In: Proceedings of the International Requirements Engi-
2013) neering Conference, Rio de Janeiro, Brazil, pp. 37-42.

(Starrett, Starrett, C. (2007) Teaching UML Modeling Before Programming at the High School Level. In:
2007) Proceedings of Seventh IEEE International Conference on Advanced Learning Technologies,

Niigata, Japan, pp. 713-714.

(Verhoeft, Verhoeft, T. (2006) A master class software engineering for secondary education. In: Proceed-
2006) ing of the International Conference on Informatics in Secondary Schools-Evolution and Per-

spectives. Heidelberg, Germany, pp. 150—158.

5 4
)
24 3
s 3 Py /\ Py
Z Z
£ 2 1 1 1 1 1 1 / \/
g I I I I J/
g 1
0
2002 2006 2007 2010 2011 2012 2013 2015 2016 2017
Year of publication

Fig. 1. Amount of IUs focusing on SE education in K-12 published per year.

This shows that so far very few [Us approach SE education in K-12, yet with a slight
increase since 2013, probably also related to the trend of increasing computing educa-
tion in K-12 in general (Fig. 1).

AQ2. Which SE competences are taught in the IUs?

The IUs teach competencies related to several SE knowledge areas in accordance to the
SWEBOK (IEEE CS, 2014). Among the areas most frequently approached by the IUs
are the areas related to the main phases of the software process: software requirements,
software engineering models and methods, software construction and software testing
(Fig. 2). The knowledge area most taught by these 1Us is software testing including unit
testing, functional testing, and acceptance testing. The development of software require-
ments is also widely taught by applying various requirements gathering and analysis
techniques, such as user stories, use case diagrams, storyboards, software requirements
specifications, among others. Software engineering models and methods are also cov-
ered by several IUs, using flow diagrams, pseudocode, UML class diagrams and state
machines to visualize the architecture and algorithms of software systems. IUs focus-
ing on mobile application development also address interface design by creating paper
prototypes of the screens. Regarding software construction, techniques such as the cre-
ation of understandable source code (naming), code reuse and pair programming are
addressed. A detailed summary of the data extracted with respect to the SE knowledge
areas covered by each of the IUs is presented in Appendix A.

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 181

16
14
14

12 11

Amount of areas
& N B oo om B
é;,,_
R S
I
e
> B e
¢ Il =
(=]
(=]

G & o & S
A @ Y &%@éﬁ@& & o q‘,”& é& Q@E} Q&F‘
R C’Q && (g} {Q 8 & ‘ﬁ{@' QF Q-s,\ ﬁ:"&
o
& @ é"ﬁb 5 g‘f’? {g‘?‘@ & o Fadrch éﬁ.“\ S
s &
o o %@p &g i t&\ ‘¢<&
gﬂ}\i‘ & (_,OQ &'5\')
o S
%(&:' g\‘v‘ﬁ (0(&' &
‘&:@@. & of écﬁ&
of of

5E Knowledge Areas

Fig. 2. Freqeuncy of SE Knowledge Areas covered by the IUs.

A third of the IUs stands out by addressing topics related software maintenance.
These IUs include the teaching of competencies related to the re-engineering, adapta-
tion and/or evolution of pre-existing software. What apparently facilitates the teaching
of maintenance concepts in the context of K-12 are block-based programming environ-
ments, such as Scratch, which strongly stimulate and support the remix of programs
(Brennan and Resnick, 2013). In this context, Rusu et al. (2011) adopt an educational
game that teaches the four types of software maintenance as an alternative instructional
strategy.

Several IUs also explicitly teach concepts related to the software process, life cycle
models, and development methodologies, which are typically in an implicitly and sim-
plified manner covered in instructional units teaching programming. We observed that
mainly simple life-cycle models such as the waterfall and iterative models are addressed
and/or agile methodologies such as Scrum, Extreme programming (XP), Model-Driven
Development (MDD) and Test-Driven Development (TDD) (Fig. 3). Alternatively a
general engineering process, the Programming Design Process (PDP) is presented.

Basically, all IUs are intended to lead the student learning SE competencies at the
application level and are designed to give students the opportunity to execute SE pro-
cesses (Appendix A). This includes IUs that aim to execute all the main phases of the
software process as well as others that focus only on specific phases of the process,
taking into account practical restrictions regarding the duration of the IU. Several IUs

182 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

.
acceptance testing (1) ag‘l le l I lethOd (3) black box testing (1
bralnstorm (2) class diagram (1) code smells (1) control structure (1) corrective programming (1)

.
debugg]ng (3) design review (1) diagrams (1) driven architecture (1) duplication (1)

exception detection (1) feasibility analysis (1 feasibility table (n flowcharts (1)

iterative process

model driven development (1) I I IOdel (2) naming (1) object oriented modeling (1) orientation goals (1)

) .
pair programming .
(3) planning (1) programming design process (1)

paper prototype
programming event-driven (1) prototypes (1) pseudocode (1) refactoring (1) requirements modeling (1)

requirements refinement (1) requirements specification (1) reuse (3) scrum (1) software validation (1)
state machine diagram, storyboard., ...,
st case (1wt (1) UNTE TOST 1) wsaviey testing (1) wsecase 1 USET STOFIES
waterfall model) ..crun

Fig. 3. Frequency of the models/methods/techniques addressed in SE education in K-12.

are applied in a multidisciplinary way integrated in other disciplines of the K-12 cur-
riculum, such as Physics and Arts. Very few [Us use SE tools to aid teaching and/or to
teach their use. Only two [Us report the use of case tools (Rational Rose and NetBeans).
Other tools that have been adopted include testing tools (JUnit, a test case validation
tool (testBedv9.html)).

AQ3. What are the instructional characteristics of the IUs?

The teaching of SE competencies is typically integrated in IUs generally focusing on
teaching algorithms and programming aimed at the development of animations, web/
mobile applications, or robotics. Therefore, generally block-based visual programming
environments are used for novices, such as Scratch, Alice and App Inventor or text-
based programming languages, such as Java, Delphi Pascal, ANSI C and R language for
statistical computation (Fig. 4). To teach the development of robotic programs the IUs
used PBASIC, a microcontroller-based version of BASIC or the Lego Robot program-
ming language.

Few IUs are specifically focused on teaching SE competencies, such as the Tower-
Defense Serious Computer Game (Rusu et al., 2011), to teach software maintenance
concepts. Another example is the IU presented by Sarkar and Bell (2013) aiming at the
creation of test cases for pre-existing software.

With respect to the instructional methods, there is a strong predominance of active
learning approaches aiming at the achievement of learning objectives on the application
level. Several IUs involve software development assignments. These range from tasks
with a well-defined specification of the problem to be solved for which an expected
solution exists to tasks with ill-defined problems without a previously known solution.

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 183

5 5
5 5
5% 3 3
3
E 2
g2 1 1 1 1 1 1
<1
0 H N N N NN
¢ & & & ¢ ¢ I B
& ¥ & Q&,o & &
&
£y &
= o) &
%
Q,&
Programming environment

Fig. 4. Programming environments used in SE education in K-12.

Although focusing more on active learning, several IUs also include other direct instruc-
tional methods as lectures, especially in the initial part of the IU (Fig. 5). Interactive
methods such as co-operative learning, challenges and discussions were also used. Two
IUs have adopted game-based learning (Rusu ef al., 2011; Rusu et al., 2010).
According to this variety of instructional methods, several types of instructional ma-
terial are used (Fig. 6). The material most commonly used is software artifacts. These
artifacts are typically used to assist in the application of SE teaching, including e.g.,
specification of requirements of a predefined software system, use cases, user stories,
code samples, among others. Some IUs also used a complete software system (i) to
teach the creation of acceptance tests (Sarkar and Bell, 2013), (ii) to exemplify a solu-
tion and/or (iii) as a teaching strategy (Rusu et al., 2010). Instructional videos, tutorials,
forums, etc. are specific to [Us designed as online courses. Several [Us also use exercise
sheets, workbooks or journals to record the students’ experiences. However, in general,
we observed a lack of information regarding the instructional material, their availability

10 g g
9
8
57
G 6 5
£ 5
§4
< 3 2 z 2
2 I I I 1 1 T 1 1 1 1 T
1
o H N N N N NN M
o) . o A & & o 5 o
c,\i‘ @z“ Q’p‘g’ \;ﬁe' 0&? &é’ 6@6‘ $\ é\&*‘ &\0 &Q @o 059‘? §0
NP S S P S R G P
& S N &
& o &F & & 6}“’ &]
@ i o o
& & &
& & <
by
& &
&
< Instructional method

Fig. 5. Instructional Methods used for SE education in K-12.

184 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

and license, which makes it difficult for others to use them. Most materials are available
in one language only (predominantly in English), which may also limit a broader adop-
tion of IU in other countries that typically require instructional material in the native
language at this educational stage.

