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Abstract. Diverse initiatives have emerged to popularize the teaching of computing in K-12 main-
ly through programming. This, however, may not cover other important core computing compe-
tencies, such as Software Engineering (SE). Thus, in order to obtain an overview of the state of the
art and practice of teaching SE competences in K-12, we carried out a systematic mapping study.
We identified 17 instructional units mostly adopting the waterfall model or agile methodologies
focusing on the main phases of the software process. However, there seems to be a lack of details
hindering large-scope adoption of these instructional units. Many articles also do not report how
the units have been developed and/or evaluated. However, results demonstrating both the viability
and the positive contribution of initiating SE education already in K-12, indicate a need for further
research in order to improve computing education in schools contributing to the popularization of
SE competencies.

Keywords: software engineering, teaching, K-12.

1. Introduction

Currently, the introduction of teaching computing in schools is a worldwide trend (Hub-
wieser, 2012) supported by a number of initiatives such as Code.org (Code, 2018), Code
Club (CodeClubWorld, 2018), Girls Who Code (Girlswhocode, 2018), Black Girls Code
(Blackgirlscode, 2018) or Computag@o na Escola (CNE, 2018), among others. These ini-
tiatives aim to teach computational thinking (Wing, 2008) as an important 21st century
skill, as well as to spark students’ interest in STEM (Science, Technology, Engineer-
ing, and Mathematics) and IT (Information Technology). Most of these initiatives focus
specifically on coding exercises as the main curriculum subject, using age-appropriate
block-based programming environments such as Scratch (Scratch, 2018).
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However, this approach mainly focused on teaching programming, may not cov-
er other important computing core competencies, such as Software Engineering (SE),
which are essential for the development of software (ACM/IEEE, 2013). These compe-
tencies are rarely covered in computing courses in schools, even in high school (Verhoeff,
2006). The inclusion of SE practices with respect to requirements development, software
design, user interface design, testing, configuration management, etc. can help students
gain insight into some of the challenges in real software projects (ACM/IEEE, 2013).
Learning how to program can not be separated from SE. To create software, students
need to learn at least the basic steps of the software process (Bollin and Sabitzer, 2015).
Even in a regular programming course, it is important to address the basics of software
engineering, being helpful to prevent and correct mistakes and, thus, increasing the joy
of programming. On the other hand, teaching programming without attention for SE can
make programming unnecessarily harder and more frustrating, especially when getting
involved in more challenging programming assignments. SE education is responsible
for a broad spectrum of competencies that software engineers need for their professional
life. Being able to produce software in a systematic, controlled and efficient manner in a
variety of contexts requires an extensive knowledge on a range of models, methods and
tools from different SE knowledge areas, together with the understanding necessary to
select and deploy them (ACM/IEEE, 2014). Typically, these competencies are taught in
higher education in undergraduate or graduate computing courses (Shackelford et al.,
2005). So, considering the trend to introducing computing education already in K-12 in
order to popularize computing, it also becomes important to introduce the learning of SE
competencies at this educational stage (Bollin and Sabitzer, 2015). Yet, as it is of course
not feasabile to cover all SE topics on the same level of detail as in higher education due
to curriculum objectives and constraints (Bollin and Sabitzer, 2015), the question that
arises is whether and how SE is taught today in K-12.

So far, several articles present overviews on the teaching of computing. Grover
and Pea (2013) present a systematic review on the teaching of computational think-
ing in K-12. Several authors also provide global views on how teaching computer
science is approached by several countries in K-12 (Hubwieser et al., 2015; Heintz
et al., 2016). Some reviews provide an overview on the adoption of programming
environments such as Scratch (Moreno-Leon and Robles, 2016) and/or specific types
of applications (e.g. robotics) (Bascou and Menekse, 2016). However, none of these
reviews specifically addresses the teaching of SE competencies in K-12. On the other
hand, several reviews analyze the state of the art of teaching Software Engineering in
general (Malik and Zafar, 2012; Shaw, 2000; Mead, 2009) or specific SE topics, such
as processes (Heredia et al., 2015). Other reviews related to SE teaching focus on spe-
cific instructional methods, such as games (Kosa ef al., 2016; Gresse von Wangenheim
and Shull, 2009). However, these reviews focus exclusively on SE education in higher
education.

Thus, in order to analyze the question of whether and how SE teaching is approached
in schools, we carry out a systematic mapping study to identify, select, classify and ana-
lyze published studies. The main contribution of this article is the mapping and synthe-
sis of the characteristics of instructional units (IUs) for SE education in K-12, regarding
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their content, context and the analysis of how they were developed and evaluated. Our
results show that it may be possible and beneficial to introduce SE education in K-12.
In addition, the overview can help instructors select and/or develop instructional units
in order to integrate teaching SE into their classes, as well as guide curriculum devel-
opers. It can also help instructional researchers and designers to improve IUs identify-
ing improvement opportunites. We also hope that the discussion can further foster the
inclusion of SE education in K-12.

2. Background

2.1. Software Engineering

Software Engineering (SE) is a knowledge area of computing that defines systematic,
disciplined and quantifiable approaches for the development, operation and mainte-
nance of software (IEEE, 2010). SE involves several knowledge areas as presented in
Table 1.

Table 1
SE Knowledge Areas (IEEE CS, 2014)

Knowledge area  Description

Software Area concerned with the elicitation, analysis, specification, and validation of software re-
Requirements quirements as well as the management of requirements during the whole life cycle of the
software product

Software The process of definition of the architecture, components, user interfaces, and other charac-

Design teristics of a system or component and the result of process

Software Refers to the detailed creation of working software through a combination of coding, veri-

Construction fication, unit testing, integration testing, and debugging

Software Consists of the dynamic verification that a program provides expected behaviors on a finite

Testing set of test cases, suitably selected from the usually infinite execution domain

Software Refers to all activities required to provide an economically viable software support, cover-

Maintenance ing various techniques (reengineering, reverse engineering, etc.)

Software A life cycle support process that benefits project management, development, maintenance

Configuration and quality assurance activities, as well as customers and users of the final product. The

Management process covers the identification, control, status documentation, software configuration au-
diting as well as the management and delivery of software deliverables

Software Refers to software management activities, such as planning, coordination, measurement,

Engineering monitoring, control and documentation, to ensure that software products and services are

Management delivered in an effective and efficient manner, with desired quality and that benefit the
stakeholders

Software Software engineering processes are concerned with work activities accomplished by soft-

Engineering ware engineers to develop, maintain, and operate software, such as requirements, design,

Process construction, testing, configuration management, and other software engineering processes

Continued on next page
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Table 1 — continued from previous page

Knowledge area Description

Software
Engineering
Models and
Methods

Software
Quality

Professional
Practice of
Software
Engineering
Software
Engineering
Economics

This knowledge area emphasizes on software engineering models and methods that en-
compass multiple software life cycle phases, since methods specific for single life cycle
phases are covered. The models provide an approach to problem solving, a notation, and
procedures for model construction and analysis. Methods provide an approach to the sys-
tematic specification, design, construction, test, and verification of the end-item software
and associated work products

This area addresses definitions and provides an overview of practices, tools and techniques
for software quality assurance, control and quality assessment during development, main-
tenance, and deployment

This knowledge area is concerned with the knowledge, skills, and attitudes that software
engineers must possess to practice software engineering in a professional, responsible, and
ethical manner

Software engineering economics is about making decisions related to software engineering
in a business context

Key Areas Important to Software Engineering

Computing
Foundations

Mathematical
Foundations

Engineering
Foundations

This knowledge area encompasses the development and operational environment in which
software evolves and executes. Because no software can exist in a vacuum or run without a
computer, the core of such an environment is the computer and its various components

This area covers basic techniques to identify a set of rules for reasoning in the context of
the system under study.

