
Informatics in Education, 2014, Vol. 13, No. 2, 209–224
© 2014 Vilnius University
DOI: http://dx.doi.org/10.15388/infedu.2014.03

209

Implementation of Abstract Data Types in
Dynamic Sketches for Learning Geometry

Eglė JASUTĖ, Valentina DAGIENĖ
Vilnius University, Institute of Mathematics and Informatics
Akademijos str. 4, LT-08663Vilnius, Lithuania
e-mail: egle.jasute@mii.vu.lt, valentina.dagiene@mii.vu.lt

Received: December 2013

Abstract. A long-term observation of students’ usage of a dynamic geometry in a classroom at all
grade levels has challenged to develop an approach for learning and understanding mathematics
in an easier way for both students and teachers. The paper deals with the results of a study that
investigates the process and outcomes of the implementation of abstract data types in dynamic
sketches (by composing scripts) for learning geometry. Four abstract data types have been devel-
oped and defined using algebraic specifications. The development of a dynamic sketch scenario
with the implementation of these abstract data types is presented in detail. An example of creating
an interactive microworld, using abstract data types, is presented and discussed as well.

Keywords: abstract data type, ADT, learning geometry, dynamic sketch, interactive microworld.

1. Introduction

The existing literature on students’ conceptions of mathematics indicates that students
at all grade levels have difficulties with understanding geometric sketches. To improve
mathematical skills of all students in a classroom is one of the most difficult problems
for mathematics teachers. Information technology is one of the modern tools which can
help both teachers and students in the learning process. A lot of various educational
software and learning objects are offered for teachers and students. A dynamic geom-
etry is one of such tools for both teachers and students. A dynamic geometry is aimed
to improve students’ geometric skills and to make their knowledge deeper and more
significant (Dagienė and Jasutienė, 2008) (Dagienė et al., 2007). However, a dynamic
geometry is a relatively complex tool for a mathematics teacher due to several reasons:
first, the dynamic geometry constructions are based on hierarchy, so in order to construct
a sketch, a teacher must have (or acquire) enough skills in developing algorithms and
programs; second, most tools of the dynamic geometry’s software are rather complex for
the teacher (Hohenwarter et al., 2007).

E. Jasutė, V. Dagienė210

Some scientists declare the another problem of the usage of information technol-
ogy: the usage of digital tools depends on a teacher’s disposition. If teachers use an
active learning approach and constructive methods of teaching, they are willing to use
a dynamic geometry for teaching as well. If teachers are more satisfied with traditional
teaching methods, they are not willing to use a dynamic geometry for teaching (Stols
and Kriek, 2011).

A long-term observation inspired to develop an approach for making the mathemat-
ics studies easier for both students and teachers. The aim of the research is as follows: to
construct a method (or a model) of interactive visualization for secondary school geom-
etry. The method should help construct interactive objects, using a dynamic geometry,
and direct teachers and students to master their skills in a dynamic geometry (Jasutė and
Dagienė, 2012).

A dynamic geometry can be presented as a unique programming application. The
authors have noticed that mathematics teachers have difficulty when creating interac-
tive microworlds, using a dynamic geometry. An informatics problem can be recognised
here: linking a geometric topic Si to the interactive microworld Mk (k = 1, 2, ..., m) by
using a dynamic geometry. The analysis of the features of a dynamic geometry allows
the authors to appeal to the abstract data type (ADT) theory. The authors define ADTs by
using the methods of heterogeneous algebra and apply them in writing scenarios for the
microworld Mk. Four abstract data types will be developed and an example of creating a
microworld using these ADTs will be presented in the paper. The ‘Geometer Sketchpad’
programme will be used to illustrate the implementation results.

2. Methodology

2.1. Definitions

The authors introduce the main definitions in connection with abstract data types and
algebraic specifications in this section.

Definition 1. An abstract data type is a set of data values and associated operations that
are precisely specified, independent of any particular implementation.

Definition 2. ADT specification is a representation-independent formal definition of
each operation of a data type. Thus, the complete design of a single data type would
proceed by first giving its specification, followed by an (efficient) implementation which
agrees with the specification.