Student learning is assessed primarily through performance-based assessments ana-
lyzing artifacts created in the context of the software process and/or software programs
either by the instructor or through peer reviews. In some cases artifact-based interviews
are used. Several 1Us also adopt tests, quizzes or use the game score for the students’
assessment (Fig. 7).

An overview of the information extracted with respect to the instructional character-
istics of the IUs is presented in Appendix B.

g
7
7
" 6
=0
5 a
§4 3 3
ga 2 2 2 2 2
2 IIIII 11 1 1 1 1 1
1
. A EEEN
& &L @ & @ & P& SN
‘é“-‘ é\e?' J‘\& & QO&Q éé\ &o{{b\ @é& §@ 6@ Y «2 5 & q,b\'b
?}eﬁ' éb‘?’ é\é\ < ,0(3’ éboo ‘C‘:b ‘}é’ P
& R < &
& & & & oS &
o 8) > O
Qge; Q’b \Qé(\
B @
%

Instructional material

Fig. 6. Types of instructional material used.

Amount of |Us
w - @ -
w

Y]

2
I 1 1 1
, H N BN
S ,_é’c? &

. A & o & o
!5;‘3? & é's?‘? * { & eﬁf} N
& & & &
& & & & &
G) o ©
& &
& &
P &
& &
& b
&5}
qﬂ)

Evaluation tool

Fig. 7. Types of assessment methods used.

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 185

AQ4. What are the context characteristics of the IUs?

Most of the IUs are focused on teaching SE in high school (Fig. 8). No specific IU teach-
ing in elementary school was found. Observing this predominance of IUs found for high
school, the question that remains is why there are almost no IUs in elementary school.
Yet, several authors report that the insertion of SE education can be beneficial even in
elementary school, obviously in a limited way taking into account students’ previous
knowledge and curricular restrictions (Bollin and Sabitzer, 2015).

The encountered articles do not address the specific type of school (e.g., secondary
technical school present in some countries), indicating that the presented instructional
units have been applied in schools with a general focus.

The duration of the IUs varies largely from short and focused activities (30 minutes)
to long-term courses (one year). According to the students’ current lack of knowledge
regarding computing and/or SE, most [Us are aimed at beginners with no prior comput-
ing/SE competencies. Only four IUs indicate the need for prior competencies mainly in
relation to programming (Table 11).

14 13
12
W
2 10
R
5 6
E a
= 2
2 1 1
4]
0 | o] -
Elemantary Middle School Elementary and High school Elementary,
school Middle school middle and high
school
School Level
Fig. 8. Educational stages.
Table 11
Overview of IU context characteristics
Reference Educational Duration of the IU Pre-requisites
stage
(Bollin and High school NI none
Sabitzer, 2015)
(Collofello, 2002) ~ High school NI NI
(Corbett and High school NI NI
Nesiba, 2015)
(De Kereki and Elementary, 15-20 hours none
Manataki, 2016) middle and high
school
(Fronza et al., 2017) Middle school 60h (4h per week) NI

Continued on next page

186 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Table 11 — continued from previous page

Reference Educational Duration of the ITU Pre-requisites
stage
(Fronza et al., 2016) High school 20-30 hours none
(Fronza et al., 2015) High school 5 days (with a total of 40 hours) none
(Hermans and Elementary and 6 weeks with a total of 12to 36 none
Aivaloglou, 2017) middle school hours (estimating a weekly effort
of 2 to 6 hours)
(Kohler et al., 2012) High school 3 days none
(Missiroli et al., High school 25 hours Minimum of 2 years program-
2017) ming experience
(Missiroli et al., High school case 1: 2 hours, case 2: 5.5 hours 1 year experience in programming
2016) in Java OO/html, web service,
databases
(Rusueral.,2011) Elementary, NI Prior programming competence
middle and high
school
(Rusu ez al.,2010) High school NI none
(Sarkar and Bell, High school 30 minutes NI
2013)
(Serrano and High school 10 hours and 5 class NI
Serrano, 2013)
(Starrett, 2007) High school 1 year NI
(Verhoeft, 2006) High school 3 days Prior competence regarding pro-

gramming (global and local vari-
ables and procedures)

AQS. How were the IUs developed?

To achieve effective learning outcomes, [Us need to be developed systematically follow-
ing instructional design models. However, we observed a general lack of information
in the articles in relation to the way the IUs were developed (Table 12). Few publica-
tions provide information on this issue, typically only by indicating the stakeholders in-
volved in the IU development, through cooperations between schools and/or universities
involving teachers, instructors and tutors. Only Kohler ez al. (2012) explicitly reports
the instructional principles used in the IU development (goal-based scenarios (Schank,
1996; Schank, 1992; Schank et al., 1994) and scaffolding (Vygotsky, 1978)).

This lack of information provided on how the IUs were developed, clearly points out
a need for a stronger adoption of systematic methods for the development of such in-
structional units, following not only all required phases of instructional design, but also
the applying well-accepted and sound models, methods and techniques.

AQ6. How was the quality of the IUs evaluated?

An essential as part of the systematic development and improvement of an IU is the
evaluation of the IU. Evaluation is typically performed through empirical studies in

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 187

Table 12
Methods used to develop the IUs

Reference

Development method of the TU

(Bollin and Sabitzer, 2015)
(Collofello, 2002)

(Corbett and Nesiba, 2015)

(De Kereki and Manataki,
2016)

(Fronza et al., 2017)
(Fronza et al., 2016)
(Fronza et al., 2015)

(Hermans and Aivaloglou,
2017)

(Kohler et al., 2012)

(Missiroli et al., 2017)
(Missiroli et al., 2016)
(Rusu et al., 2011)
(Rusu et al., 2010)

(Sarkar and Bell, 2013)

(Serrano and Serrano,
2013)

(Starrett, 2007)
(Verhoeft, 2006)

NI

TU developed in cooperation with of local school teachers. Graduate students par-
ticipated in the construction of instructional material and in class.

NI

The IU was developed by an international and multidisciplinary team. The design
and creation process was carried out in cooperation taking into account the tar-
get audience. Learning levels were defined based on Bloom’s taxonomy. Course
material has been developed in detail. The course was pretested with different
groups in 2 countries.

NI
NI
NI

The course was developed as a MOOC (Open Massive Online Course) on the
edx platform (https://www.edx.org/). Thus, the IU has been designed following
the pattern of edx platform courses, consisting of videos, quizzes and forum in-
teractions.

The IU design adopts the principle of goal-based scenarios (Schank 1996; Schank
1992; Schank et al., 1994) and the scaffolding principle (Vygotsky 1978). The IU
was created through a case study including the following steps: analysis of the
target group; brainstorming of possible topics of interest; topic selection; creation
of object model; project development, estimation of effort for students; create
project “scaffold”; coding tutorial; template; distribution of tasks in teams.

NI
NI
NI

The games were developed by teams involving graduate and undergraduate stu-
dents.

NI
NI

NI
NI

the classroom. Several IUs were evaluated by means of a case study (Fig. 9). In these
studies, the evaluation was systematically defined and, during and after the treatment
(teaching SE), data was collected in relation to the objective of the evaluation. Only two
studies adopted a more rigorous research design. Missiroli et al. (2017) conducted an
experiment comparing the performance and satisfaction of students and teachers with
respect to the use of two software development approaches in computing education, the
waterfall model and Scrum. Fronza et al. (2017) adopt a quasi-experimental approach
to evaluate the effectiveness of a framework based on agile SE methods to teach com-

188 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

9 8
8
37
.._5 6 5
e 5
33
N
2
5: 2 1 1
: -
! . |
< N > S
© S & & N
] S 2 e
¥ o & &
1% & &
& <M
o
RS
& Types of study

Fig. 9. Types of studies adopted for the evaluation of the IUs.

puting in high school. Both experimental studies follow the methodology proposed by
Wohlin ef al. (2012). A considerable number (8 1Us) were evaluated in a less rigorous
way through ad-hoc evaluations, without detailed definition of the evaluation objectives,
measurement and data analysis. As a result, these studies typically only comment on
students’ informal feedback and/or observations during the application.

Most studies evaluate more than one quality factor (Fig. 10). Learning is the most
evalued quality factor. This shows that, in fact, the main concern is the learning effect
provided by the IUs. The assessment of this factor usually refers to improving compe-
tence by comparing the level of competence of students after the IU with their level of
competence before the IU, usually based on a pre/post-test score. None of the studies
evaluate the learning effect in relation to the different learning levels, for example, based
on Bloom’s taxonomy. The IU’s efficiency is evaluated based mainly on the analysis of
the students’ learning and the feedback received by the students. Several studies also
assess the degree of satisfaction to evaluate whether students feel that their dedicated
effort results in learning. Comparing the factors being evaluated, we can observe a lack
of conformity between the studies. With the exception of the evaluation of the degree of

45 &
4
235 3 —3 3 3
Z 3
=25 2222
£ 2
=
g 15 111 1 1 1 1
I 1
EEEEER
0
I S v S-S ST S WG R T3
S S E T E LTS
& - -~
AP S FEF L &V E S
Q @‘xa@-\ < gds‘ &
F N o 0&3
@Q
Quality factor

Fig. 10. Quality factors being evaluated in the studies.