This area outlines some of the engineering foundational skills and techniques that are useful
for a software engineer. The focus is on topics that support other knowledge areas while
minimizing duplication of subjects covered elsewhere in this document

For each of these knowledge areas, the Software Engineering discipline provides a
number of processes, models, methods and techniques, as well as tools and notations.

2.1.1. Teaching Software Engineering

Currently, no curriculum guides exist that are specifically aimed at teaching Software
Engineering in K-12. However, in general, based on the SE 2014 curriculum guide for
higher education (SEEK) (ACM/IEEE, 2014), it is expected that students in higher edu-
cation will be able to demonstrate the following competencies:

e Professional knowledge: Show mastery of software engineering knowledge and
skills and of the professional standards necessary to begin practice as a software
engineer.

e Technical knowledge: Demonstrate an understanding of and apply appropriate
theories, models, and techniques that provide a basis for problem identification
and analysis, software design, development, implementation, verification, and
documentation.
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e Teamwork: Work both individually and as part of a team to develop and deliver
quality software artifacts.

e End-user Awareness: Demonstrate an understanding and appreciation of the im-
portance of negotiation, effective work habits, leadership, and good communica-
tion with stakeholders in a typical software development environment.

e Design Solutions in Context: Design appropriate solutions in one or more applica-
tion domains using software engineering approaches that integrate ethical, social,
legal, and economic concerns.

e Perform Trade-Offs: Reconcile conflicting project objectives, finding acceptable
compromises within the limitations of cost, time, knowledge, existing systems,
and organizations.

SE 2014 SEEK (ACM/IEEE, 2014) based on SWEBOK (IEEE CS, 2014), defines
that SE education at the undergraduate level should address the following SE knowl-
edge areas:

e Requirements Analysis and Specification.
Software Modeling and Analysis.

Software Verification and Validation.
Software Process.

Software Quality.

Security.

Professional Practice.

Computing Essentials.

Mathematical and Engineering Fundamentals.

Following SE 2014 SEEK (ACM/IEEE, 2014), students at the undergraduate level
should learn competencies according to Bloom’s taxonomy (Bloom, 1956) at the cogni-
tive levels of: knowledge (remembering previously learned material), comprehension
(understanding information and the meaning of material presented), and application (us-
ing learned material in new and concrete situations).

These curriculum guides for higher education, thus, may indicate SE competen-
cies also relevant to SE education for K-12, yet, with a reduced scope and/or aiming at
lower levels of Bloom’s taxonomy also depending on the specific type of school (such
as technical schools).

2.2. Computing Education in K-12

K-12 education is basically composed of preschool, primary and secundary education
(Table 2)(US Departament Education, 2018).

Currently, computing education in K-12 is often carried out as an extracurricular
activity in the form of clubs, summer camps, workshops, etc. There are also several
Massive Online Open Courses (MOOCs) available online specifically aimed at K-12
(Heintz et al., 2016; Hermans and Aivaloglou, 2017). Computing education has also
been included in several countries in the K-12 curriculum, teaching computing as an in-
dependent discipline and/or by integrating the content in a multidisciplinary way in oth-
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Table 2
K-12 educational stages (US Departament Education, 2018)

Age Educational stage 3-stage system

4 Early childhood education  Preschool

5 Primary education Elementary school
6

7

8

9

10 Middle school

12 Secondary education

16 High school

er disciplines throughout the curriculum (Heintz ef al., 2016). According to the CSTA,
K-12 Computer Science Framework (2017) teaching computing in K-12 should address
several core concepts and practices as presented in Table 3.

A major focus in this context is on teaching algorithms and programming by teach-
ing students to program various types of software such as games, animations or mobile
applications (Lye and Koh, 2014). Therefore, typically block-based programming en-
vironments, such as Scratch (MITb, 2018), Alice (Alice, 2018) or App Inventor (MITa,
2018) are used with novice students. Block-based programming languages motivate
the learning of programming concepts by focusing on the logic and structures involved
in programming, not requiring the learning of complex syntax and semantics as nec-
essary in textual programming languages (Grover et al., 2015). These environments
also allow students to develop programs more easily, as results typically can be tested
and viewed immediately in the form of animations, games or mobile applications.

Table 3
Core concepts and practices in computer teaching (CSTA, 2017)

Core Concepts Core Practices

» Computer Systems * Promote an inclusive computing culture

* Networking and Internet « Collaborate on computing

* Data and Analysis * Recognize and define computational problems
* Computer Impacts * Develop and use abstractions

* Algorithms and Programming < Create computational artifacts
« Test and refine computational artifacts
* Communicating about computing
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This allows students to acquire problem solving skills by applying the engineering
development cycle in practice (Lye and Koh, 2014). Advancing computing educa-
tion, commonly text-based programming languages such as as Java, Python or C++
are introduced typically at high school level (Hubwieser et al., 2015). Another popu-
lar approach is teaching robotics technologies such as the Lego Robot programming
language (Starrett, 2007) or PBASIC (Corbett and Nesiba, 2015), a microcontroller-
based version of BASIC.

For computing education in K-12 diverse instructional methods are used varying
from direct instruction (e.g., lectures) to independent studies (Table 4) (Saskatchewan
Education, 1991).

In accordance to learning objectives aiming at teaching the application of algorithm
and programming concepts, a predominance of active learning strategies is observed,
which allows the student to apply the competences to be learned. These strategies in-
clude exercises, such as developing code for a well-defined problem as well as the
adoption of constructivist approaches such as situated learning, project-based learning,
among others, dealing with open-ended and ill-defined problems. According to the in-
structional strategies adopted, several types of instructional materials are used, including
software artifacts (e.g., specification of requirements of a predefined software system,
use cases, user stories, code samples), exercise sheets, slides, videos, examples, among
others (Lye e Koh, 2014). The assessment of the student’s learning is usually done by the
instructor using diverse methods, such as observations, questionnaires, interviews, etc.
For assessing programming assignments, typically, performance-based assessments are
adopted by manually or automatically analyzing the artifacts (e.g., software) created by
the students (Gresse von Wangenheim ef al., 2018). In the context of game-based learn-
ing approaches, the scores of the game may also be used for assessment (Rusu et al.,
2011). Peer assessment is another way, in which the artifacts created by the students are
assessed by their own peers (De Kereki and Manataki, 2016).