Definition 3. Algebraic specification is defined as a set of three elements (S, 0P, E): a set
S of values, a set OP of operation symbols, and a set E of equations or axioms.

Definition 4. Implementation of data abstraction is an assignment of meaning to the
values and operations in terms of the values and operations of another data type or set of
data types. A correct implementation is an implementation that satisfies the axioms.

Definition 5. A generating function is a function that generates the value of a type.

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 211

Definition 6. A transforming function is a function that replaces one value of type T by
another value of type T which can be generated by the generating function. This function
does not create new values, but the result belongs to the set of values of type T is created
by generating functions.

Definition 7. A reflecting function is a function that reflects the value of one type T to
the value of some another type.

Definition 8. Homogeneous algebra is defined as a pair [R, F], where R is not an empty
set of values, and F is a finite set of functions Fnj, each function Fnj is a map: Fnj: Rn →R,
where n is the operand number of the jth function.

Definition 9. Heterogeneous (or many-sorted) algebra is a pair [R,F], where R={{T1},
...{Tn}} is not an empty value set of data types T1,..., Tn; and F is a finite set of functions
Fnj , each function Fnj maps: Fnj: T1xT2x...xTn →Tr , where n is the operand number of
the jth function.

2.2. ADT Specifications

ADT is used to reduce and specify a program by defining abstract data values. These
values are generated by functions and constructs which are defined by the first line direct
equations (Jouannaud and Okada, 1997). Three requirements for ADT are proposed in
(Liskov and Guttag, 1986):

All functions for values of ADT have to be defined in the data type description. ●
The user of ADT should not know how ADT values are reflected in the memory ●
of a computer.
The user of ADT can use only the functions of this ADT with ADT values but can- ●
not operate with the reflections of those values in the memory of computer.

A new ADT has to be described by a formal definition and implementation (Gut-Gut-
tag, 1987). ADT can be described by informal and formal methods. In order to avoid
ambiguity, the formal methods are used to describe ADT. The syntax specification de-
fines the names, domains, and ranges of the operation type. The semantic specification
contains a set of axioms in the form of equations which relate the operations of type
to each other (Guttag, 1987). Mostly two specification methods are used: algebraic
specification and operational specification (Loeckx, 1987). An operational method of
specification is close to realization. Some programming language is used for ADT spec-
ification. The set of values of ADT are constructed with the help of data structures of
the programming language. The operations are defined with the help of the program-
ming language (Loeckx, 1986). A defect of the operational specification method is its
lack of abstraction. This method constitutes an implementation rather than specification
(Loeckx, 1986). ADT are mathematical models with associated methods which should
be implemented in terms of black boxes (Heberman, 2008). An algebraic specification
consists of equalities as described in (Loeckx, 1986). This method uses the axiomatic
system and therefore it is independent of implementation (Guttag, 1987) (Guttag and
Horning, 1978). Heterogeneous algebra (definition 9) is used for the formal description

E. Jasutė, V. Dagienė212

of ADT (Ehrig and Mahr, 1985) (Liskov and Guttag, 1986) (Loeckx, 1986). Hetero-Ehrig and Mahr, 1985) (Liskov and Guttag, 1986) (Loeckx, 1986). Hetero-and Mahr, 1985) (Liskov and Guttag, 1986) (Loeckx, 1986). Hetero- Mahr, 1985) (Liskov and Guttag, 1986) (Loeckx, 1986). Hetero-) (Liskov and Guttag, 1986) (Loeckx, 1986). Hetero-Liskov and Guttag, 1986) (Loeckx, 1986). Hetero-and Guttag, 1986) (Loeckx, 1986). Hetero- Guttag, 1986) (Loeckx, 1986). Hetero-) (Loeckx, 1986). Hetero-Loeckx, 1986). Hetero-). Hetero-
geneous algebra includes the values of several types. This feature is appropriate for
representing data types used in programming. According to the ADT theory only one
data type is picked out and it is described by other types which were defined before
(Guttag and Horning, 1978). The algebraic specification is more suitable for authors to
describe ADT.

