Informatics in Education, 2014, Vol. 13, No. 2, 241-254 241

© 2014 Vilnius University
DOI: http://dx.doi.org/10.15388/infedu.2014.05

Physical Computing and its Scope — Towards a
Constructionist Computer Science Curriculum
with Physical Computing

Mareen PRZYBYLLA', Ralf ROMEIKE?

" University of Potsdam, Didactics of Computer Science
? Friedrich-Alexander-Universitdt Erlangen-Niirnberg (FAU)
e-mail: przybyll@cs.uni-potsdam.de, ralf.romeike@fau.de

Received: January 2014

Abstract. Physical computing covers the design and realization of interactive objects and instal-
lations and allows students to develop concrete, tangible products of the real world, which arise
from the learners’ imagination. This can be used in computer science education to provide students
with interesting and motivating access to the different topic areas of the subject in construction-
ist and creative learning environments. To make many existing activities and examples of such
project ideas available for classroom use and to expand the topic areas suitable for learning in such
environments beyond introductory to programming, a physical computing syllabus for computer
science courses in general education schools has been developed. In this paper the methods and
different perspectives that were taken into account are presented. The resulting syllabus can be
used to develop a constructionist computer science curriculum with physical computing.

Keywords: physical computing, syllabus, constructionist learning, computer science education.

1. Introduction

Computer science education in recent years has increasingly gained importance in gen-
eral education. In many different countries, e.g. New Zealand, England and the United
States, computer science is being established as a compulsory school subject. Compu-
tational thinking is regarded important in all aspects of life. Educators around the globe
strive to provide students with interesting and motivating access to the different topic
areas of their subject. Constructionist learning has a long tradition in computer science
education and provides the discipline with many simple, yet powerful tools and activities
based on Papert’s ideas of microworlds (Papert, 1980). Learners explore powerful ideas
of computing in a creative way and in accordance with the constructionist approach to
learning. For a long time the design-oriented aspect of computer science education was
dominated by software development. In recent years ever more approaches have focused

242 M. Przybylla, R. Romeike

on involving programmable tangible media into computer science classes; England for
instance has even anchored the control or simulation of physical systems in their nation-
al curriculum (Department for Education, 2013). With robotics tool kits such as LEGO
Mindstorms, the virtual and the physical world are blended, haptic experience is regard-
ed important and particularly complies with the constructionist ideas. Teaching experi-
ences that involve robotics activities often describe projects that replicate vehicle robots
or industrial applications (e.g. Wagner, 2005; Weber, 2008). Such projects are criticized
for their limited opportunities for creative development, which among other things is
manifested by the lack of participation of girls (Resnick, 2007). Robotics projects are
interesting for only a limited number of students, especially if they are not given the op-
portunity to create and invent their own robots. According to Resnick (2006) “[...] there
are also many classrooms where the teacher assigns students to build a particular robot
according to predesigned plans, then grades the students on the performance of their ro-
bots.” This observation led to the development of Pico Cricket, a construction, program-
ming and learning environment that allows children to creatively develop interactive
objects with arts and crafts material. Although in this approach the focus is on skills and
competences in the general sciences, the simplicity of the tool makes the concept also
suitable for introductory computer science education, as was successfully shown in a
primary school project (Romeike and Reichert, 2011). This inspiring approach contains
a particularly engaging and promising method to teaching computer science: physical
computing. This discipline has developed with a steadily growing community of artists,
designers and makers who use microcontrollers (e.g. Arduino, Banzi ef al., 2012) to cre-
ate interactive objects. Teachers from different sciences observe this development with
interest in using the potentials of physical computing for their subjects. With physical
computing, constructionist learning and typical processes of computer science educa-
tion can be brought together in a creative and practical fashion. Students are provided
with opportunities to make their own interactive objects and thus to develop concrete,
tangible products of the real world, which arise from their own imagination and that can
be learnt with in many ways. Different physical computing project ideas are frequently
presented at conferences, but they only rarely reach teachers, even though they regularly
express their interest when introduced to physical computing in teacher training work-
shops. It is the aim of this article to define the topic areas in which computer science and
physical computing overlap, and thus to find relevant contents for physical computing
in computer science courses in general education schools that go beyond introductory
programming. With the syllabus presented in this paper we strive for the larger goal of
developing a constructionist computer science curriculum with physical computing and
thus to make activities and examples available for classroom use.