Table 4
Instructional Methods (Saskatchewan Education, 1991)

Direct Instruction  Indirect Interactive Independent Study Experimental
Instruction Instruction Learning
« Structured Over- + Case Study * Debate * Essay * Field Trip

view * Problem Solving < Role Playing » Computeer Assisted ¢ Conducting
» Explicit Teaching < Inquiry * Brainstorming Instruction Experiment
 Lecture » Reading for * Panel * Reports * Simulation
¢ Drill and Practice =~ Meaning * Peer Practice * Learning Activity ~ * Focused Imag-
* Compare and * Reflective Discus- ¢ Discussion Package ing
Constrast sion * Laboratory Group * Correspondence * Game-based
* Didactic Ques- * Concept Forma-  « Co-operative Learn- Lessons learning
tion tion ing Group * Learning Contracts * Field Observa-
* Demonstration » Concept Mapping < Problem Solving * Homework tion
* Guides for Read- < Concept Attain- * Circle of Knowledge < Research Projet * Role Playing
ing, Listening, ment * Tutorial Groups * Assigned Question ¢ Synectics

Viewing

¢ Cloze Procedure

* Interviewing
* Contests

* Learning Centre

* Model Building
 Survey
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2.3. Development and Evaluation of Instructional Units

Instructional units (courses, workshops, etc.) are typically developed in a systematic
way using instructional design (Branch, 2009), in order to make the acquisition of com-
petencies more efficient, effective, and appealing. Instructional design defines an itera-
tive process of planning learning objectives, selecting instructional strategies (including
the design of assessments), selecting or creating instructional material, and applying and
evaluating IUs (Branch, 2009).

Among instructional design models, one of the most popular models is ADDIE
(Branch, 2009), including the following phases: During the analysis phase, the learning
needs are identified. As part of the analysis the goals and objectives of the instructional
unit are determined and the target audience is characterized. Other factors, such as hu-
man and technical resources, infrastructure, cost and time, etc., are analyzed. During the
design phase, the learning objectives of the IU are specified. The content to be addressed
is defined and sequenced, and the instructional methods to be used are defined. It is also
defined how the students’ learning will be assessed. As a result, the sylabus is defined.
During the development phase, the material that will be used during the instructional
unit is selected and/or created in accordance to the defined instructional methods. This
step may also involve the selection and/or development of tools to support the IU such
as code analyzers. The implementation phase covers the preparation of the learning en-
vironment, the training of the instructors and the application of the IU in the classroom.

An essential step in the instructional design process is the evaluation of the in-
structional unit in order to assess its quality and whether it allows the students to

Table 5

Common types of research design (Shadish, Cook, and Campbell, 2002)
(Gresse von Wangenheim and Shull, 2009).

Type of study Design Representation
X=Treatment
O=Measurement
R= Rrandom task

Case study Only one post-test X0
Case study Only one post-test / pre-test 0XO
Quasi experimental ~ Static comparison group X0
(0)
Static group pre-test / post-test 0XO
(0) (0)
Series of times 00XO0O
Experimental Randomized post-test only RXO
R (0)
Randomized pre-test / post-test ROXO
RO (0)

Randomized with pre-test / post-test control group R O X1 O
ROX20
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achieve the defined objectives (Branch, 2009). This evaluation is typically performed
through an empirical study (Wohlin ef al., 2012). Different research designs can be
adopted ranging from non-experimental studies (such as case studies) to experiments
(Table 5).

In order to reach the evaluation objectives, the measurement must be explicitly de-
fined in a way that draws a link between the objectives and the data collected and also
generates a framework to analyze and interpret the data with the corresponding objec-
tives (Wohlin ez al. 2012). Several types of data collection instruments can be used,
such as observation, questionnaire, interviews, or the artifacts created by the students
themselves as well as test results (Branch, 2009). In case of online courses, data can also
be collected in the form of log files. According to the objective of the evaluation and the
nature of the data collected, different methods of qualitative or quantitative analysis can
be used (Freedman et al., 2007). The analyzed data are then interpreted, answering the
analysis questions in order to achieve the evaluation goal.

4. Definition and Execution of the Systematic Mapping Study

To elicit the state of the art and practice on whether and how SE education is addressed
in K-12, we conducted a systematic mapping study following the procedure proposed by
Petersen et al. (2008).

4.1. Definition of the Review Protocol

The research question is: Are there (and what are their characteristics) instructional units
that teach Software Engineering competences in the context of K-12? This research
question is refined in the following analysis questions:

AQ1. Which IUs exist?

AQ2. Which SE competences are taught in the [Us?

AQ3. What are the instructional characteristics of the IUs?
AQ4. What are the context characteristics of the IUs?
AQS5. How were the IUs developed?

AQ6. How was the quality of the IUs evaluated?

Inclusion/exclusion criteria. We considered only peer-reviewed articles whose fo-
cus is to teach computation including SE competencies in K-12. Articles that focus on
teaching computing in higher education and/or articles that present IUs for computer
teaching without addressing SE concepts were excluded. We have also included second-
ary literature that has been discovered based on the references of the primary literature
found (Verhoeff, 2006).

Quality Criteria. We considered only articles that present substantial information
regarding the teaching of SE competencies, indicating, for example, lessons content,
instructional material, etc.
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Data source. We examined all published English-language articles that are available
on Scopus (www.scopus.com) with free access through the CAPES Portal'. We also
searched online education sites, including Udemy (www.udemy . com), Edx (www.edx.
org), Khanacademy (www.khanacademy.org), Coursera (www.coursera.org) in or-
der to discover instructional units taught as MOOC:s.

Definition of the search string. The search string was composed of concepts related
to the research question, including also synonyms, as indicated in Table 6.

From these keywords, the search string was calibrated and adapted according to the
specific syntax of the data source as presented in Table 7. As a result of the calibration
process, we also identified as relevant synonyms for the term “Software Enginerring”
the terms UML and “software development process”. The search of online courses was
done via the MOOCs’ sites limiting the category and subcategory to Information Tech-
nology and Software Development, respectively.

4.2. Search Execution

The search has been executed in March 2018 by the authors. The search has been done
in two steps. In the first step the search was done via Scopus with the objective of find-
ing articles about existing IUs. This search returned 466 articles (Table 8). From the
search results, potentially relevant articles were selected according to the inclusion and
exclusion criteria, quickly analyzing the title, abstract and keywords. As a result, 29 po-
tentially relevant articles were identified. In the second selection stage, we analyzed the
full text of the pre-selected articles to analyze their compliance with the inclusion/exclu-
sion criteria and the quality criterion. As a result, 15 relevant articles were identified. All
authors discussed the selection of papers until a consensus was reached.

Table 6
Keywords
Keyword Synonyms
Software Engineering UML, software development process
K-12 school
Teaching learn, MOOC
Table 7

Search String

Source Search String

Scopus (“software engineering” OR uml OR “software development process” ) AND
(school OR “K-12") AND (teaching OR learn OR MOOC)

! A web portal for access to scientific knowledge worldwide, managed by the Brazilian Ministry on Ed-
ucation for authorized institutions, including universities, government agencies and private companies
(www.periodicos.capes.gov.br).
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Table 8

Amount of articles per selection stage

Source Initial search results Selected after 1° stage Selected after 2° stage

Scopus 466 29 15

Several 1Us found in the initial search were excluded, not presenting instructional
units, such as for example IUs that only report the importance of SE education in K-12
(e.g., Bell et al., 2014; Bollin ef al., 2016) or do not present details about SE teaching
(e.g., Azenkot et al., 2011).