It is advisable to group the functions of a descriptive date type for creating systematic
axioms: generating, transforming, and reflecting as described in definitions 5, 6, and 7.
Sometimes the functions which do not generate a new value but add some feature to the
existing value can be accepted as generating. The reflecting function which generates a
new value of some ADT from the value of another data type can be accepted as generat-
ing as well.

A new data type can be specified systematically, based on the tables of function re-
sults. Axioms must be written for every transforming and reflecting function. The num-
ber of axioms depends on the number of generating functions with the values suitable for
a definable (transforming or reflecting) function (Fig. 1).

A dynamic geometry can be described as an application where the microworld of
geometry is constructed using the interaction of ADTs. Each microworld Mk is a dy-
namic geometry’s sketch with ADTs interaction. The particularity of a dynamic geom-
etry forces us to describe step by step scenarios for each Mk. For the formal description
of scenarios, the method of heterogeneous algebra will be used. Each scenario is a set
of functions Fnj, where every function Fnj: T1xT2x...xTn →Tr ; T1,..., Tn are not empty
ADTs; n is the number of operands in the jth function.

The analysis of a dynamic geometry software let the authors to compose four main
ADTs. They are named in line with their purposes: geom.obj, measurements,
text.block and action.button.

Fig. 1. Systematic method for defining ADT.

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 213

2.3. Specification of ADT in Dynamic Geometry Scenarios

The main ADT in the dynamic geometry sketch is din.geom. It will be defined when
all ADTs are described. The center of an interactive microworld is a dynamic drawing
which consists of geometric objects. The geom.obj is the first type described. This
type can be described by homogeneous algebra, but it needs to be related with other
definable types. Therefore the authors define it in the notation of heterogeneous algebra.
The set of values of this data type is infinite and all the values are created by generating
functions (see Annex). The set of values includes all objects from the point to compli-
cated constructions (bisectors of a triangle, the tangent of two circles, etc.). The set of
values is denoted as R1. All the values of set R1 can be produced by a finite set of func-
tions (see Annex). Some general constants of set R1 of type geom.obj have to be writ-
ten: no, A, segment_AB, ray_AB, line_AB, vector_AB, arc_AB, arc_ABC, circle_AB,
circle.sector_ABC, circle.segment_ABC, circle.sector_AB, circle.segment_AB, circ.in-
terior_AB, pol.interior_Ak. These constants are used in other specifications of definable
data types as well. Variables of type geom.obj are defined: r,l. The variables can
reduce the number of axioms for the described ADT (see Annex).

Functions are grouped into generating functions F1 and transforming and reflecting
functions F2 (Fig. 2).

Some of functions F1 do not create new values. They assign features to the existing
values:

Function ● select. All functions in a dynamic geometry are used with selected
objects. The result of the function select is labelled by subscript 1. This func-
tion will be used in all abstract data types that will be described.
Function ● hide. Such an object exists, but it is not seen on the screen. The result of
the function hide is labelled by subscript 2. This function will be used in all the

Fig. 2. Graphical visualization of ADT geom.obj.

E. Jasutė, V. Dagienė214

abstract data types that will be described.
Function ● t_set.mirror assigns a symmetric line feature to the straight object.
The result of this function is used to create some reflected object. The result of the
function t_set.mirror is labelled by subscript 3.
Function ● t_set.centre assigns the central feature to the point. The result of
this function is used to turn the object. The result of function t_set.centre is
labelled by subscript 4.

This type has only three transforming functions: undo, op_point.obj and op_
intersection.point. The axioms for these transforming functions were written
down (see Annex).

Another ADT for a dynamic geometry is named by measurement. This type needs
a method of heterogeneous algebra for its specification. This type consists of two types:
the type of real numbers and the type of measurement units. The set of values of this
type is the Cartesian multiplication of two sets {real} and {no, cm, inches, pixel, degree,
direct degree}. The set of values is infinite. Formally this set of measurement values
is named by R2. All functions of real numbers are suitable for this type. The authors use
variables to represent the values of this type: a variable a of the type real and variables
m, n, d of the type measurement.