2. Constructionist and Creative Learning with Physical Computing

Physical Computing is a discipline that developed from interaction design. Artists and
designers make use of technology to create art pieces and installations that interact with
the audience, to connect the virtual and the real, physical world and to create new in-

Physical Computing and its Scope — Towards a Constructionist ... 243

tuitive interfaces between interactive objects and humans. Within the last decade the
discipline has become increasingly popular also among makers and hobbyists, driven by
the fact that more and more cheap and easily usable hardware and programming envi-
ronments have become available for everyone (e.g. Arduino, Banzi ef al., 2012). Physi-
cal computing is characterized by prototyping with technology, particularly electronics.
Reusing and improving existing hard- and software in an experimental way, driven by
curiosity, imagination and creativity is part of the ‘Arduino way’ (Banzi, 2011). It is in
the nature of physical computing processes that they are driven by ideas. Although phys-
ical computing has developed independent from computer science, the persistent interest
and enthusiasm can be used to foster creative learning in computer science education:
creativity needs a carrier and physical computing can take this role.

Physical computing involves creative arts and design processes and brings together
hard- and software components. All hardware components used in physical computing
make use of transducers — that is sensors such as sound, light or temperature sensors and
actuators such as LEDs, servos or speakers — to interact steadily with their environment.
Typical tools used for physical computing include microcontrollers and minicomputers.
The resulting interactive objects are programmed, tangible media, which can be part of
networks of interactive installations (cf. Przybylla and Romeike, 2014). Physical comput-
ing projects are of an iterative nature and quickly bring forth working prototypes. From
an educational perspective, this practice allows learners to develop meaningful products
they can present to and discuss with friends and family in a constructionist sense.

Based on Piaget’s constructivism, learning means to build networked knowledge
structures that build on each other, thus the knowledge of a person is a construction of
personal prerequisites and new impressions from his or her environment. According to
the constructionist learning theory, learning is most effective in contexts where learners
construct knowledge and develop competences from their own initiative and for a per-
sonally relevant purpose, when being consciously engaged in creating visible artifacts
(Papert and Harel, 1991; Papert, 1980; Resnick, 1996). With physical computing, the
mentioned artifacts are not only visible but also tangible — similar to artistic sculptures.
Moreover, learners design and create interactive objects that are meaningful to them-
selves and by communicating with their environment are noticed by others around them.
In creating those interactive objects, learners become acquainted with powerful ideas
that can be used as “tools to think with over a lifetime” (Papert, 1980).

As Resnick (2007) pointed out, “In today’s rapidly changing world, people must
continually come up with creative solutions to unexpected problems. Success is based
not only on what you know or how much you know, but on your ability to think and act
creatively.” Creative learning has a lot in common with the constructionist approach to
learning, for instance from both perspectives it can be inferred that intrinsic motiva-
tion is a prerequisite for sustainable learning. Based on the above-mentioned theories
of constructionist learning, findings on creative learning in computer science classes
that were presented in the doctoral thesis of Romeike (2008) and results of motivation
research conducted by Ryan and Deci (2000), the interrelations of those individual fields
were analyzed and adapted for learning environments with physical computing condu-
cive to learning. The resulting criteria show that computer science as a school subject

244 M. Przybylla, R. Romeike

has much potential to equip learners with the abilities of creative thinking and acting in
constructionist learning environments and that physical computing suits such environ-
ments perfectly well.

For more than thirty years, constructionist toolkits, robotics and physical computing
kits have been present in educational contexts. As Blikstein (2013) pointed out, in the
1980s and thus at the beginnings of this development, such kits were primarily used as
tools for scientific investigations in developmental psychology, mainly on the construc-
tionist learning theory. Later, artists and designers used such tools as they make electron-
ics more easily accessible and bring the benefits of programming to the physical world.
Nowadays, most approaches aim at making physical computing accessible to an even
broader range of interested people: the findings from development psychology are con-
nected with an easy access to electronics. Thus, current projects often show deep bonds
with the constructionist ideas. Although ever more concepts occur that make use of the
various available platforms to address new user groups in afternoon workshops, holiday
courses, coding camps, etc., a systematic analysis of contents relevant for computer sci-
ence education with physical computing has not yet been carried out.

3. Towards a Curriculum

There exists a wealth of valuable best practice reports and studies on physical comput-
ing in conference proceedings and similar publications. However, many of those remain
unused by schools, although teachers in workshops show great interest in physical com-
puting. One reason could be that those reports are mainly read by the scientific com-
munity and rarely by practitioners. Another reason could be that such reports are rather
specific focusing on a local initiative, e.g. for fostering interest in computer science or
to provide “just another way” for introducing programming, without any further consid-
erations in the curriculum. With a physical computing curriculum suitable for learning
computer science, and later possibly even a textbook containing evaluated project ideas,
many of the existing activities and examples will be made available for classroom use.
Moreover, teachers will be provided with additional ideas apart from the obvious pro-
gramming approach. A curriculum can also help to make use of interdisciplinary rela-
tions between different subjects.