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 189

students’ learning evaluated in most studies, the factors analyzed vary greatly indicating
the lack of a commonly accepted evaluation model for this type of IU. Besides evaluat-
ing the impact of the IUs several evaluations also included the measurement of feedback
on the U itself and/or the programming environment, as well the qualitative indication
of strengths and weaknesses observed.

Data regarding the evaluation is collected in several ways (Fig. 11). Most of the data
is collected via questionnaires after U application. Several studies also extract data based
on the performance-based assessment of artifacts created by students during the IU, ex-
ercises or tests. In some cases teachers and/or students are interviewed at the end of the
IU in order to obtain information on the learning experience, learning environment, and
motivation. Observations were typically used to analyze student performance, but also to
evaluate their enjoyment and satisfaction. Log files from forums, videos, wikis, etc. were
mostly used by online courses to analyze the students’ engagement in the course.

Taking into consideration the less rigorous research designs adopted, most studies
only perform qualitative data analyses and/or quantitative analyses in a descriptive way
(Fig. 12). Only two studies report the usage of statistical tests (Hermans and Aivaloglou,
2017; Missiroli et al., 2017).

10
5
9
£ s
a
E 7
s}
3
i s
35 s
‘5 4
- 3 3 3
S 3
=] 2
E
E-»
1
0
2 & . a N
& &£ F ¥ & o °
-\0"\ & 'S \’o% {\@.
& & & ¥
& PG s}
o &)
Method of collection

Fig. 11. Data collection methods used for the evaluation of the 1Us.

i 10 g
20 :
© 6 5
€
S 4
g

0

Qualitative analysis Quantitative analysis NI
Method of data analysis

Fig. 12. Usage of data analysis methods.

190 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

5 4
4
3 2 2
2
0 0
. I

1-2 21-40 41-60 61-80 81-100 101-150151-200 > 200 NI
Sample size category

Amount of IlUs

Fig. 13. Amount of IU evaluations by sample size.

Not replicated Replicated

Amount of IUs
OFRLrNWRAUION®

Fig. 14. Amount of replicated studies.

As shown in Fig. 13, most evaluations were performed with small samples, rang-
ing from 1 to 60 participants. This low number of participants usually corresponds to
the size of a class in which the IU is applied and evaluated. However, four evaluations
were performed with more than 150 participants. Some studies (4 IUs) did not report the
sample size.

Almost half of the studies were replicated in more than one context, contributing to
the external validity of the findings (Fig. 14). However, a large part of the replications
still occurred only through a single study in a specific context, usually by the U creators
themselves.

An overview on the information extracted with respect to the evaluation of the IUs
is presented in Appendix C.

6. Discussion

Considering the importance of SE in software development, a very small number of
instructional units (only 17 in total) were found, aiming to teach these important compe-
tences in K-12. These IUs focus on the main phases of the software process, including
software requirements, software engineering models and methods, software construction
and software testing. Some [Us also explicitly address software maintenance. Some of
the IUs follow a traditional life-cycle model, such as the waterfall model or the V model.
On the other hand, several IUs adopt agile methodologies following an iterative process

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 191

and creating artifacts such as user stories, storyboards, etc. This indicates that both the
adoption of simple and/or iterative life cycle models may be beneficial to introduce the
software process at this educational stage.

SE education in K-12 is mostly concentrated in high school, although some authors
also report observed benefits from the introduction of teaching SE in elementary school
(Bollin and Sabitzer, 2015). Despite this, none of the authors reports difficulties or low
performance of students in learning SE concepts. In addition, Bollin and Sabitzer (2015)
conclude that teaching of SE can be started in elementary school without difficulties.
However, it is necessary to identify which knowledge areas, content and level of detail
should be taught according to the student’s age (Bollin and Sabitzer, 2015). Another
finding concludes that K-12 students demonstrate no difference in performance in learn-
ing SE and programming (Hermans and Aivaloglou, 2017).

Few IUs are focused exclusively on teaching SE, most IUs teach SE competencies
while teaching programming. Bollin and Sabitzer (2015) conclude that there is no need
for students to have previous computing experience and that SE can be taught with basics
of programming logic and modeling (flow diagrams). An exception is the IU presented
by Starrett (2007) that teaches software design using the UML notation before teaching
programming. In accordance to the author, modeling and abstraction are fundamental to
analytical thinking. He also points out that modeling provides a method to help students
address problems and solutions step-by-step. The results of this study show that students
learned the core concepts of abstraction in a quick and natural way.

The IUs either focus on teaching several phases of the software process or focus
only on a specific process by pre-defining the input artifacts for this phase. This may
represent a teaching alternative, especially when there are time constraints on the IU.
The majority of the IUs is integrated in the context of IUs focused on programming
teaching, few explicitly focus on teaching SE concepts. The integration of SE teaching
into IUs teaching programming can be beneficial both in relation to time constraints
and in learning a broader and more diverse understanding of the area of computation. In
order to enable the adoption of computing/SE education, several IUs are carried out in
a multidisciplinary way integrated in other disciplines of the K-12 curriculum such as
Physics or Arts.

In general, on this educational stage basic SE concepts related to the cognitive do-
main are addressed with a scope varying in relation to the duration of the [U. Weakness-
es typically observed in relation to SE education in higher education restricted to small-
scale projects lacking real project characteristics are even more present in IUs found
in K-12 (Malik et al., 2012). IUs in K-12 are even more focused on teaching basic SE
knowledge, not addressing more comprehensive skills and practical experiences.

We also observed a preference for the adoption of agile methodologies that seem
more appropriate to initiate the teaching of SE. Interestingly, only seven IUs report
the use of CASE tools, as the use of this type of tool helps to carry out the activities
of higher quality processes (IEEE CS, 2014). Thus, the question that arises is if the
teaching of CASE tools is inappropriate on this educational stage and/or if it is caused
by the lack of this type of functionality in the programming environments typically
used in K-12.

192 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

The majority of IUs aims at teaching SE competencies at the level of application
by adopting active learning approaches. Typically, after an introductory part, students
develop software (animations, web/mobile applications or robots). The assessment of
the students’ learning is usually based on their performance analyzing the artifacts cre-
ated by the students and/or quizzes. However, no detailed information on the assessment
criteria have been reported, such as for example rubrics, etc.

Aiming at disseminating the IUs presented in the articles, we observed, in general a
lack of availability of detailed information and/or instructional material. The vast major-
ity of IUs have been created in only one language and are not accessible, neither free
nor paid. This unavailability of IUs may hinder a larger scale application. Another is-
sue we observed is the lack of support for the training of instructors in order to prepare
them adequately for the application of the IUs in the classroom. Taking into account that
today there is a lack of K-12 teachers with computing background, leaving as a solution
the adoption a multidisciplinary approach in which computation is taught by teachers
trained in other disciplines. Therefore, motivation and in-service teacher training be-
come crucial, since they need to have computing, SE and technological knowledge as
well as knowledge of relevant pedagogical content (Gal-Ezer and Stephenson, 2010;
Bollin and Sabitzer, 2015).

Another issue is the fact that many articles do not present essential information re-
garding the learning objective(s) and/or instructional strategy, nor do they indicate the
methodology used to develop the 1Us. This weakness can also be observed in relation
to the evaluation of most IUs. Several do not report evaluations or performed them only
in an ad-hoc manner, which leaves the reported results questionable. The large variation
of the factors evaluated in different ways also indicates the lack of evaluation models in
this area to facilitate a more uniform evaluation of these IUs.

6.1. Threats to Validity

As in any systematic mapping studies, some threats to validity of the results exist. We,
therefore, identified potential threats and applied mitigation strategies in order to mini-
mize their impact.

Publication bias. Systematic mappings may suffer from the common bias that posi-
tive outcomes are more likely to be published than negative ones. However, we consider
that the findings of the articles, whether positive or negative, have only a minor influence
on this systematic mapping since we sought to characterize the approaches rather than
analyze their impacts on learning.

Identification of studies. Another risk is the omission of relevant studies. In order to
mitigate this risk, we carefully constructed the search string to be as inclusive as possi-
ble, considering not only core concepts but also synonyms. We also searched prominent
online course bases in order to reduce the risk of excluding existing IUs that have not yet
been reported through scientific articles. Furthermore, we also included secondary litera-
ture identified based on the references of the primary literature identified in the search.