Functions of this type are distributed in two groups: generating and transforming
functions F3, and transforming functions F4 which reflect values to that of the data type
geom.obj (Fig. 3).

All the values of type measurement can be generated by seven functions: m_pa-
rameter, op_unit, sign’+’, sign’-’, t_set.distance, t_set.angle,
t_set.ratio. The generating function t_set.distance assigns a feature to mea-
surements. The result of this function is labelled by subscript 7. The reflecting functions
t_set.angle and t_set.ratio assign features to the existing values. The results
of these functions are labelled by subscripts 5 and 6, respectively. Axioms are construct-
ed for the rest transforming and reflecting functions (see Annex).

Fig. 3. Graphical visualization of relations between ADTs geom.obj and measurement.

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 215

The third defined type of ADT is text.block. The set of values of this type is
infinite and the values are text blocks. This set was named by R3. Every block of this
type consists of characters. To this end the authors use a data type char with generat-
ing functions c_add, c_delete, and c_select (Fig. 4). This type has a finite set of
functions: generating functions F5 and reflecting functions F6 (see Annex).

The last created ADT is action.button. The set of values of this type is finite:
R4 = {no, ah, as, aa, aac, seq}. All values are generated by the reflecting functions.

All the described ADTs are composed in heterogeneous algebra. In this way, the
authors have obtained a new ADT named din.geom. A set of values of this type is R =
{R1, R2, R3, R4}, where set R1 consists of values of the type geom.obj, set R2 con-
sists of values of the type measurement, set R3 consists of values of the type text.
block and set R4 consists of values of the type action.button.

All the functions described for each data type are suitable for ADT: F = {{F1}, {F2},
{F3}, {F4}, {F5}, {F6}, {F7}, {F8} (Fig. 6).

Fig. 4. Graphical visualization of the type text.block.

Fig. 5. Graphical visualization of ADT action.button.

E. Jasutė, V. Dagienė216

3. Example of ADT Implementation in a Dynamic Geometry

As the authors described above, in order to create the microworld Mk in a dynamic
geometry application, it is necessary to describe that step-by-step. All the steps are func-
tions of the ADT din.geom.

For example, the authors illustrate how to create a microworld for the learning topic:
‘The area of atriangle when two sides and the included angle are given’.

To create this scenario the authors need an additional scenario angle.arc to con-
struct an arc to mark the angle in the drawing of the triangle. This scenario will be used
three for times in the main scenario. The same constants are used just like in the ADT
descriptions above.
Name: angle.arc
1.op_point(no)=A1
2.op_point(no)=B1
3.op_point(no)=C1
4.op_segment(A1,B1)=segment_AB1
5.op_segment(B1,C1)=segment_BC1
6.t_translate(B1,0,3)=B‘1
7.op_circle(B1,B‘1)=circle_B1B‘1
8.op_intersection.point(segment_AB1,circle_B1B‘1)=E
9.op_intersection.point(segment_AB1,circle_B1B‘1)=F
10.op_arc(E,F,circle_B1B‘1)=arc_EF

The scenario of microworld in heterogeneous algebra axioms is written below:

Name: area.triangle.trig
1.op_point(no)=A1 {geom.obj→geom.obj}
2.op_point(no)=B1

3.op_point(no)=C1

4.op_segment(A1,B1)=segment_AB1

5.op_segment(B1,C1)=segment_BC1

Fig. 6. Schema of the ADT syntax in a dynamic geometry.