In a second step, we also searched for MOOCs aiming at teaching SE on K-12 level.
Relevant courses were selected using the same inclusion/exclusion criteria. As a result
of this additional research one relevant IU was found (De Kereki and Manataki, 2015).
Other courses for computing education in K-12 have been disregarded, if not explicitly
covering SE concepts (e.g., course provided by the Technovation Challenge (Technova-
tion, 2018)) and/or details of the IUs were not accessible (e.g., afsenyc.org).

Another IU was found by analyzing the references of the primary literature found in
the searches (Verhoeff, 2006).

5. Data Analysis

To answer the analysis questions, we extracted relevant information from the encoun-
tered articles and course material as specified in Table 9.

The articles were read and the data were extracted by the authors. Extraction of
the data was complicated in several cases by the way the studies were reported. As the
publications in this area do not follow any structured protocol, the information to be ex-
tracted is not always presented explicitly. In these cases, information was inferred from
the article, including for example, the description of the learning objectives, language of
the IU, and the pre-requisites.

Table 9

Specification of the extracted information

Analysis question Information extracted Description
AQI1. Which IUs exist? Reference Bibliographic reference
AQ?2. Which SE com- Learning objective(s) with Identification of the objective(s) describing what the
petences are taught in  respect to SE learner should learn with respect to SE
2
the IUs? SE knowledge area(s) SE knowledge areas addressed by the IU
SE methods/technique(s) SE methods/techniques addressed by the IU
SE tool(s) SE tools adopted for teaching in the TU

Continued on next page
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Analysis question Information extracted

Description

AQ3. What are the
instructional character-
istics of the IUs?

General learning objective of
the IU

General description
Education mode

Programming environment(s)
Instructional method
Instructional material

Assessment method(s)/
instrument(s)

Language(s)
License
AQ4. What are the

context characteristics
of the IUs?

Educational stage
Duration of the IU
Pre-requisites

AQS. How were the Development method of the
1Us developed? U

AQ6. How was the
quality of the IUs
evaluated?

Research design

Factor(s) evaluated
Data collection method(s)

Sample size
Replicated studies

Data analysis method(s)

Findings

Identification of the learning objective of the IU in
general

Brief overview of the IU presenting its main charac-
teristics

Identification of the education mode (in-class or dis-
tance/online)

Programming language/platforms used in the [U
Instructional method(s) used in the TU
Instructional material used in the TU

Method(s)/instrument(s) used for assessing students’
learning in the U

Language(s) in which the IU is available
Usage license of the IU

Educational stage for which the 1U is designed
Duration of the IU (number of hours/classes)
Pre-requisites of students with respect to computing
competencies

Indication of the method used for the development of
the IU

Indication of the type of study (research design) ad-
opted for the evaluation of the IU
Indication of the factors that were evaluated

Indication of the data collection method(s) adopted
for the evaluation of the IU

Number of data points used for the evaluation

Indication of possible replications of the evaluation in
various contexts

Indication of the data analysis method(s) used for the
evaluation of the [U

Description of the main results, strengths and weak-
nesses of the IU identified

We also observed that the majority of the articles do not describe how the IUs were
developed as well as lack information regarding their evaluation, for example, not ad-
dressing threats to validity. In case the article does not present any information to be
extracted, we indicate the lack of this information as not informed (NI).

AQ1. Which IUs Exist?

As a result of the research, a total of 17 instructional units focused on computing edu-
cation were identified that also approach the teaching of software engineering in K-12

(Table 10).
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Table 10
Instructional Units

Reference

(Bollin and
Sabitzer,
2015)

(Collofello,
2002)

(Corbett and
Nesiba, 2015)

(De Kereki
and Manataki,
2016)

(Fronza et al.,
2017)

(Fronza et al.,
2016)

(Fronza et al.,
2015)

(Hermans and
Aivaloglou,
2017)

(Kohler et al.,
2012)

(Missiroli
etal.,2017)

(Missiroli
etal., 2016)

(Rusu, A
etal.,2011)

(Rusu et al.,
2010)

(Sarkar and
Bell, 2013)

Bollin, A; Sabitzer, B. (2015) Teaching Software Engineering in schools on the right time to
introduce Software Engineering concepts. In: Proceedings of the Global Engineering Education
Conference, Tallinn, Estonia, pp. 518-525.

Collofello, J. S. (2002) Creation, deployment and evaluation of an innovative secondary school
software development curriculum module. In: Proceedings of the 32nd Annual Frontiers in
Education, Boston, MA, USA, pp. 1-4.

Corbett, K.; Nesiba, N. (2015) Programming design process: Providing K-12 students with a
structure to attain programming goals. In: Proceeding of the Frontiers in Education Conference,
El Paso, TX, USA, pp. 1-4.

De Kereki, I. F.; Manataki, A. Code Yourself! An introduction a programming. Available on:
<https://pt.coursera.org/learn/intro-programming>. Acess: 05 Mar. 2018.

De Kereki, I. F.; Manataki, A. (2016) “Code Yourself” and “A Programar”: a bilingual MOOC
for teaching Computer Science to teenagers. In: Proceeding of the Frontiers in Education Con-
ference (FIE), Erie, PA, USA, pp. 1-9.

Fronza, I.; Ioini, N.; Corral L. (2017) Teaching Computational Thinking Using Agile Software
Engineering Methods: A Framework for Middle Schools. ACM Transactions on Computing
Education, v. 17, n. 4, pp 1-28.

Fronza, I.; Toini, N.; Corral L. (2016) Blending Mobile Programming and Liberal Education in
a Social-Economic High School. In: Porceedings of the IEEE/ACM International Conference
on Mobile Software Engineering and Systems, Austin, TX, USA, pp. 123-126

Fronza, 1.; El loini, N.; Corral, L. (2015) Students want to create apps: leveraging compu-
tational thinking to teach mobile software development. In: Proceedings of the 16th Annual
Conference on Information Technology Education, Berlin, Germany, pp. 21-26.

Hermans, F; Aivaloglou, E. (2017) Teaching software engineering principles to K-12 students:
a MOOC on Scratch. In: Proceedings of the 39th International Conference on Software Engi-
neering: Software Engineering and Education Track, Buenos Aires, Argentina, pp. 13-22.

Kohler, B; Gluchow, M; Brugge, B. (2012) Teaching Basic Software Engineering to Senior
High School Students. In: Proceeding of the IADIS International Conference e-Society, Mu-
nich, Germany, pp. 149.

Missiroli, M.; Russo, D.; Ciancarini, P. (2017) Agile for Millennials: A Comparative Study. In:
Proceedings of IEEE/ACM st International Workshop on Software Engineering Curricula for
Millennials (SECM), Buenos Aires, Argentina, pp. 47-53

Missiroli, M.; Russo, D.; Ciancarini, P. (2016) Learning Agile software development in high
school: an investigation. In: Proceedings of the 38th International Conference on Software,
Austin, TX, USA, pp. 293-302,

Rusu, A. ez al. (2011) Employing software maintenance techniques via a tower-defense serious
computer game. In: Proceedings of the International Conference on Technologies for E-Learn-
ing and Digital Entertainment, Berlin, Germany, pp. 176—184.