Selection and extraction of study data. Threats to study data selection and extrac-
tion were mitigated by providing a detailed definition of inclusion/exclusion and qual-

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 193

ity criteria. We defined and documented a rigid protocol for the study selection and all
authors performed the selection together, discussing the selection until consensus was
reached. Data extraction was hindered in some cases, as the relevant information was
not always presented explicitly and/or using a commonly accepted terminology and,
therefore, in some cases had to be inferred. However, this inference was made by the first
author and carefully reviewed by the co-authors.

7. Conclusion

In this article, we present the state of the art and practice on teaching SE competences
in K-12. We have identified only 17 IUs mainly focused on high school. The IUs mostly
address the main stages of the software process, including software requirements, soft-
ware engineering models and methods, software construction and software testing, typi-
cally adopting either traditional life cycle models or agile methodologies. In general the
teaching of SE is inserted in IUs mainly aimed at teaching programming, often also in
a multidisciplinary way integrated into other disciplines of the K-12 curriculum, such
as Physics or Arts. The majority of IU aims at learning SE competencies at the level of
application by adopting active learning approaches leading the student to create artifacts
related to the software process.

Even with the authors reporting the benefits observed and the success of SE educa-
tion in K-12, we observed that these results may be questionable taking into account
the limited information on how IUs were developed and the low scientific rigor in their
evaluation with often small samples. We also note that the vast majority of IUs have
been created in only one language and are not accessible, neither free nor paid, which
may hinder their application on a larger scale. Based on the results of our review, it be-
comes obvious that there is a need for the development of IUs focused on SE education
in K-12 popularizing not only programming but also SE competence as an essential area
of computing.

Acknowledgment

This work is supported by the CNPq (National Council for Scientific and Technological
Development), a Brazilian government entity focused on scientific and technological
development.

References

ACM/IEEE (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science.
www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

ACM/IEEE (2014). Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering.
https://wuw.acm.org/binaries/content/assets/education/se2014.pdf

194 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Alice. Alice — Tell Stories. Build Games. Learn to Program. https://www.alice.org/

App Inventor. App Inventor — Explore MIT App Inventor. http://appinventor.mit.edu/explore/

Azenkot, S. et al. (2011) Overcoming barriers among Israeli and Palestinian students via computer science. /n:
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, 667-672.

Bascou, N. A.; Menekse, M. (2016) Robotics in K-12 formal and informal learning environments: A review of
literature. /n: Proceedings of the 2016 ASEE Annual Conference & Exposition, 1-46.

Blackgirlscode. Black Girls Code imagine. build. create. — Black Girls Code, BlackGirlsCode, Women of
Color in Technology. http://www.blackgirlscode.com

Blockly. Block Google Developers. https://developers.google.com/blockly/

Bloom, B.,S. (1956). Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain. Boston: Addison-
Wesley Longman Ltd.

Bollin, A. et al. (2016) Software engineering in primary and secondary schools-Informatics education is more
than programming. /n: Proceedings of the 29th International Conference on Software Engineering Educa-
tion and Training, 132—136.

Bollin, A; Sabitzer, B. (2015) Teaching Software Engineering in schools on the right time to introduce Soft-
ware Engineering concepts. In: Proceedings of the Global Engineering Education Conference, 518-525.

Brennan, K; Resnick, M. (2013) Imagining, creating, playing, sharing, reflecting: How online community
supports young people as designers of interactive media. /n: Proceedings of the Conference on Emerging
Technologies for the Classroom, 253-268.

Code. Anybody can learn | Code.org. https://code.org/

Codeclubworld. Code Club International — A worldwide network of coding clubs for children.
https://www.codeclubworld.org/

Collofello, J.S. (2002) Creation, deployment and evaluation of an innovative secondary school software devel-
opment curriculum module. /n: Proceedings of the 32nd Annual Frontiers in Education, 1-4.

CNE. Iniciativa Computagdo na Escola. http://www.computacaonaescola.ufsc.br/

Corbett, K.; Nesiba, N. (2015) Programming design process: Providing K-12 students with a structure to attain
programming goals. In: Proceedings of the Frontiers in Education Conference, 1-4.

CSTA (2017). K-12 Computer Science Framework.
http://kl2cs.org/wp-content/uploads/2016/09/K%E2Y,80%9312-Computer-Science-Framework. pdf

De Kereki, I.F.; Manataki, A. (2016) “Code Yourself” and “A Programar”: a bilingual MOOC for teaching
Computer Science to teenagers. In: Proceedings of the Frontiers in Education Conference (FIE), 1-9.

De Kereki, I.F.; Manataki, A. Code Yourself! An introduction a programming.
https://pt.coursera.org/learn/intro-programming

Freedman, D. et al. (2007). Statistics. New York: WW Norton.

Fronza, 1. et.al. (2017) Teaching Computational Thinking Using Agile Software Engineering Methods: A
Framework for Middle Schools. ACM Transactions on Computing Education, 17(4), 1-28.

Fronza, 1. et al. (2016) Blending Mobile Programming and Liberal Education in a Social-Economic High
School. In: Proceedings of the IEEE/ACM International Conference on Mobile Software Engineering and
Systems, 123—126.

Fronza, 1. et al. (2015) Students want to create apps: leveraging computational thinking to teach mobile soft-
ware development. /n.: Proceedings of the 16th Annual Conference on Information Technology Education,
21-26.

Girlswhocode. Girls Who Code — Join 90,000 Girls Who Code today!. https://girlswhocode.com

Gresse von Wangenheim, C. et al. (2018) CodeMaster — Automatic Assessment and Grading of App Inventor
and Snap! Programs. Informatics in Education, 17(1), 117-150.

Gresse von Wangenheim, C.G.; Shull, F. (2009) To Game or not to Game?. /[EEE Sofiware, 26(2), 92-94.

Grover, S.; Pea, R. (2013) Computational thinking in K—12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Grover, S. et al. (2015). Designing for deeper learning in a blended computer science course for middle school
students. Journal of Computer Science Education, 25(2), 199-237.

Heintz, F. et al. (2016) A review of models for introducing computational thinking, computer science and com-
puting in K-12 education. /n: Proceedings of the Frontiers in Education Conference (FIE), 1-9.

Heredia, A. et al. (2015) A Systematic Mapping Study on Software Process Education. /n: Proceedings of the
International Workshop on Software Process Education, Training and Professionalism. 7-17.

Hermans, F; Aivaloglou, E. (2017) Teaching software engineering principles to K-12 students: a MOOC on
Scratch. In: Proceedings of the 39th International Conference on Sofiware Engineering: Software Engi-
neering and Education Track, 13-22.

Hubwieser, P. ef al. (2015) A global snapshot of computer science education in K-12 schools. /n: Proceedings

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 195

of the 2015 ITiCSE on Working Group Reports, 65-83.

Hubwieser, P. (2012) Computer Science Education in Secondary Schools —The Introduction of a New Com-
pulsory Subject. ACM Transactions on Computing Education, 12(4), 16.

IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and Software Engineering —Vocabulary.

IEEE CS. (2014). SWEBOK — Guide to the Software Engineering body of knowledge (3th ed.). Silver Spring/
USA: IEEE

Gal-Ezer, J.; Stephenson, C. (2010) Computer science teacher preparation is critical. ACM Inroads, 1(1),
61-66.

Kohler, B et al. (2012) Teaching Basic Software Engineering to Senior High School Students. /n: Proceedings
of the IADIS International Conference e-Society, 149.

Kosa, M. et al. (2016) Software engineering education and games: a systematic literature review. Journal of
Universal Computer Science, 22(12), 1558-1574.

Lye, S.Y.; Koh, J.H.L. (2014). Review on teaching and learning of computational thinking through program-
ming: What is next for K-12?. Computers in Human Behavior, 41(C), 51-61.

Malik, B. et al. (2012) A systematic mapping study on software engineering education. World Academy of Sci-
ence, Engineering and Technology, 6(11), 1974-1984.

Maiorana, F. et al. (2015). Quizly: A live coding assessment platform for App Inventor. /n: Proceedings of
1IEEE Blocks and Beyond Workshop, 25-30.

Mead, N.R. (2009) Software engineering education: How far we’ve come and how far we have to go. Journal
of Systems and Sofiware, 82(4), 571-575.

Missiroli, M. et al. (2017) Agile for Millennials: A Comparative Study. /n: Proceedings of IEEE/ACM st
International Workshop on Software Engineering Curricula for Millennials (SECM), 47-53.

Missiroli, M. et al. (2016) Learning Agile software development in high school: an investigation. /n: Proceed-
ings of the 38th International Conference on Sofiware, 293-302.