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 217

6.op_segment(A1,C1)=segment_AC1

7.angle.arc(A1, B1, C1)=arc_EF {script}
8.angle.arc(B1, A1, C1)=arc_EF {script}
9.angle.arc(A1, C1, B1)=arc_EF {script}
10.m_segment(AB1)=a {geom.obj→measurement}
11.m_segment(BC1)=b
12.m_segment(AC1)=c
13.m_angle(A1, B1, C1)=β
14.m_angle(A1, C1, B1)=γ
15.m_angle(C1, A1, C1)=α
16.c_add(empty)=t1{char→text.block}
17.c_add(empty)=t2{char→text.block}
18.c_add(empty)=t3{char→text.block}
19.c_add(empty)=t4{char→text.block}
20.m_area(op_pol.interrior(A3

1))=S {geom.obj→measurement}
21.merge(t1,b,t2,c,t3,α,t4,S)=t7{text.block→text.block}
22.merge(t1,a,t2,b,t3,γ,t4,S)=t7
23.merge(t1,a,t2,c,t3,β,t4,S)=t7
24.c_add(empty)=t8{char→text.block}
25.k_hide(t8)=ah {text→action.button}
26.k_show(t8)=as {text→action.button}
27.k_animation(A1)=aa1 {geom.obj→action.button}
28.k_animation(B1)=aa2
29.k_animation(C1)=aa3
30.op_point(no)=X {geom.obj→geom.obj}
31.op_point(no)=Y
32.op_point(no)=Z
33.k_action(A1, X1)=aac1 {geom.obj→action.button}
34.k_action(B1, Y1)=aac2
35.k_action(C1, Z1)=aac3
36.k_sequence(aac1,aac2,aac3,ah)=Start{action.button→action.

button}
37.c_add(empty)=t9{char→text.block}

The result of the scenario implemented in a dynamic geometry is shown in Fig. 7.
The points A, B and C are movable. The measures of sides and angles change when the
buttons between measures of sides and angles are clicked. The start position can be re-
stored when the button in the left angle of the sketch is clicked.

4. Conclusions and Discussions

Information technologies became an important part of the mathematics education pro-
cess. One of such tools is a group of programs called a dynamic geometry. But the usage
of a dynamic geometry is too complex for a large number of teachers in school. The

E. Jasutė, V. Dagienė218

digital competency of most mathematics teachers is imperfect. The authors have found
a way how to help teachers to use a dynamic geometry and to make learning deeper and
more attractive for students. The method has been developed for creating interactive mi-
croworlds with a dynamic geometry. The core of the method is to map some geometric
topic Si to interactive microworld Mi. This step was formalized by using the abstract data
type theory. More than 500 interactive microworlds have been developed, based on this
formalized method for mathematics teachers and students in Lithuanian schools.

The described ADT can be expanded by adding more ADTs. The authors described
ADT to create microworlds for learning the geometry only. ADT for creating micro-
worlds for learning algebra or mathematics analysis can be described and added to the
type din.geom in the presented way.

The authors choose the algebraic specification for formalizing ADT. This specifica-
tion method is abstract and can be realized in any dynamic geometry. And ADT can be
expanded, depending on tools of a dynamic geometry, if necessary.

Annex

Specification of the ADT geom.obj

Syntax.

F1={op_point: → geom.obj
select: geom.obj → geom.obj
delete: geom.obj → geom.obj
hide: geom.obj → geom.obj

Fig. 7. The scenario implementation in the Geometer Sketchpad.

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 219

t_set.mirror: geom.obj → geom.obj
t_set.centre: geom.obj → geom.obj
op_segment: geom.obj x geom.obj → geom.obj
op_ray: geom.obj x geom.obj → geom.obj
op_line: geom.obj x geom.obj → geom.obj
op_circle: geom.obj x geom.obj → geom.obj
op_arc: geom.obj x geom.obj x geom.obj → geom.obj
op_circle.sector: geom.obj x geom.obj x geom.obj → geom.obj
op_circle.segment: geom.obj x geom.obj x geom.obj → geom.obj
op_circ.interior: geom.obj → geom.obj
op_pol.interior: geom.obj x geom.obj x...x geom.obj → geom.obj
t_set.vector: geom.obj x geom.obj → geom.obj
t_translate: geom.obj x x geom.obj → geom.obj
t_reflection: geom.obj x geom.obj → geom.obj
t_resizing: geom.obj x measurement → geom.obj
t_rotate: geom.obj x measurement → geom.obj
t_translate: geom.obj x measurement → geom.obj}
F2={undo: geom.obj → geom.obj
op_point.obj: geom.obj → geom.obj
op_intersection.point: geom.obj x geom.obj → geom.obj}