Rusu, A. et al. (2010) Learning software engineering basic concepts using a five-phase game.
In: Proceedings of IEEE Frontiers in Education Conference, Washington, DC, USA, pp. 1-6.

Sarkar, A; Bell, T. (2013) Teaching black-box testing to high school students. In: Proceedings
of the 8th Workshop in Primary and Secondary Computing Education, Aarhus, Denmark, pp.
75-78.

Continued on next page



180 F. da Cruz Pinheiro, C. Gresse von Wangenheim, R. Missfeldt Filho

Table 10 — continued from previous page

Reference

(Serrano Serrano, M.; Serrano, M. (2013) Requisitos ao Codigo: Uma Proposta para o Ensino da Enge-
and Serrano,  nharia de Software no Ensino Médio. In: Proceedings of the International Requirements Engi-
2013) neering Conference, Rio de Janeiro, Brazil, pp. 37-42.

(Starrett, Starrett, C. (2007) Teaching UML Modeling Before Programming at the High School Level. In:
2007) Proceedings of Seventh IEEE International Conference on Advanced Learning Technologies,

Niigata, Japan, pp. 713-714.

(Verhoeft, Verhoeft, T. (2006) A master class software engineering for secondary education. In: Proceed-
2006) ing of the International Conference on Informatics in Secondary Schools-Evolution and Per-

spectives. Heidelberg, Germany, pp. 150—158.
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Fig. 1. Amount of IUs focusing on SE education in K-12 published per year.

This shows that so far very few [Us approach SE education in K-12, yet with a slight
increase since 2013, probably also related to the trend of increasing computing educa-
tion in K-12 in general (Fig. 1).

AQ2. Which SE competences are taught in the IUs?

The IUs teach competencies related to several SE knowledge areas in accordance to the
SWEBOK (IEEE CS, 2014). Among the areas most frequently approached by the IUs
are the areas related to the main phases of the software process: software requirements,
software engineering models and methods, software construction and software testing
(Fig. 2). The knowledge area most taught by these 1Us is software testing including unit
testing, functional testing, and acceptance testing. The development of software require-
ments is also widely taught by applying various requirements gathering and analysis
techniques, such as user stories, use case diagrams, storyboards, software requirements
specifications, among others. Software engineering models and methods are also cov-
ered by several IUs, using flow diagrams, pseudocode, UML class diagrams and state
machines to visualize the architecture and algorithms of software systems. IUs focus-
ing on mobile application development also address interface design by creating paper
prototypes of the screens. Regarding software construction, techniques such as the cre-
ation of understandable source code (naming), code reuse and pair programming are
addressed. A detailed summary of the data extracted with respect to the SE knowledge
areas covered by each of the IUs is presented in Appendix A.
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Fig. 2. Freqeuncy of SE Knowledge Areas covered by the IUs.

A third of the IUs stands out by addressing topics related software maintenance.
These IUs include the teaching of competencies related to the re-engineering, adapta-
tion and/or evolution of pre-existing software. What apparently facilitates the teaching
of maintenance concepts in the context of K-12 are block-based programming environ-
ments, such as Scratch, which strongly stimulate and support the remix of programs
(Brennan and Resnick, 2013). In this context, Rusu et al. (2011) adopt an educational
game that teaches the four types of software maintenance as an alternative instructional
strategy.

Several IUs also explicitly teach concepts related to the software process, life cycle
models, and development methodologies, which are typically in an implicitly and sim-
plified manner covered in instructional units teaching programming. We observed that
mainly simple life-cycle models such as the waterfall and iterative models are addressed
and/or agile methodologies such as Scrum, Extreme programming (XP), Model-Driven
Development (MDD) and Test-Driven Development (TDD) (Fig. 3). Alternatively a
general engineering process, the Programming Design Process (PDP) is presented.

Basically, all IUs are intended to lead the student learning SE competencies at the
application level and are designed to give students the opportunity to execute SE pro-
cesses (Appendix A). This includes IUs that aim to execute all the main phases of the
software process as well as others that focus only on specific phases of the process,
taking into account practical restrictions regarding the duration of the IU. Several IUs
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Fig. 3. Frequency of the models/methods/techniques addressed in SE education in K-12.

are applied in a multidisciplinary way integrated in other disciplines of the K-12 cur-
riculum, such as Physics and Arts. Very few [Us use SE tools to aid teaching and/or to
teach their use. Only two [Us report the use of case tools (Rational Rose and NetBeans).
Other tools that have been adopted include testing tools (JUnit, a test case validation
tool (testBedv9.html)).

AQ3. What are the instructional characteristics of the IUs?

The teaching of SE competencies is typically integrated in IUs generally focusing on
teaching algorithms and programming aimed at the development of animations, web/
mobile applications, or robotics. Therefore, generally block-based visual programming
environments are used for novices, such as Scratch, Alice and App Inventor or text-
based programming languages, such as Java, Delphi Pascal, ANSI C and R language for
statistical computation (Fig. 4). To teach the development of robotic programs the IUs
used PBASIC, a microcontroller-based version of BASIC or the Lego Robot program-
ming language.

Few IUs are specifically focused on teaching SE competencies, such as the Tower-
Defense Serious Computer Game (Rusu et al., 2011), to teach software maintenance
concepts. Another example is the IU presented by Sarkar and Bell (2013) aiming at the
creation of test cases for pre-existing software.

With respect to the instructional methods, there is a strong predominance of active
learning approaches aiming at the achievement of learning objectives on the application
level. Several IUs involve software development assignments. These range from tasks
with a well-defined specification of the problem to be solved for which an expected
solution exists to tasks with ill-defined problems without a previously known solution.
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Although focusing more on active learning, several IUs also include other direct instruc-
tional methods as lectures, especially in the initial part of the IU (Fig. 5). Interactive
methods such as co-operative learning, challenges and discussions were also used. Two
IUs have adopted game-based learning (Rusu ef al., 2011; Rusu et al., 2010).
According to this variety of instructional methods, several types of instructional ma-
terial are used (Fig. 6). The material most commonly used is software artifacts. These
artifacts are typically used to assist in the application of SE teaching, including e.g.,
specification of requirements of a predefined software system, use cases, user stories,
code samples, among others. Some IUs also used a complete software system (i) to
teach the creation of acceptance tests (Sarkar and Bell, 2013), (ii) to exemplify a solu-
tion and/or (iii) as a teaching strategy (Rusu et al., 2010). Instructional videos, tutorials,
forums, etc. are specific to [Us designed as online courses. Several [Us also use exercise
sheets, workbooks or journals to record the students’ experiences. However, in general,
we observed a lack of information regarding the instructional material, their availability
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and license, which makes it difficult for others to use them. Most materials are available
in one language only (predominantly in English), which may also limit a broader adop-
tion of IU in other countries that typically require instructional material in the native
language at this educational stage.

Student learning is assessed primarily through performance-based assessments ana-
lyzing artifacts created in the context of the software process and/or software programs
either by the instructor or through peer reviews. In some cases artifact-based interviews
are used. Several 1Us also adopt tests, quizzes or use the game score for the students’
assessment (Fig. 7).