MITa. MIT App inventor — Explore. http://appinventor.mit.edu/explore/

MITb. Scratch. https://Scratch.mit.edu/

Moreno-Ledn, J.; Robles, G. (2016) Code to learn with Scratch? A systematic literature review. In: Proceed-
ings of the Global Engineering Education Conference (EDUCON), 150—-156.

Petersen, K. ef al. (2008) Systematic mapping studies in software engineering. /n Proceedings of the 12th
International Conference on Evaluation and Assessment in Sofiware Engineering, 68—77.

Pokress, C.; Veiga, J.D. (2013). MIT App inventor: Enabling personal mobile computing. /n: Proceedings of
Programming for Mobile and Touch, 3.

Rusu, A. et al. (2011) Employing software maintenance techniques via a tower-defense serious computer
game. In: Proceedings of the International Conference on Technologies for E-Learning and Digital Enter-
tainment, 176—-184.

Rusu, A. et al. (2010) Learning software engineering basic concepts using a five-phase game. /n.: Proceedings
of IEEE Frontiers in Education Conference, 1-6.

Sarkar, A; Bell, T. (2013) Teaching black-box testing to high school students. /n: Proceedings of the 8th Work-
shop in Primary and Secondary Computing Education, 75-78.

Saskatchewan Education. (1991) Instructional Approaches: A Framework for Professional Practice. Sas-
katchewan Education, Canada.

Schank, R.C. (1992) Goal-Based Scenarios. Technical Report #36. Institute for the Learning Sciences, North-
western University.

Schank, R.C. et al. (1994) The design of goal-based scenarios. Journal of the Learning Sciences, 3(4), 305—
345.

Schank, R.C. (1996) Goal-based scenarios: CASE-based reasoning meets learning by doing, in CASE-based
reasoning: Experiences, lessons & future directions, D.Leake (ed.). AAAI Press/The MIT Press.

Scratch. Scratch — Imagine, Program, Share. https://scratch.mit.edu/

Serrano, M.; Serrano, M. (2013) Requisitos ao Codigo: Uma Proposta para o Ensino da Engenharia de Softwa-
re no Ensino Médio. In: Proceedings of the International Requirements Engineering Conference, 37-42.

Shackelford, R. et al. (2005) Computing curricula: The overview report. https://www.acm.org/bina-
ries/content/assets/education/curricula-recommendations/cc2005-marchO6final.pdf

Shadish, W.R. et al. (2002). Experimental and quasi-experimental designs for generalized causal inference.
Houghton Mifflin Company, New York.

Shaw, M. (2000) Software engineering education: a roadmap. /n: Proceedings of the Conference on the Future
of Sofiware Engineering. 371-380.

Starrett, C. (2007) Teaching UML Modeling Before Programming at the High School Level. In: Proceedings
of 7th IEEE International Conference on Advanced Learning Technologies, 713-714.

196 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Technovation. (2018) Technovation Challenge. https://technovationchallenge.org

US Departament Education (2018). Organization of U.S. Education.
https://wwu2.ed.gov/about/offices/list/ous/international/usnei/us/edlite-org-us.html

Verhoeft, T. (2006) A master class software engineering for secondary education. /n: Proceedings of the Inter-
national Conference on Informatics in Secondary Schools-Evolution and Perspectives, 150—158.

Vygotsky, L.S. (1978) Mind in society: The development of higher mental processes. Cambridge: Harvard
University Press, 159.

Wing, J.M. (2008) Computational thinking and thinking about computing. Philosophical transactions of the
royal society of London: mathematical, physical and engineering sciences, 366(1881), 3717-3725.

Wohlin, C. et al. (2012) Experimentation in Software Engineering. Springer-Verlag, Berlin.

F. da Cruz Pinheiro, is a master student of the Graduate Program in Computer Science
(PPGCC) at the Federal University of Santa Catarina (UFSC) and a research student at
the initiative Computing at Schools/INCoD/INE/UFSC.

C.G. von Wangenheim, is a professor at the Department of Informatics and Statistics
(INE) of the Federal University of Santa Catarina (UFSC), Floriandpolis, Brazil, where
she coordinates the Software Quality Group (GQS) focusing on scientific research, de-
velopment and transfer of software engineering models, methods and tools and software
engineering education in order to support the improvement of software quality and pro-
ductivity. She also coordinates the initiative Computing at Schools, which aims at bring-
ing computing education to schools in Brazil. She received the Dipl.-Inform. and Dr.
rer. nat. degrees in Computer Science from the Technical University of Kaiserslautern
(Germany), and the Dr. Eng. degree in Production Engineering from the Federal Univer-
sity of Santa Catarina. She is also PMP — Project Management Professional and MPS.
BR Assessor and Implementor.

R. Missfeldt Filho, is an undergraduate student of the Computer Science course at the
Federal University of Santa Catarina (UFSC) and a scholarship student at the initiative
Computing at Schools/INCoD/INE/UFSC.

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 197
APPENDIX A. Overview on the SE competencies taught in K-12
Reference Learning objecti- SE knowledge area(s) SE methods/ SE
ve(s) with respect technique(s) tool(s)
to SE
After the IU the
students should be
able to:
(Bollin and apply program- * SW Requirements * Pair programming NI
Sabitzer, ming skills by cre- ¢ SW Construction * Requirement specifica-
2015) ating apps follow- ¢ SW Testing tion
ing SE practices. *+ SW Maintenance » SW Validation
* SW Engineering Manage-
ment
* SW Engineering Process
* SW Quality
(Collofello, understand the * SW Requirements * Use case Ra-
2002) software develop- ¢ SW Design * Test case tional
ment process. * SW Engineering * Object-oriented mod- Rose
understand the * SW Construction eling
careers of a soft- * SW Testing
ware engineer.
(Corbett apply program- * SW Design * Programming design NI
and Nesiba, ming competencies * SW Construction process
2015) by following an SW Testing * [terative process
engineering design * SW Engineering Process ¢ Pseudocode
process including * Flow diagram
SE practices.
(De Kereki understand and * SW Requirements * Debugging NI
and apply basic SE * SW Design * Reuse
Manataki, practices of mod- * SW Engineering Models ¢ Event-driven program-
2016) eling, creating, and Methods ming
debugging, reusing * SW Construction
computer pro- * SW Testing
grams. * SW Maintenance
* SW Quality
(Fronza apply skills related * SW Requirements * Storyboard GIMP
etal.,2017) to an agile soft- * SW Design * [terative process

ware development
process.

* SW Construction
* SW Testing

* SW Engineering Process
* SW Engineering Models

and methods

* Brainstorming

* Flow diagram

* Reuse

* Debugging

* Agile method

* Feasibility table
» Mental map

198 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

(Fronza apply SE concepts. ¢ SW Requirements * V Model NI
etal.,2016) * SW Design * Pair programming
* SW Engineering Models * Storyboard
and Methods * Paper prototype
* SW Construction * Unit testing
* SW Testing * Iterative process
* SW Engineering Process
(Fronza apply an SE pro- « SW Requirements * Agile method NI
etal.,2015) cess for mobile * SW Design * Feasibility analysis
application devel- + SW Construction * [terative process
opment. * SW Testing * Paper prototype
* SW Engineering Models
and Methods
(Hermans analyze quality- * SW Maintenance * Code smell NI
and Aivalo- related SE tech- * SW Quality * Debugging
glou, 2017) niques. * Duplication
* Refactoring
* Naming
(Kohler apply sw-develop- ¢ SW Requirements » Waterfall model NI
etal.,2012) ment process com- ¢ SW Design * Requirements refine-
petencies using the ¢ SW Engineering Models ment based on wire-
waterfall model. and Methods frames
* SW Construction * Usability testing
* SW Testing * Paper prototype
* SW Engineering Process ¢ State machine diagram
(Missiroli ~ apply SE skills us- * SW Requirements * Scrum NI
etal.,2017) ing SCRUM or the < SW Construction » Waterfall model
Waterfall model. * SW Testing * User story

* SW Engineering Process ¢ Use case diagram
* SW Engineering Models

and Methods
(Missiroli ~ apply the agile * SW Requirements * Agile method Net-
etal.,2016) methodology * SW Construction Extreme programming Beans,
Extreme program- < Software Testing * -Time boxing JUnit
ming. * SW Engineering Models « User story
and Methods * Pair programming
* Test Driven Develop-
ment
(Rusu et al., understand the 4 + SW Maintenance * Reuse (adaptive) Educa-
2011) types of software * Corrective program- tional
maintenance: ming (corrective) game
adaptative, correc- * Exception detection
tive, perfective and (perfective)

preventive. * Planning (preventive)

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 199
(Rusu et al., understand the * SW Requirements » Waterfall model Educa-
2010) phases of the soft- * SW Design * Brainstorming tional
ware life cycle. * SW Engineering Models * Control structure game
understand the and Methods * Fault-based technique
roles/careers of IT » SW Construction (test)
professionals. * SW Testing
* SW Maintenance
* SW Engineering Process
(Sarkar and apply acceptance * SW Testing * Black-box test Test
Bell, 2013) tests. * -Acceptance test case
valida-
tion
tool
(test-
Bedv9.
html)
(Serrano apply an SE pro- * SW Requirements * Goal orientation NI
and Ser- cess including re- * SW Design * Scenario
rano, 2013) quirements elicita- ¢ SW Testing * Prototype
tion, requirements * Requirements model-
modeling and soft- ing
ware validation.
(Starrett, apply software * SW Design * Class diagram NI
2007) modeling skills * SW Engineering Models * State machine diagram
using UML. and Methods « UML
* Model Driven Devel-
opment
* -Model Driven Archi-
tecture
(Verhoeff, apply SE skillsin « SW Requirements * Unit testing NI
2006) the development of « SW Design * Project review

a pre-defined soft-
ware project.