Semantic.

op_intersection.point(no,no)=no
op_intersection.point(no,op_point(A))=?
op_intersection.point(op_point(A),op_point(B))=?
op_intersection.point(op_point(A),r1)=?
op_intersection.point(r1,l1)=E
undo(select(r))=r
undo(hide(r))=r
undo(op_point(A))=r
undo(op_segment(A,B))=(A1,B1)
undo(op_line(A,B))=(A1,B1)
undo(op_ray(A,B)=(A1,B1)
undo(op_circle(O,B))=(O1,B1)
undo(op_circle(O,B)=(O1,segment_AB1)
undo(op_arc(A,B,C)=(A1,B1,C1)
undo(op_arc(A,B)=(A1,B1)
undo(circle.sector_ABC)=arc_ABC
undo(circle.sector_AB)=arc_AB
undo(circle.segment_ABC)=arc_ABC
undo(circle.segment_ABC)=arc_AB
undo(op_circ.interior (O,B))=circle_OB1

undo(op_pol.interior (Ak))=(Ak
1)

undo(r2)=r1

E. Jasutė, V. Dagienė220

undo(delete(r1))=r1

undo(t_set.vector(A,B)=(A,B)
undo(t_set.mirror(A,B))=segment_AB1

undo(t_set.mirror(A,B))=line_AB1

undo(t_set.mirror(A,B))=ray_AB1

undo(t_set.centre(A))=A1

undo(t_translate(r))=r1
undo(t_reflection(r,ray_AB))=r1

undo(t_reflection(r,line_AB))=r1

undo(t_reflection (r,segment_AB))=r1

Specification of the ADT measurement

Syntax.

F4={m_parameter: → real
op_unit: real → measurement
sign’+’: measurement → measurement
sign’-‘: measurement → measurement
delete: measurement → measurement
select: measurement → measurement
hide: measurement → measurement
add: measurement x measurement → measurement
subtract: measurement x measurement → measurement
multiply: measurement x measurement → measurement
divide: measurement x measurement → measurement
t_set.distance: measurement →measurement}
F3={m_length: geom.obj → measurement
m_distance: geom.obj x geom.obj → measurement
m_ray: geom.obj → measurement
m_angle: geom.obj x geom.obj x geom.obj → measurement
m_centr.angle: geom.obj x geom.obj x geom.obj → measurement
m_circle.sector: geom.obj → measurement
m_circle.segment: geom.obj → measurement
m_area: geom.obj → measurement
m_perimeter: geom.obj x geom.obj → measurement
m_circl.perimeter:geom.obj→measurement
m_ratio: geom.obj x geom.obj → measurement
t_set.angle: geom.obj x geom.obj x geom.obj → measurement
t_set.ratio: geom.obj x geom.obj → measurement}

Semantic.

A, B, C, O: geom.obj
m, n, x, y, a: measurement
undo(m_parametre(no))=no

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 221

undo(op_unit(a))=a
undo(sign’+’(m))=m
undo(sign’-’(m))=m
undo(t_set.distance(m1))=m1
undo(select(m))=m
undo(hide(m))=m
undo(m_length(op_segment(A,B)))=op_segment(A,B)
undo(m_distance(op_point(A),op_point(B)))=op_point(A),op_

point(B)
undo(m_distance(op_point(A),op_segment(AB)))=op_point(A),op_

segment(AB))
undo(m_distance(op_point(A),op_ray(AB)))=op_point(A),op_ray

(AB)
undo(m_distance(op_point(A),op_line(AB)))=op_point(A),op_

line(AB)
undo(m_radius(op_circle(OB)))=op_circle(OB)
undo(m_angle(op_point(A),op_point(B),op_point(C)))=op_point

(A),op_point(B),op_point(C)
undo(m_centr.angle(op_point(A),op_point(B),op_circle(O,C)))=

op_point(A),op_point(B),op_point(C)
undo(m_circle.sector(op_point(A),op_point(B),op_circle(O,C)