In order to define the topic areas in which computer science and physical computing
overlap, and thus to find relevant contents for physical computing in computer science
courses in general education schools that go beyond introductory programming, differ-
ent approaches were discussed and existing curricula analyzed (e.g. Gesellschaft fiir
Informatik (GI) e.V., 2008; Tucker, 2003). With the implementation of computer science
as compulsory school subjects in many different countries, several curricula are avail-
able, differing a lot in detail and approach. Most curricula do not only deliver a syllabus
of contents to be learned or topics to be covered, but define competence fields that shall
be gained with the mentioned contents. Educational objectives and teaching content are
closely interlinked. Curricula often suggest sample exercises and activities to provide
teachers with concrete proposals to accomplish the goals. The analyzed computer sci-

Physical Computing and its Scope — Towards a Constructionist ... 245

ence curricula pursue the common goal of ‘computational thinking’ and specify contents
necessary to gain relevant competences. Apart from computer science curricula, there
exist quite a few curricula that focus on subareas of the discipline, usually connected
with a particular tool. For instance, there are different robotics curricula issued by the
Carnegie Mellon Robotics Academy, which each focus on a particular robotics kit and
introduce learners to concepts of programming and engineering practices (e.g. Carnegie
Mellon Robotics Academy, 2014). The “Creative Curriculum” uses the drag & drop
programming language Scratch to introduce children to computational thinking (Bren-
nan et al., 2011). A very inspiring curriculum is provided for teaching computer science
through computational textiles. Here, the focus is on programming and electronics skills,
general concepts of computer science and computing principles (Qiu et al., 2013). Those
curricula make use of concrete examples to illustrate how the learning objectives can be
achieved. This is an interesting aspect, which can be used to provide teachers with ideas
for settings and implementation proposals to start with. This is particularly important
for unfamiliar topics such as physical computing. Without implementation proposals
teachers might feel left alone with the contents to be taught. Joining this approach and
the approach of general computer science curricula, as a consequence it is necessary to
identify a wide range of possible learning objectives that later will be associated with
concrete settings and more specific curricula and lesson plans.

3.1. Methodology

When it comes to the implementation of physical computing in computer science educa-
tion, the most obvious way of doing this is to focus on algorithmic problem solving. But
physical computing has a lot more to offer: many aspects of computer science can be
taught with physical computing; e.g. the concept of finite state machines. In order to find
topic areas to which physical computing can add value, computer science curricula were
analyzed and contents sorted in four categories:

1. Contents where physical computing can add value.

2. Contents where physical computing can be used as a tool.

3. Contents where physical computing can be used as reference.
4. Contents where physical computing cannot be used.

However, limiting investigations to existing computer science curricula and using
physical computing as a tool only would restrict opportunities to bring new and relevant
topics to schools that clearly belong to the field of computer science and contain power-
ful ideas that are not yet represented in computer science education. Some aspects of
embedded systems for instance have not been included explicitly in many curricula, but
are highly relevant, as embedded systems and mobile computers play an increasingly
important role in the modern society. Thus, as a first step in order to find contents and
topics that are relevant for computer science education, physical computing curricula
from different institutions and publications on the topic were analyzed for powerful
ideas. Papert (1980) described such a powerful idea as “[...] an intellectual tool, and one
that has proved itself to be enormously powerful when skillfully used.”

246 M. Przybylla, R. Romeike

3.2. Powerful Ideas in Physical Computing Curricula

The review of earlier research (Barragan, 2004), university programs (e.g. Interactive
Telecommunications Program, n.d.; Royal College of Art, n.d.; Carnegie Mellon Uni-
versity, n.d.), programs by other institutions (e.g. School of Visual Arts, n.d.) and text-
books (e.g. Banzi, 2011; O’Sullivan and Igoe, 2004; Siemers, 2012) on the wider topic
of physical computing has shown that many topics relevant for computer science educa-
tion were taught. A selection of those topics and powerful ideas is described in this sec-
tion and illustrated with examples from a school experiment with ninth-graders.

Prototyping is a dominant method in physical computing, which is particularly well
suited for constructionist learning environments, as quickly interactive artifacts are
created, which learners can investigate, show around, discuss and admire. Prototyping
includes the powerful ideas of testing and debugging as methods of critical thinking.
In a school project two students, Max and Sebastian, built an automated garden gate
(Fig. 1). They made great progress with every iteration of the prototyping process.
They learned not only how to adjust the speed of the servo motor or how to make sure
the gate does not close while someone is passing, but also to test and evaluate their
prototypes. They even involved their classmates in testing and discussing possible op-
tions for redesign.