* SW Engineering Models
and Methods

* SW Construction

* SW Testing

* SW Maintenance

* SW Configuration and
Management

* SW Engineering Manage-

ment
* SW Engineering Process
* SW Quality

» State machine diagram

* [terative process

F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

200

SMOTAIY)

-ur - poseq-joey

‘A18SSd
-09U JI ‘OpaI pue 183} ‘AIN0IXd
‘orewnsd ‘ueld 0) pajoadxa are
SIUOPNIS YIIYM Ul SUONRINI Ul

‘Sunndwod ur [euoIssay
-01d ® JO 190180 A JNOQR
uondoorad oy oSuey)
‘sar3ojouto9) [euonend

-Ide pue JudW SIN500 Juowdo[oAd('YOJRIOS -WI0D OZIIN pUB ‘PUBIS (L10T
uel -Ss3sse paseq (JOeJIIE QIBMIJOS) suonn| 100(o1d ms as sse[o ur suonewrue Jjo judwdo] -1opun ‘dzienydoouod o3 v 12
IN -T®] -9ouBWIOJIog -0So[dures ‘s}ooys aSI0IOXg -1010Xd QIMIdT [IJBIdS -u] -9Adp O} UO SISNO0J] YL AN[Iqe Syuopms osoxdw] eZUOI])
ASudOIT [B
-uoneuINU| ysi saSuayeyo ‘saonoeld 9102
0 VS-ON -ueds (JoBJIIE ‘SOSIOIOXD PIM 1599 S JO asn oy pue Jur ‘DyeIRUBI
-Ad-DD pue o1emjos) sopod odures (9sIn0d aurg ‘SUOTjeWIIUR PUB SAWES XIWal -yuly) [euonendwod ‘sye) pue
suowwo) ysI| SMOIAQI ‘S[BLIDJBWI [OIBASAI ‘SWNI -UO0) UOnonnsul Jul] pue 9JeAId 0) MOY :SAZUQ[[eyYd -udwepunj Furwwerdold Iy
oanear) -Sug 10od pue zmn) -oj ‘soreuuonsonb ‘soopip juopusadopuy yogerds -uQ jo souds e Sunuosaid DOOIN Ajdde pue puesiopun aQq)
‘swopqoxd
Surwwesdoid Suiajos pue
Surssarppe 10y ampadoid
WN[NOLLING 9t Jo 1ed paInjonns & WM SJuOp (s10T
se ssooold udisop Surwwerd -mys opraoid 03 ssooord ‘BQISON
ysI| 100(01d sse[o -01d ® SuImo[[0} 10qo130g-00¢g Juowdo[oAdp dIBMYOS pue
IN -Sug IN IN ms QIMOoT DISVAd Ul Xe[ered e werSoid sjuopm)§ oAnRION Ue odnponu] 339gIio))
(zooz
ysI| uorne| sse[d “JUSWIUOIIAUS PIje[nul 'sidod ‘o[1oJ
IN -3ug IN [BLIJEW QUI[UQ -NWIS ‘AINjod] IN -u] -IS & ur ms e do[oAdp sjuopni§ -uod JS Ureul pue)siopun) -0[10D)
"sdde Sur (stot
-1eaI0 ‘Surssodord afewnn ‘oseq sourjdrosip ‘10z31qeS
(3oeynue axemyjos) sdde A1 100foxd ms “os1o J0juoAur ssefo -eyep Suipnpour ‘Furwwersord 19yl0 wolj so1doy maradl pue
IN IN IN -e[dwoxg ‘s1ooys 9SIOIOXF -I9X0 ‘QInjdo ddy -uy dde jo sorseq oy ured| syuopmy§ pue ured] 03 sdde ojear) urog)
(syuow opowr
(s)e8 (s)y1uawnnsur -UOIIAUD UOl}
-eng /(s)poyrou poyiout Surwm -ed NI 2y} JO 2A1
osudoIT -ueg JUOWISSASS Y [BLIJBW [BUONINISU] [euononnsu] -weidold -npg uondiiosop [e1UAD -02[qo FuluIed [BIQUAD) 20UAIJAY

ST 94} JO SINSLIDNILIRY D Y} U0 MIIAIIAQ g XIANAJV

201

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study

IN

IN

ASUROIT [B
-uoneuINU]
0% VS-ON
-Ad-0D
SUOWIo))
ATIRAI)

IN

IN

uer
ey

IN

IN

IN -90uBWIOJIdg -10A0 wd[qord

(o8u9

-[eyo) paseq
-9ouBWIOJIO]
IN

wex? 2 zimne)

SMOIAIO)
-ul - paseq-joej
-[Je pue juoul
-SSOSse poseq
-00UBWI0JI]

SMOIAIO}
-ur - paseq-joej

-de pue JuAW
-ssasse poseq

0OPIA ‘SOPI[S

‘(1oepm
-Ie QIeM)JOS) SALIO)S Iasn
‘uoneoyrdads syjudwdanb

-0I MS ‘MAIAIA0 1d0f01d

(oeyne
o1emyos) (9pod 90Inos)
[opowr 199[q0 WAISAS -
oFen3ue| Surunuesdord oy
1o} suoponnsur jueirodur
jsowr oy} ym Jeays dif, -
Surwrwesoxd

QATIORIU]-
(oeynre
QIEMIJOS) UQQIOS [OBd I0J

10} [eLoy

syuowaIINbax jueyrodur
SupesIpur SOWERLAIIA -
1S9) ‘WwnIoy

‘s0zzZInb ‘SaSIOIAXD ‘SOIPIA

IN

(JoBJ1IB 21BMIJOS) MIIA
‘rerrong,

103(o01d

MS Ralitibklg|
s10)n)

pue siojonnsur
M Surured|
paseq OLIBUAOS
paseq-[e0D
(9s1n0o

JUIUO) UOTJONLS
-ur judpuadapuy

uoneyuasard
900fo1d ms ‘os10
-10X9 ‘Qam)dd]

dnoi3
Aprys ‘Burajos
wa[qoid ‘sas1o10
-X9 “JIOMOWOH

BAR[

IN

SILAGIN

JIOJUdAUL
ddy

X ‘101
-UdAUL
ddy

SSE[O
-ug

SSe[o

SSE[O

SSe[o

SSe[o

‘soyoeordde omy
ay) Jo synsax Suruied] ayp ared
-UI09 0} WINIJG 10 [9POW [[e]1o)
-BM) OB2) 0) SwIe N SIYL

'$901A9p SO! 10} dde zmnb ®
Surdooadp £q 9[0KodJI] AS Ue
JO s95e)s [[B 9IN09XD SIUSPMIS

‘sowres Jo uone
-10 o) SAYPRd) ey DOOIN

'so1doy
Juowdo[oAdp dIeMIFOS J[Iqow
JUDLIND U0 9OUALIAAXD U0-spuey
pue suossd] Juipraoid doudrod
-X9 o9m-ouo € se ‘quowdojo
-0p 9[IqowW UO [00YDS Jouung

‘Kem
Kreurdiosipinu & ur uonesrd
-de oiqowr e 9jeAIO SHUPMS

‘(WnIog) spoyiow
o[ide 10 [[ejrorem) Sul
-sn sooudjadwos juowr
-dojoadp aremyjos Ajddy

‘BOIR S
A} UI JSAIUI 9JLAID pue
A[0AD Q1] 0IBMIJOS B UMY

'saonoead pue Surwerd
-o1d 7§ urew ayj dojaadq

Surwuwrersoxd uoneosrd
-de oqiqowr ur Sunjuiy) e
-uonenduwod pueisIopu)

'SOOTAQP 9[IqOW YSNOoIy)}
sordoy juowdo[oaap
aremyos Juaund Ajddy

(L10T
“Ip 12 1]01

-ISSTIA))

(z1ot
“Ip 12

YO

(107
‘nois
-O[BATY
pue
SUBULIOH)