))=op_point(A),op_point(B),op_circle(O,C))
undo(m_circle.segment(op_point(A),op_point(B),op_circle(O,C)

))=op_point(A),op_point(B),op_circle(O,C)
undo(m_area(op_circle(O,C)))=op_circle(O,C)
undo(m_area(op_circ.interior(O,C)))=op_circ.interior(O,C)
undo(m_area(op_pol.interior(Ak)))=op_pol.interior(Ak)
undo(m_perimeter(op_pol.interior(Ak)))=op_pol.interior(Ak)
undo(m_circl.perimeter(op_circle(O,C)))=op_circle(O,C)
undo(m_circ.perimeter(op_circ.interior(O,C)))=op_circ.

interior(O,C)
undo(m_ratio(op_segment(A,B),op_segment(C,D)))=op_segment

(A,B)
undo(t_set.angle(op_point(A),op_point(B),op_point(C)))=op_

point(A),op_point(B),op_point(C)
undo(t_set.ratio(divide(x,y)))=divide(x,y)

Specification of the ADT text.block

Syntax.

F5={empty: → text.block
add: char → text.block
delete: text.block → text.block
select: text.block → text.block

E. Jasutė, V. Dagienė222

hide: text.block → text.block
merge: text.block text.block→ text.block
select: text.block → text.block
delete: text.block → text.block }
F6={merge: measurement x text.block → text.block
split: text.block → mesurement x text.block}

Semantic.

t: text.block
m: measurement
split(merge(m,t))=m,t
undo(empty)=?
undo(c_add(t))=empty
undo(select(t))=t
undo(hide(t))=t
undo(split(merge(m,t))=merge(m,t)
undo(delete(t))=t

Specification of the ADT action.button

Syntax.

F7={delete: → action.button → action.button
select: action.button → action.button
hide: action.button → action.button
k_sequence: action.button → action.button }
F8={k_hide: geom.obj x measurement x text.block x action.
button → action.button

k_show: geom.obj x matai x tekstai x action.button → action.
button

k_animation: geom.obj → action.button
k_action: geom.obj x geom.obj → action.button}

Semantic.

r, A, B, C, D: geom.obj,
t: text.bock,
m: measurement
a, b, c, d: action.button
undo(k_show(a,t,m,r))=a,t,m,r
undo(k_hide(a,t,m,r))=a,t,m,r
undo(k_animation(r,no))=r
undo(k_animation(op_point(A),op_segment(B,C)))=op_point(A),

op_segment(B,C)
undo(k_animation(op_point(A),op_ray(B,C)))=op_point(A),op_

ray(B,C)

Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry 223

undo(k_animacija(op_point(A),op_line(B,C)))=op_point(A),op_
line(B,C)

undo(k_animacija(op_point(A),op_circle(O,B)))=op_point(A),
op_circle(O,B)

undo(k_animacija(op_point(A),op_arc(B,C,D)))=op_point(A),
op_arc(B,C,D)

undo(k_action(op_point(A),op_point(B)))=op_point(A),op_point
(B)

undo(k_sequence(a,b,c,d)))=a,b,c,d

References

Dagienė, V., Jasutienė, E. (2008). Developing dynamic sketches for teaching mathematics in basic schools. In:
The 17th ICMI Study: Technology Revised. Hanoi University of Technology, Vietnam, 120–127.

Dagienė, V., Jasutienė, E., Jevsikova, T. (2007). An approach to combine learning entities to support math-
ematics curriculum in schools. In: Benzie, D., Iding, M. (Eds.), Informatics, Mathematics and ICT: A
“golden triangle”. CD: Proceedings of the Working Joint IFIP Conference, Northeastern University Bos-
ton, Massachusetts, USA 27th–29th June 2007. Boston, MA.

Ehrig, H., Mahr, B. (1985). Fundamentals of Algebraic Specification 1: Equations and Initial Semantics.
Springer.

Ehrig, H., Mahr, B., Classen, I., Orejas, F. (1992). Introduction to algebraic specification. Part 1. Formal meth-
ods for software development. The Computer Journal, 35(5), 460–467.