An overview of the information extracted with respect to the instructional character-
istics of the IUs is presented in Appendix B.
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AQ4. What are the context characteristics of the IUs?

Most of the IUs are focused on teaching SE in high school (Fig. 8). No specific IU teach-
ing in elementary school was found. Observing this predominance of IUs found for high
school, the question that remains is why there are almost no IUs in elementary school.
Yet, several authors report that the insertion of SE education can be beneficial even in
elementary school, obviously in a limited way taking into account students’ previous
knowledge and curricular restrictions (Bollin and Sabitzer, 2015).

The encountered articles do not address the specific type of school (e.g., secondary
technical school present in some countries), indicating that the presented instructional
units have been applied in schools with a general focus.

The duration of the IUs varies largely from short and focused activities (30 minutes)
to long-term courses (one year). According to the students’ current lack of knowledge
regarding computing and/or SE, most [Us are aimed at beginners with no prior comput-
ing/SE competencies. Only four IUs indicate the need for prior competencies mainly in
relation to programming (Table 11).
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Elemantary Middle School  Elementary and High school Elementary,
school Middle school middle and high
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School Level
Fig. 8. Educational stages.
Table 11
Overview of IU context characteristics
Reference Educational Duration of the IU Pre-requisites
stage
(Bollin and High school NI none
Sabitzer, 2015)
(Collofello, 2002) ~ High school NI NI
(Corbett and High school NI NI
Nesiba, 2015)
(De Kereki and Elementary, 15-20 hours none
Manataki, 2016) middle and high
school
(Fronza et al., 2017) Middle school  60h (4h per week) NI

Continued on next page
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Table 11 — continued from previous page

Reference Educational Duration of the ITU Pre-requisites
stage
(Fronza et al., 2016) High school 20-30 hours none
(Fronza et al., 2015) High school 5 days (with a total of 40 hours)  none
(Hermans and Elementary and 6 weeks with a total of 12to 36 none
Aivaloglou, 2017)  middle school  hours (estimating a weekly effort
of 2 to 6 hours)
(Kohler et al., 2012) High school 3 days none
(Missiroli et al., High school 25 hours Minimum of 2 years program-
2017) ming experience
(Missiroli et al., High school case 1: 2 hours, case 2: 5.5 hours 1 year experience in programming
2016) in Java OO/html, web service,
databases
(Rusueral.,2011)  Elementary, NI Prior programming competence
middle and high
school
(Rusu ez al.,2010)  High school NI none
(Sarkar and Bell, High school 30 minutes NI
2013)
(Serrano and High school 10 hours and 5 class NI
Serrano, 2013)
(Starrett, 2007) High school 1 year NI
(Verhoeft, 2006) High school 3 days Prior competence regarding pro-

gramming (global and local vari-
ables and procedures)

AQS. How were the IUs developed?

To achieve effective learning outcomes, [Us need to be developed systematically follow-
ing instructional design models. However, we observed a general lack of information
in the articles in relation to the way the IUs were developed (Table 12). Few publica-
tions provide information on this issue, typically only by indicating the stakeholders in-
volved in the IU development, through cooperations between schools and/or universities
involving teachers, instructors and tutors. Only Kohler ez al. (2012) explicitly reports
the instructional principles used in the IU development (goal-based scenarios (Schank,
1996; Schank, 1992; Schank et al., 1994) and scaffolding (Vygotsky, 1978)).

This lack of information provided on how the IUs were developed, clearly points out
a need for a stronger adoption of systematic methods for the development of such in-
structional units, following not only all required phases of instructional design, but also
the applying well-accepted and sound models, methods and techniques.

AQ6. How was the quality of the IUs evaluated?

An essential as part of the systematic development and improvement of an IU is the
evaluation of the IU. Evaluation is typically performed through empirical studies in
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Table 12
Methods used to develop the IUs

Reference

Development method of the TU

(Bollin and Sabitzer, 2015)
(Collofello, 2002)

(Corbett and Nesiba, 2015)

(De Kereki and Manataki,
2016)

(Fronza et al., 2017)
(Fronza et al., 2016)
(Fronza et al., 2015)

(Hermans and Aivaloglou,
2017)

(Kohler et al., 2012)

(Missiroli et al., 2017)
(Missiroli et al., 2016)
(Rusu et al., 2011)
(Rusu et al., 2010)

(Sarkar and Bell, 2013)

(Serrano  and  Serrano,
2013)

(Starrett, 2007)
(Verhoeft, 2006)

NI

TU developed in cooperation with of local school teachers. Graduate students par-
ticipated in the construction of instructional material and in class.

NI

The IU was developed by an international and multidisciplinary team. The design
and creation process was carried out in cooperation taking into account the tar-
get audience. Learning levels were defined based on Bloom’s taxonomy. Course
material has been developed in detail. The course was pretested with different
groups in 2 countries.

NI
NI
NI

The course was developed as a MOOC (Open Massive Online Course) on the
edx platform (https://www.edx.org/). Thus, the IU has been designed following
the pattern of edx platform courses, consisting of videos, quizzes and forum in-
teractions.

The IU design adopts the principle of goal-based scenarios (Schank 1996; Schank
1992; Schank et al., 1994) and the scaffolding principle (Vygotsky 1978). The IU
was created through a case study including the following steps: analysis of the
target group; brainstorming of possible topics of interest; topic selection; creation
of object model; project development, estimation of effort for students; create
project “scaffold”; coding tutorial; template; distribution of tasks in teams.

NI
NI
NI

The games were developed by teams involving graduate and undergraduate stu-
dents.

NI
NI

NI
NI

the classroom. Several IUs were evaluated by means of a case study (Fig. 9). In these
studies, the evaluation was systematically defined and, during and after the treatment
(teaching SE), data was collected in relation to the objective of the evaluation. Only two
studies adopted a more rigorous research design. Missiroli et al. (2017) conducted an
experiment comparing the performance and satisfaction of students and teachers with
respect to the use of two software development approaches in computing education, the
waterfall model and Scrum. Fronza et al. (2017) adopt a quasi-experimental approach
to evaluate the effectiveness of a framework based on agile SE methods to teach com-
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Fig. 9. Types of studies adopted for the evaluation of the IUs.

puting in high school. Both experimental studies follow the methodology proposed by
Wohlin ef al. (2012). A considerable number (8 1Us) were evaluated in a less rigorous
way through ad-hoc evaluations, without detailed definition of the evaluation objectives,
measurement and data analysis. As a result, these studies typically only comment on
students’ informal feedback and/or observations during the application.

Most studies evaluate more than one quality factor (Fig. 10). Learning is the most
evalued quality factor. This shows that, in fact, the main concern is the learning effect
provided by the IUs. The assessment of this factor usually refers to improving compe-
tence by comparing the level of competence of students after the IU with their level of
competence before the IU, usually based on a pre/post-test score. None of the studies
evaluate the learning effect in relation to the different learning levels, for example, based
on Bloom’s taxonomy. The IU’s efficiency is evaluated based mainly on the analysis of
the students’ learning and the feedback received by the students. Several studies also
assess the degree of satisfaction to evaluate whether students feel that their dedicated
effort results in learning. Comparing the factors being evaluated, we can observe a lack
of conformity between the studies. With the exception of the evaluation of the degree of
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Fig. 10. Quality factors being evaluated in the studies.
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students’ learning evaluated in most studies, the factors analyzed vary greatly indicating
the lack of a commonly accepted evaluation model for this type of IU. Besides evaluat-
ing the impact of the IUs several evaluations also included the measurement of feedback
on the U itself and/or the programming environment, as well the qualitative indication
of strengths and weaknesses observed.