(s10C
“p 12
BZUOI,])

(9107
“Ip 12
BZUOL])

F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

202

,/asuddI']

[euoneu
-191U] ' (Joej11IE 2IBM)JOS) SO
VS-ON -SBD 159} 9qLIOSAP 03 JOA] - dnoi3 ‘op pnoys
-A9-0D (yoejnIe o1EMIJOS) SI01I0 Apnis‘oonoerd ‘sj[nej surejuod ey jeym soop werdoxd oy J1 (€107
suownuo) ysi| i werdord ms ynejo - ur - ooudLadxo sse[o weidord orem)jos © IOJ SOSEd SYOIYD JOSn Oy} YOIyMm Ul ‘[[og pue
oAnear) -Sug IN 300q QUIJUO OAIJORIJIU[- PUE 1Moo IN -U] 1S9} JO 1os & 9jeaId sjuopmy§ 1s9) doueydoooe Ajdde o, IeyIeS)
‘[opour [[ejIojem
oy Jo soseyd oy Jo SonsLIAIOR
-IeU9 U} OB} 0] SQWRSIUIW G
Jo pasodwios st owes oy, ‘Aued
-woo [eonylodAy B 10J 031SqoMm ‘[opou [[BLIoreM 0102
ysI| Surures| SSe[o & JO Juowdo[oAdp A} Je pourre oy} SuIMO[[0} S9sS9001d “Ip 12
IN -Sug SOSIOIOXF] owes [euoneonpyg poaseq-awen - -up owed e Aejd syjuopmys Oy 9[OAD 9JI] MS pueisIopuN) nsny)
*90UBUQIUIEW JO
suLoy judsaidar syue yoepe o)
pasn sai3arens ayp ‘ssed Ady
UuYM WY} J& JOOYS ey} SIoM0)
JONISUOD ISNW U0 ‘SIY) 10
‘dewr e Suisso1d woly (Ss309sul
10j 1oydejow e) syue juordid (1102
ysi| zme) Surures| SSB[O 0] SI [BOT U], "OweS dSuJop © '$21391e1)S 9oUBU v 12
IN -Sug ‘e100s owen oweS [euoneonpy poseq-dWen -- -u] uIm A][NJSSO00NS JSNW SJUOPNYS -OJUIBW MS PUB)SIOPU() nsny)
‘soonoeld Juow
juow (sueog 'so1103s Josn -dojoadp o[iSe Jurssaip 9107
-$S9sse paseq (30rIN 100f01d -1ON) sse[o pouyopaid uo poseq uonedrd -pe £q serouojodwiod Sur 7w 12 1j01
IN IN -90UBWIOJIdJ -IB QIeM]JOS) SOLIO)S IOS[) MS Q1IN0 BAR[-ul -de qom e dojoadp suopmg -100uISud dremyos A[ddy -ISSTIN)
(syuow opowr
(s)o8 (s)y1uawnnsur -UOIIAUD UON}
-en3 /(s)poypoux poyowt Suru o NI Y3 JO A1}
oSuedIT -ue| JUSWISSISSY [eLI)eW [EUOONSU] [euononnsu] -weisord -hpg uondrosop [erouen -09[qo SuruIed] [RIOUAL) OOUAIRJOY

203

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study

(Tway - xeput/ue/zu" 810 ' opTnSpTeTFso "Anm//:d3aT) |

IN IN
IN IN
osong

‘m

IN -1od

jusw
-$S9sse paseq
-00UBWIOJIdJ
zmQ

SMITAJL 193]

100f01d
UOIIBIUSWINIOP [BIIU MS “UOISSNOSIP
-yo9) pauyop-aid Ajjenreq ‘dnoi3 Apmg
109foxd
IN MS Relitibkly |

paured soousr1adxd
oY} PI0OAI 0} SOLIBIP YIOM 100fo1d mg

[eoseq
ydje@

O ISNV

$01}0qOY
[euoned
-npg pue
ANy

SSe[o

SSE[O

SSE[o
1

(=}

‘sjudu
-odwod ¢ our popiAlp sem
e} WoIsAs oy Jo yuouodwos e
padojoaap syuapmnys jo sdnoi3 ¢
‘sjuouodwod pue dINoONIYoIR
paugopaid © uo paseq wWo)sAs
10JeAd[d ue dojoAdp syuopms

'10q0y
0397 9y} AQ pasn I9[[0NU0I0I0
- ur-)ing oY) ojur poqiduiod
pue 5 SNV ojul pajejsuen s
11} 9IBMIJOS B [9POW SJUIPNIS

'$10qO01 pue sowes Jo juou
-dofoaop oyy soyoes) O] oYL

arem
-jos Aupenb dojoaop 03
soroudjodwos gS Arddy

‘Suruwesd
-o1d o10J0q SurEpowr ur
PpaAjoAul $s9501d Sunyuryy
joensqe oy) Ajdde of

‘sydoouod
4s Aidde o0y (111) Aysioa
-IUN IIM SJUQPNIS [00YDS
AIepuodos ozZI[er00s/2)els
-our 0} (1) Suruosear
ea13o] aaoxdwr of (1)

(9002
‘JJOOYIOA)

(Looz
‘poLIeIS)

(€107
‘oueLIdg

pue
OURILIAS)

F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

204

‘SS30

-01d juowdooAdp ms [euonipen dy) Suipie3ar ofpojmouy SIsA[eue
91o[dwod 01 popodu oIe SOIS9JRNS PuB S[O0} [BUONIPPY oAndLIOS
-91qissod sem Aem Areurjdrosipnnuwi e ur uonei3ajuy -op 2AD
Juowr -eyuenb MTAIUT [eyuot
-dojoAap oy 9z1ueS10 03 pasn oq ued ASo[opoylow J[ISB AY], puk AN ‘S)0BJ11IR JAIIROIO Supjuiy) reuonendwoo -adxe (L7107 C7p 12
‘Sunjuiy) [euoneinduiod SuIyoRa) Ul 9ANIILIO PAIAPISUOd (] -BI[EN() IN Sjuapnjs gy ‘arreuuonson) Sumyoed)] oy jo Aouedyyg — -osen) BZUOI])
90UQLIAAX [[BIOAO (9SINOD
oY} PUSWIWOAI 0} UOHUIUI
£98IN02 A}
JO SJUQWIOLQ d[qEN[BA ISOUW {9SINOD
oy jo uonemp ,oded /paads
-o8en3ue] Surwwesdold Joyjoue Mouy 03 Se [[om Se SISA[eue ‘Surwwrerdord 9102
M8 19130 werdold 0} onunNuUOd 0) PuSIUI SIUAPMS JO 9,99 (7 danduos Sumunuoo ur jsaroul {(AoudIoy ‘DlereuBy
a1mng oy ur werdoxd o) onuUNUOD 0} -0p 9A} SJuOp (S09pIA) o[y So] -Jo) uoneoadxo JO JUSWIAIIYOR Apmys pue
Y1 PnoMm 3SIN09 Ay} p)R[dwod oym spuapmIs Y1 Jo %06 (1 -emuend) ON -MIS 8G9°TI ‘orreuuonson) ‘(juowoSesus) ojer uondjdwo) ase) DRIy ()
's[eoS Suruwerd (s102
(opdwes -o1d 100w syuopnys d[oy 03 $$99 ‘eqISON pue
IN IN IN [Tews) IN arreuuonsan) -oid ay) Jo AJI[Iqe pue SSAUNIAS) O0Y-PY 119q10))
'S]o0Y9s A1epu0das ur pajuawo|d
Wl 9q UBD WN[NOLLIND A} Jey) PAJENSUOWIP [OIedsal Y],
*[003 950y [euonEY A} Sulsn sjudwAINbAI AY) pAIUAWNIOP (zo0z
Aoy, 'sased asn Jursn syudwaainbar ayy padojaadp syuepmg IN IN IN IN Sururea| IN ‘o[[eJ0110D)
saurdiosip/s100 (K1renb dde) syoadse pajejoi-1on
-foxd 19y30 Yim pajerdajur oq ued FS /uoreonps 1ndwo)) - -poad ‘rojuoau] ddy yym sennoy
[00y9s YSIY Ul padnponul A[[njssaoons oq ued soidoy g - sisAjeue arreuuonsonb pue -Jip “Aynoygip urures] sordoy S (s10Z
sdde [njosn ‘poo3 o1ea10 03 9[qE RN moraror uodo Jo douepodwl ‘(UOBATIOW PUE 1S9 Apnys REVAI(N
a1om Koy “Sunndwos yim sousadxaur syuapnys 1dsa(g - -11end) IN Ssiuopnis ¢¢ ‘UONBAIOSq() -IdIUT) SJUOPNIS 0} Paje[al s30adsy ose) pue uljog)
(s)poypowr sarpnys u31sop
sisA[eue pajed (s)poypow [oIeas
sSurput,{ eeg -1doy ozis ojdweg uonoa9[[0d ere pajen[eas (s)1030e,] -0y 9oudIoJOYy