Guttag, J.V. (1987). Abstract data types and software validation. Communications of the ACM CACM, 21(12),
1048–1064.

Guttag, J.V., Horning J.J. (1978). The algebraic specification of abstract data types. Acta Informatica, 10,
27–52.

Heberman, B. (2008). Formal and practical aspects of implementing abstract data types in the Prolog instruc-
tion. Informatica, 2008, 19, (1), 17–30.

Hohenwarter, J., Hohenwarter, M., Lavicza, Z. (2009). Introducing dynamic mathematics software to second-
ary school teachers: the case of GeoGebra. Journal of Computers in Mathematics and Science Teaching,
28(2), 135–146.

Jasutė, E., Dagienė, V. (2012). Constructionist learning of geometry. In: Proceedings of conference Construc-
tionism 2012: Theory, Practice and Impact, August 21–25, 2012. The education technology Lab, Athens,
386–396.

Jouannaud, J., Okada, M. (1997). Abstract data type systems. Theoretical computer science, 173(2), 349–391.
Liskov, B., Guttag, J. (1986). Abstraction and Specification in Program Development. MIT Press.
Loeckx, J. (1986). The algorithmic specification method of abstract data types: an overview. In: Mathematical

Methods of Specification and Synthesis of Software Systems ‘85, (Lecture Notes in Computer Science, vol.
215). 194–200.

Loeckx, J. (1987). Algorithmic specifications: a constructive specification method for abstract data types.
ACM Transactions on Programming Languages and Systems, 9(4), 646–661.

Stols, G., Kriek, J. (2011). Why don’t all maths teachers use dynamic geometry software in their classrooms?
Australasian Journal of Educational Technology, 27(1), 137–151.

E. Jasutė, V. Dagienė224

E. Jasutė has been teaching Mathematics and Computer Science at Vilnius Jesuit High
School since 1997. Since 2001 she has also been working as a researcher at Vilnius Uni-
versity Institute of Mathematics and Informatics. Her studies focus on the usage of IT
in education and their influence on learning results. She became a PhD student in 2010.
She works on the creation of interactive tools for constructionist learning of Geometry.
E. Jasutė together with several co-authors has developed a few interactive learning tools
related to Dynamic Geometry. She has written several methodical and scientific articles
on the studied subject and localized educational and non-educational software and has
participated in several European projects, as well.

V. Dagienė (Professor D.Sc.) is a head of a department in Vilnius University Institute
of Mathematics and Informatics. She has published over 100 scientific papers, over 100
methodical works, and more than 50 textbooks in the field of informatics. She is actively
involved in various national and international committees as well as work groups on in-
formatics education. V. Dagienė is a member of International Committee of Olympiads
in Informatics and chairs the committee of the conference on Olympiads in Informatics,
which has been organized since 2007. In 2004 she founded International Contest on
Informatics and Computer Fluency BEBRAS which runs every year and involves about
30 countries. She is a founder of two international journals, “Informatics in Education”
and “Olympiads in Education”.

Abstrakčiųjų duomenų tipų realizavimas dinaminių brėžinių
scenarijuose
Eglė JASUTĖ, Valentina DAGIENĖ

Ilgalaikis dinaminės geometrijos naudojimo visų klasių pamokose stebėjimas inspiravo sukur-
ti metodą, kuris mokytojams ir mokiniams palengvintų matematikos mokymąsi, tam naudojant
dinaminę geometriją. Šiame straipsnyje pateikiami tyrimo, kurio metu abstraktieji duomenų tipai
realizuojami dinaminiuose brėžiniuose (konstruojant scenarijus), procesas ir rezultatai. Apibrėžti
keturi abstraktieji duomenų tipai naudojant algebrines specifikacijas. Pateikiama detali abstrakčių-
jų duomenų tipų realizacija naudojantis dinaminės geometrijos priemonėmis. Taip pat pateiktas
interaktyvaus mikropasaulio kūrimo dinaminėje geometrijoje, naudojant abstrakčiuosius duome-
nų tipus, pavyzdys.