Data regarding the evaluation is collected in several ways (Fig. 11). Most of the data
is collected via questionnaires after U application. Several studies also extract data based
on the performance-based assessment of artifacts created by students during the IU, ex-
ercises or tests. In some cases teachers and/or students are interviewed at the end of the
IU in order to obtain information on the learning experience, learning environment, and
motivation. Observations were typically used to analyze student performance, but also to
evaluate their enjoyment and satisfaction. Log files from forums, videos, wikis, etc. were
mostly used by online courses to analyze the students’ engagement in the course.

Taking into consideration the less rigorous research designs adopted, most studies
only perform qualitative data analyses and/or quantitative analyses in a descriptive way
(Fig. 12). Only two studies report the usage of statistical tests (Hermans and Aivaloglou,
2017; Missiroli et al., 2017).
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As shown in Fig. 13, most evaluations were performed with small samples, rang-
ing from 1 to 60 participants. This low number of participants usually corresponds to
the size of a class in which the IU is applied and evaluated. However, four evaluations
were performed with more than 150 participants. Some studies (4 IUs) did not report the
sample size.

Almost half of the studies were replicated in more than one context, contributing to
the external validity of the findings (Fig. 14). However, a large part of the replications
still occurred only through a single study in a specific context, usually by the U creators
themselves.

An overview on the information extracted with respect to the evaluation of the IUs
is presented in Appendix C.

6. Discussion

Considering the importance of SE in software development, a very small number of
instructional units (only 17 in total) were found, aiming to teach these important compe-
tences in K-12. These IUs focus on the main phases of the software process, including
software requirements, software engineering models and methods, software construction
and software testing. Some [Us also explicitly address software maintenance. Some of
the IUs follow a traditional life-cycle model, such as the waterfall model or the V model.
On the other hand, several IUs adopt agile methodologies following an iterative process
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and creating artifacts such as user stories, storyboards, etc. This indicates that both the
adoption of simple and/or iterative life cycle models may be beneficial to introduce the
software process at this educational stage.

SE education in K-12 is mostly concentrated in high school, although some authors
also report observed benefits from the introduction of teaching SE in elementary school
(Bollin and Sabitzer, 2015). Despite this, none of the authors reports difficulties or low
performance of students in learning SE concepts. In addition, Bollin and Sabitzer (2015)
conclude that teaching of SE can be started in elementary school without difficulties.
However, it is necessary to identify which knowledge areas, content and level of detail
should be taught according to the student’s age (Bollin and Sabitzer, 2015). Another
finding concludes that K-12 students demonstrate no difference in performance in learn-
ing SE and programming (Hermans and Aivaloglou, 2017).

Few IUs are focused exclusively on teaching SE, most IUs teach SE competencies
while teaching programming. Bollin and Sabitzer (2015) conclude that there is no need
for students to have previous computing experience and that SE can be taught with basics
of programming logic and modeling (flow diagrams). An exception is the IU presented
by Starrett (2007) that teaches software design using the UML notation before teaching
programming. In accordance to the author, modeling and abstraction are fundamental to
analytical thinking. He also points out that modeling provides a method to help students
address problems and solutions step-by-step. The results of this study show that students
learned the core concepts of abstraction in a quick and natural way.

The IUs either focus on teaching several phases of the software process or focus
only on a specific process by pre-defining the input artifacts for this phase. This may
represent a teaching alternative, especially when there are time constraints on the IU.
The majority of the IUs is integrated in the context of IUs focused on programming
teaching, few explicitly focus on teaching SE concepts. The integration of SE teaching
into IUs teaching programming can be beneficial both in relation to time constraints
and in learning a broader and more diverse understanding of the area of computation. In
order to enable the adoption of computing/SE education, several IUs are carried out in
a multidisciplinary way integrated in other disciplines of the K-12 curriculum such as
Physics or Arts.

In general, on this educational stage basic SE concepts related to the cognitive do-
main are addressed with a scope varying in relation to the duration of the [U. Weakness-
es typically observed in relation to SE education in higher education restricted to small-
scale projects lacking real project characteristics are even more present in IUs found
in K-12 (Malik et al., 2012). IUs in K-12 are even more focused on teaching basic SE
knowledge, not addressing more comprehensive skills and practical experiences.

We also observed a preference for the adoption of agile methodologies that seem
more appropriate to initiate the teaching of SE. Interestingly, only seven IUs report
the use of CASE tools, as the use of this type of tool helps to carry out the activities
of higher quality processes (IEEE CS, 2014). Thus, the question that arises is if the
teaching of CASE tools is inappropriate on this educational stage and/or if it is caused
by the lack of this type of functionality in the programming environments typically
used in K-12.
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The majority of IUs aims at teaching SE competencies at the level of application
by adopting active learning approaches. Typically, after an introductory part, students
develop software (animations, web/mobile applications or robots). The assessment of
the students’ learning is usually based on their performance analyzing the artifacts cre-
ated by the students and/or quizzes. However, no detailed information on the assessment
criteria have been reported, such as for example rubrics, etc.

Aiming at disseminating the IUs presented in the articles, we observed, in general a
lack of availability of detailed information and/or instructional material. The vast major-
ity of IUs have been created in only one language and are not accessible, neither free
nor paid. This unavailability of IUs may hinder a larger scale application. Another is-
sue we observed is the lack of support for the training of instructors in order to prepare
them adequately for the application of the IUs in the classroom. Taking into account that
today there is a lack of K-12 teachers with computing background, leaving as a solution
the adoption a multidisciplinary approach in which computation is taught by teachers
trained in other disciplines. Therefore, motivation and in-service teacher training be-
come crucial, since they need to have computing, SE and technological knowledge as
well as knowledge of relevant pedagogical content (Gal-Ezer and Stephenson, 2010;
Bollin and Sabitzer, 2015).

Another issue is the fact that many articles do not present essential information re-
garding the learning objective(s) and/or instructional strategy, nor do they indicate the
methodology used to develop the 1Us. This weakness can also be observed in relation
to the evaluation of most IUs. Several do not report evaluations or performed them only
in an ad-hoc manner, which leaves the reported results questionable. The large variation
of the factors evaluated in different ways also indicates the lack of evaluation models in
this area to facilitate a more uniform evaluation of these IUs.

6.1. Threats to Validity

As in any systematic mapping studies, some threats to validity of the results exist. We,
therefore, identified potential threats and applied mitigation strategies in order to mini-
mize their impact.

Publication bias. Systematic mappings may suffer from the common bias that posi-
tive outcomes are more likely to be published than negative ones. However, we consider
that the findings of the articles, whether positive or negative, have only a minor influence
on this systematic mapping since we sought to characterize the approaches rather than
analyze their impacts on learning.