S11 Y} JO SUONNEAT Y} U0 MIIAIIAQ *D XIANAdV

205

Teaching Software Engineering in K-12 Education: A Systematic Mapping Study

‘U93S [[om AI9A J0U 219M SuIxoq
ol [, pue Juowrdo[oAd(J USALI(J-ISAL ‘[NJOSN PAIIPISUOD OIOM
Inq ‘saSejueApe AUBT 9)BAI0 JOU PIP SALI0)S 1as() “onbruyod)
159q o) paIopIsuod sem Juruwerdord Ied JUOWIUOIIAUD
Surures] pue uoneAnow Ay} 0} 103dsor YIm doudrradxd
o) JO oWI00INO POOT) UO PAdIFe SIAYOd) ‘[erouad up

'ss9001d juowdojorop
Y} UO [OJJUOD JIOW SIOYJO OS[E YOIYM ‘[opOwW [[ejIojem d)
M pooudLIadxd aow d1e SI1YoBa] ‘SIuapnIsAq pajerodrd
-de ozow os[e s1 31 {[[opow [[ejIorem Ay} 0} paredwod sainy
-e9J SunjIom I19)J9q UM dIemyjos d[qesn sednpoid wniog

1 SuIApn3s Jo SupjuIy) MOu dIe pue

20u010s I9INdWwoo pue TS UI ISOIANUT UMOYS JABY SJUIPNIS -
saseyd JuowdoaAap jo uon

-OUnSIp JB[d B SBY [opOI SIY) 2duls ‘soseyd uonemp 110ys
)M [OpO [[eJIojeMm Suisn F§ 31e)s 0) 1039q st 31 Sunndwod
ur 9ouALIadX OU YPIM SJUIPNIS JOF JEY) POISAOISIP SeM I -

"Q0URYD 10JBAIT B OARY JOIM ISIL AU} UI (SOOPIA
pue swnioj ‘sozzmb) uonedionred pooS e pey oym dsoy],
‘Sunordwos jou Jo 9ouLYd 10J8AIS B OABY YoM)SI O} Ul
SOpeIS MO[9ABY OUM pUE 9SINOD Oy} Ul B[PO[[OIUD OYM
‘owoy Je syuared yim 1071050} SOSINOO A} JOO) OYM SHUSP
-mg (¢ ‘sampodoid pue siojerodo ured] 0) 10)9q uuoyred
71 Jo a8e oy 1040 syuopny§ (7 ‘SurwwerSord pue Surured|
AS 0) uone[al ul douewIoIod ur 9dULIYIP ou st Y, (]

IN

'SA10

-uajedwos g§ Ajdde ospe Aoyy 1nq ‘Surwerdord Ajuo jou
a1e sjeuorssajord I 1ey) oz1ugodal 0) undaq 2ARY S)UPMIS
*SJuUdPNIS AY) JO AJISOLL

-nd pue 3sa1ur ay) Sursearour ur sdjay sdde jo uoneard ay,
's]003 S ul Sururen oy1ads

10J P2U 1) JNOYIIM SUOIIN[OS J1dY) pajudwd(dwr sjuapmg

sisA[eue
aATIR)
“1end
§)59) [Bo1)
-s1je)s pue
sIsA[eue
oanduios
-9p A1)
-eynuen()

IN

S)59) [Bo1)
-s1je)s pue
sIsA[eue
oanduios
-ap A1
-eynuen()

IN

sisAjeue
aAnR)
-1end

S19
“Yoeal O 1 @
y SIuopmIs $3

S[00yos
Zurso
-SSB[O / SJUAPNIS ()9

ON Sjuapms []

sjuap
IN -ms 07T

IN IN

T swepnis 6

MTAIUT
‘Qrreuuorn}sanb
‘SIsATeue 9po))

aneu
-uonsanb ‘(opoo)
PILAID S)OBIIIY

uoneAIasqO

sjsanb
‘(wn1oy ‘soapIA)
o[y 50 ‘ZInQ

IN

UOI)BAIISQO
‘PArLAID SIORJIY

Aymiqesn ‘uonoey

-snes ‘Ajijenb opoo ‘dourWIO]Idd

SIOJONIISUI PUE SUIPNYS

JO uopoeJses pue OUBWLIONIdJ

AS Ul 3se10u]

(yuowoFe3ud)

251109 Ay} Jo uonadwos [nyssad
-ons jo uonorpaid (03e £q Surures]
ur sedudIyIp ‘sydoouoo gg pue
sydoouos SurwesSord usomjoq
Anoyjrp Surured] Jo ooUIPIJ

IN

20URULIOJID]

Apms (910T “17 12
oseD) I[OdISSIN)

[euew (L10T “1v 12

-LadXg 1[OISSTN)
(croz w12

20y-py 1o14Q™)
(10T

‘no[3oreary

Apmys pue
ose) SUBWLIOH)
(stoz w2

IN BZUOL,])
(910T 192

20y-py BZUOI])

F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

206

*3ur)se) pue Surjapow uo sndoj 193eaI3 B Suronponur (sjooyos
Aq paaoxdwir 2q 0} Spadu dIBMIJOS PjeaId Y Jo Aeny) - K1e
‘Sunndwods uo uorurdo 19139q -puooas sjuapnys s3ssau
® wI0j 0} way) padjoy osye yorym ‘N[Yl payI| SuApnms - JUIQJJIP 7L Kjorew (oremijos) -yeam pue syiduons ‘Ayenb mS (9002
‘[nyssaoons 3nb sem doudnadxe Ay - IN €)9 -1xoxdde pajeard spoejnay ‘uonoejsnes juopnis ‘9oudlddXyg 00U-pY JJOOUIdA)
“UOTORIISQR M URY) XBIUAS YIIM AJ[NOLJIP QI0W dARY
S)uapnS “"AJ[RINJRU SWIOD ‘SUOTIBIO0SSE JAIXIPAI PUB ‘SISSB[O
QAIIBIDOSSE ‘UONEBZI[RIdUAS Sk yons ‘s)daouod Surjopour eleq
‘uonejuowd[duwr oy Juriae)s Apjornb uey Joyjel ‘urewrop uon zme) (L00T
-eorjdde oy ur sjuawWIAld 10§ SUOORIISqR SUIPUY AIB SJUIPMIS IN ON IN ‘uoneAIdsqO Suruies] ur sanNOYJIg 90Y-py NaLIRIS)
(10T
(A1e1p 3j10M) 91y ‘ouelIog
‘Jurured] g JO osed pue SIdYOBI) puk sjuapnis Juowe 8017 ‘syuopnys jo pue
UORZI[BIOOS 0} SINQINUOD (] JBY) JBISUOWAP SINSIY IN ON SJUOpMIS ¢] JUSWISSISSE-J[OS (Sururea) paurejqo SHNSRY J0Y-pY OUBIIAS)
'sonAJeue pue SupR[dRI) JUIAS FUIPN]IUI Sk ons (00} 100} (€10T ‘1109
2y 03 30adsar yim JuswdAoxdur 1oy santunyioddo are a1ay], IN ON swuepms ([IN oY} JO SOssouyeam pue syjSudnS O0U-py pue IeyIes)
‘Surreourduo
21eM}Jos Jo uoissajord ayy djerdardde 0y osje pinoo sowed
oy poerd oym syuopnys oy ‘syuedionted oyy 10y Suisny SIsAjeue
-U0J Y} 9q 03 pawads oseyd dourUUIRW AY) INQq ‘D[OAD 1] JA1IR) (3sod pue a1d) Apris (0107 v 12
oIem)jos o) Jo Surpueisiopun I19yeq e paureS syuedonied -1rend) ON Ssjuopnis g arreuuonsang) Surureo| ase) nsnyy)
sIsA[eue
RN (sorenpeid
-1[enb pue -Iopun) ¢
‘oouRURIUIBW SISATRUR (1ooyas
aremyjos o3 sarjdde A303ens owes oy jey) pue dwes osuojop oAndLIoS ysy) 01
oy Surkerd uoym Apjueisuod o3ueyo pinoys A39jens Ioy) -0p oA} (1ooyos zinb (11oz “m 12
Jey) pazijeal sjuopm§ -owed oy Aejd 03 payI| SHUSPNIS JSOJ\ -eIuen() ON o[ppiu) 8] ‘QIreuuonsan) o[qekofus ‘Surures| o0y-py nsny)
(s)poypowr sarpnys ugisop
sisA[eue pojed (s)poypowt oI1eds
s3urpur,g eleq -1dey ozis ojdweg uor399[]09 Ble(q Ppojen[eA? (5)10398,] -0y 90URIRJY