In order to learn with physical computing, students are introduced to sensing tech-
nologies, simple microcontrollers and actuators. Textbooks usually attend to those top-
ics in a very detailed manner. They explain the characteristics of interactive systems
in comparison with responsive systems, reactive systems and control systems. Many
powerful ideas are included here, e.g. the idea that computer-controlled artifacts can
sense their surroundings and react on stimuli with sensors (the ears and eyes of ma-
chines), microcontrollers (brains) and actuators (mouth and arms). Paul for instance
built a clever letterbox that is able to “see” the postcards and letters for him, counts
them, and tells him when he has to get his post (Fig. 1). Students also experience
feedback and control mechanisms with physical computing, for instance when crafting
automatically refilling bird feeders or brightness-adjusting greenhouse lanterns to grow
their vegetables. An example for an open-loop control system from a school project was
Julian’s automatically opening sunshade (Fig. 1).

i
i
‘mmm
I WH‘\‘\‘\‘

Fig. 1. Students’ projects “Automated Gate”, “Clever Letterbox” and “Smart Sunshade”.

Physical Computing and its Scope — Towards a Constructionist ... 247

Mostly newer curricula contain additional topics such as introductions to (micro-
controller) programming, including computing concepts (e.g. solving classes of prob-
lems rather than specific instances), basic algorithmic structures (e.g. loops, sequenc-
es), data structures (e.g. lists, arrays) and programming practices (e.g. commenting
source code, indentation). The most powerful idea behind programming interactive
objects — in addition to the many ideas in programming and procedural thinking in
general — is that of interactive objects not acting “on their own” but being programmed
by humans, even children. Computer science becomes visible and understandable in
many aspects of their lives.

Communication between interactive objects, interfacing and embedding computers
into larger systems are additional powerful ideas in this subject area. When the students
start designing their interactive objects in class they have a vision of what the object is
supposed to do and how it is supposed to interact with its surrounding environment. In-
tuitive interfaces for possible users are in focus, as in the process of physical computing
creative ideas come before the choice of suitable components. Additionally, the comput-
ing systems are embedded into interactive objects and invisible to the outside world.
When building networks of interactive objects, students learn a lot about communication
between the objects. In the above-mentioned project the students explained their own
objects to their classmates, so that everyone understood the functionality of the others’
works. They then discussed intensively, how the intended interactions could be realized,
before assigning tasks to each other. They worked together as a team in a setting where
it was absolutely necessary and not forced artificially.

The additional analysis of publications on physical computing activities (e.g. Qiu
et al., 2013; Richards and Smith, 2010; Romeike and Reichert, 2011) designed for
classroom use has produced further topics. Hardware-wise the [PO-model and com-
puter architecture in general can be taught explicitly. This topic comprises also the
interaction of components inside a computing system (memory, processor, inputs, out-
puts) and interfaces (serial interface and user interfaces). When introduced to the physi-
cal computing construction kit used in the project, the students automatically came
up with many questions that they could answer for themselves during the exploration
of the components, e.g. which parts belong to the category of inputs and which to the
outputs. Further, integrated circuits can be addressed with physical computing, as they
are part of many (advanced) physical computing projects and may even lead to deeper
investigations and powerful ideas: bits and binaries become relevant when for instance
bit shifting operations are performed. The idea of having only two states (on and off)
to perform various actions with interactive objects is not intuitively graspable. How
can a light be dimmed, if there is only on and off? Students asked those questions in
the context of the difference between analog and digital sensors and actuators. They
learned about analog and digital data and data processing, when they converted sensor
data to meaningful information, used arithmetic and logical operations to process these
data and generated data to be understood by the actuators they controlled with their
programs. Boolean algebra and logic, propositional calculus and combinational circuits
as well as more theoretical topics like state machines were also introduced through
physical computing projects. The latter is again a powerful idea that can be addressed

248 M. Przybylla, R. Romeike

with physical computing particularly well in combining a rather abstract topic with cre-
ative activities and that also meets needs of computer science teachers. During teacher
training workshops with about one hundred teachers held in seven of Germany’s six-
teen federal states, opinions and ideas for physical computing projects were collected.
Among those was the desire to include more theoretical aspects of computer science.
Concerning finite state machines, teachers suggest to introduce students to analysis and
condition-based modeling and implementation of interactive objects as state machines.
This includes the formal representation of finite state machines, for instance with state
diagrams and flow charts. A possible example is modeling of a magically blooming
color-changing flower.