Identification of studies. Another risk is the omission of relevant studies. In order to
mitigate this risk, we carefully constructed the search string to be as inclusive as possi-
ble, considering not only core concepts but also synonyms. We also searched prominent
online course bases in order to reduce the risk of excluding existing IUs that have not yet
been reported through scientific articles. Furthermore, we also included secondary litera-
ture identified based on the references of the primary literature identified in the search.

Selection and extraction of study data. Threats to study data selection and extrac-
tion were mitigated by providing a detailed definition of inclusion/exclusion and qual-
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ity criteria. We defined and documented a rigid protocol for the study selection and all
authors performed the selection together, discussing the selection until consensus was
reached. Data extraction was hindered in some cases, as the relevant information was
not always presented explicitly and/or using a commonly accepted terminology and,
therefore, in some cases had to be inferred. However, this inference was made by the first
author and carefully reviewed by the co-authors.

7. Conclusion

In this article, we present the state of the art and practice on teaching SE competences
in K-12. We have identified only 17 IUs mainly focused on high school. The IUs mostly
address the main stages of the software process, including software requirements, soft-
ware engineering models and methods, software construction and software testing, typi-
cally adopting either traditional life cycle models or agile methodologies. In general the
teaching of SE is inserted in IUs mainly aimed at teaching programming, often also in
a multidisciplinary way integrated into other disciplines of the K-12 curriculum, such
as Physics or Arts. The majority of IU aims at learning SE competencies at the level of
application by adopting active learning approaches leading the student to create artifacts
related to the software process.

Even with the authors reporting the benefits observed and the success of SE educa-
tion in K-12, we observed that these results may be questionable taking into account
the limited information on how IUs were developed and the low scientific rigor in their
evaluation with often small samples. We also note that the vast majority of IUs have
been created in only one language and are not accessible, neither free nor paid, which
may hinder their application on a larger scale. Based on the results of our review, it be-
comes obvious that there is a need for the development of IUs focused on SE education
in K-12 popularizing not only programming but also SE competence as an essential area
of computing.
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APPENDIX A. Overview on the SE competencies taught in K-12
Reference  Learning objecti-  SE knowledge area(s) SE methods/ SE
ve(s) with respect technique(s) tool(s)
to SE
After the IU the
students should be
able to:
(Bollin and  apply program- * SW Requirements * Pair programming NI
Sabitzer, ming skills by cre- ¢ SW Construction * Requirement specifica-
2015) ating apps follow- ¢ SW Testing tion
ing SE practices.  *+ SW Maintenance » SW Validation
* SW Engineering Manage-
ment
* SW Engineering Process
* SW Quality
(Collofello, understand the * SW Requirements * Use case Ra-
2002) software develop- ¢ SW Design * Test case tional
ment process. * SW Engineering * Object-oriented mod-  Rose
understand the * SW Construction eling
careers of a soft- * SW Testing
ware engineer.
(Corbett apply program- * SW Design * Programming design NI
and Nesiba, ming competencies * SW Construction process
2015) by following an SW Testing * [terative process
engineering design * SW Engineering Process ¢ Pseudocode
process including * Flow diagram
SE practices.
(De Kereki  understand and * SW Requirements * Debugging NI
and apply basic SE * SW Design * Reuse
Manataki,  practices of mod-  * SW Engineering Models ¢ Event-driven program-
2016) eling, creating, and Methods ming
debugging, reusing * SW Construction
computer pro- * SW Testing
grams. * SW Maintenance
* SW Quality
(Fronza apply skills related * SW Requirements * Storyboard GIMP
etal.,2017) to an agile soft- * SW Design * [terative process

ware development
process.

* SW Construction
* SW Testing

* SW Engineering Process
* SW Engineering Models

and methods

* Brainstorming

* Flow diagram

* Reuse

* Debugging

* Agile method

* Feasibility table
» Mental map
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(Fronza apply SE concepts. ¢ SW Requirements * V Model NI
etal.,2016) * SW Design * Pair programming
* SW Engineering Models  * Storyboard
and Methods * Paper prototype
* SW Construction * Unit testing
* SW Testing * Iterative process
* SW Engineering Process
(Fronza apply an SE pro-  « SW Requirements * Agile method NI
etal.,2015) cess for mobile * SW Design * Feasibility analysis
application devel- + SW Construction * [terative process
opment. * SW Testing * Paper prototype
* SW Engineering Models
and Methods
(Hermans  analyze quality- * SW Maintenance * Code smell NI
and Aivalo- related SE tech- * SW Quality * Debugging
glou, 2017) niques. * Duplication
* Refactoring
* Naming
(Kohler apply sw-develop- ¢ SW Requirements » Waterfall model NI
etal.,2012) ment process com- ¢ SW Design * Requirements refine-
petencies using the ¢ SW Engineering Models ment based on wire-
waterfall model. and Methods frames
* SW Construction * Usability testing
* SW Testing * Paper prototype
* SW Engineering Process ¢ State machine diagram
(Missiroli ~ apply SE skills us- * SW Requirements * Scrum NI
etal.,2017) ing SCRUM or the < SW Construction » Waterfall model
Waterfall model. * SW Testing * User story

* SW Engineering Process ¢ Use case diagram
* SW Engineering Models

and Methods
(Missiroli ~ apply the agile * SW Requirements * Agile method Net-
etal.,2016) methodology * SW Construction  Extreme programming Beans,
Extreme program- < Software Testing * -Time boxing JUnit
ming. * SW Engineering Models  « User story
and Methods * Pair programming
* Test Driven Develop-
ment
(Rusu et al., understand the 4 + SW Maintenance * Reuse (adaptive) Educa-
2011) types of software * Corrective program-  tional
maintenance: ming (corrective) game
adaptative, correc- * Exception detection
tive, perfective and (perfective)

preventive. * Planning (preventive)




Teaching Software Engineering in K-12 Education: A Systematic Mapping Study 199
(Rusu et al., understand the * SW Requirements » Waterfall model Educa-
2010) phases of the soft- * SW Design * Brainstorming tional
ware life cycle. * SW Engineering Models  * Control structure game
understand the and Methods * Fault-based technique
roles/careers of IT » SW Construction (test)
professionals. * SW Testing
* SW Maintenance
* SW Engineering Process
(Sarkar and apply acceptance  * SW Testing * Black-box test Test
Bell, 2013) tests. * -Acceptance test case
valida-
tion
tool
(test-
Bedv9.
html)
(Serrano apply an SE pro-  * SW Requirements * Goal orientation NI
and Ser- cess including re-  * SW Design * Scenario
rano, 2013) quirements elicita- ¢ SW Testing * Prototype
tion, requirements * Requirements model-
modeling and soft- ing
ware validation.
(Starrett, apply software * SW Design * Class diagram NI
2007) modeling skills * SW Engineering Models  * State machine diagram
using UML. and Methods « UML
* Model Driven Devel-
opment
* -Model Driven Archi-
tecture
(Verhoeff,  apply SE skillsin « SW Requirements * Unit testing NI
2006) the development of « SW Design * Project review

a pre-defined soft-
ware project.

* SW Engineering Models
and Methods

* SW Construction

* SW Testing

* SW Maintenance

* SW Configuration and
Management

* SW Engineering Manage-

ment
* SW Engineering Process
* SW Quality

» State machine diagram

* [terative process
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