As was mentioned before, physical computing is a discipline that developed detached
from computer science. Designers and artists make use of computer science and its tools
in order to make their installations interactive. Thus, physical computing also comprises
many topics that are not relevant for computer science curricula. Activities such as bread
boarding, soldering or ‘circuit bending’ lead too far from the path for general education
computer science classes. Interestingly, older curricula contain more contents that are
not relevant for computer science education. Technical basics of electronics and circuit
design for instance are not necessary when working with tool kits that contain preassem-
bled sensing and actuating technologies (e.g. My Interactive Garden, Przybylla, 2013;
TinkerKit, Tinkerkit, 2012; Hummingbird, BirdBrain Technologies LLC, 2012). As the
number of available kits increases steadily, computer science courses can concentrate on
subject specific contents. It was therefore decided to establish only those contents, topics
and methods that best fit the overall needs by finding the common ground of physical
computing, computer science and general education.

3.3. Physical Computing and Computer Science Curricula

The ACM K-12 model curriculum (Tucker, 2003) stretches from kindergarten to twelfth
grade and defines competences to be gained at the different age levels. It was chosen as
a representative for modern computer science curricula as it is commonly known in and
accepted by the international community. In the following section a selection of those
topics are described, where physical computing makes a contribution to the theme. Top-
ics described in the previous section will not be mentioned again.

Many of the above-mentioned topics concerning algorithms, modeling and program-
ming can be subsumed under algorithmic thinking — this way underlining the powerful
ideas that can be transported with all the contents. The ACM curriculum lists a number
of concrete contents such as methods, functions, recursion, objects and classes that can
be addressed in this subject area. With physical computing, the same contents can be
learned, but in a more intense way. Teachers reported it as adding value to the lessons
when programming comes off the screen and enters the ‘real’ world, meaning that the
results are not visible virtually only, but also tangible. Additionally, physical comput-
ing can help to overcome the barriers between students who might in other settings feel
unchallenged or overwhelmed with programming in school. In the project described

Physical Computing and its Scope — Towards a Constructionist ... 249

above all students made progress on their individual levels and contributed to the team’s
interactive garden.

When particular algorithms are introduced (e.g. sorting algorithms), students can
be familiarized with concepts of correctness and efficiency or complexity. In this con-
text, the functionality of real-time systems as vital devices (e.g. pacemakers or control
systems in an airplane) can be discussed to illustrate the importance of those features.
Physical computing can serve both as a peg and as a tool for constructing real-time sys-
tems. A possible project could be the implementation of self-navigating toy pets, where
the real-time aspect is not life threatening but failure may damage the interactive object.
As microcontrollers, sensors and actuators have to be connected in physical computing
projects, students see the actual conductors and wires through which the current flows
and thus the black box ‘computing system’ is opened to some extent. In this framework
it is reasonable and even appears to be natural, to address fundamentals of the hardware
design process (designing, prototyping, testing, debugging, tools). Here, methods and
tools used in physical computing can serve as a starting point to compare them with
software engineering processes (requirements, design, teams, testing and maintenance,
documentation, software design tools such as flowcharts, pseudo code and UML) and
to discuss similarities and differences. In this context it is possible also to reflect on
the impact of technology on human culture, jobs, etc. and on limitations of computing.
Paul for instance, who built the clever letterbox, had in mind that his father had his leg
in plaster and therefore wouldn’t want to walk unnecessary ways. So he made use of
modern technology to ease his dad’s everyday life. This is a nice example for positive
influences of modern technology on people that can be discussed with students. What
other examples can they find, where technology helps people? Many other socially rel-
evant topics can be discussed with physical computing as a starting point, too, including
computers as models of intelligent behavior (e.g. robot motion) and what distinguishes
them from humans.

Apart from contents to be learned in computing education, the ACM curriculum
as well as many other curricula focuses on soft skills and methods superior to the sub-
ject that help learners to cope with the demands of our information-rich society both
in computer science professions, and life in general. Computer science specific skills
include pair programming, working in projects, thinking abstractly about information
technology or anticipating changing technologies. Physical computing can contribute
to those skills particularly well. Constructing computing systems such as interactive ob-
jects gives students the opportunity to generalize their knowledge to other systems. The
teenagers from the project group compared their own interactive objects and those of
their classmates to other systems they know, e.g. park distance control systems. Among
the more general skills there is the ability to work responsibly, cooperatively and col-
laboratively in teams. All those skills can be trained in physical computing projects such
as “My Interactive Garden” (Przybylla and Romeike, 2012), where the aim is to col-
laboratively create an exhibition of interactive objects or installations. According to the
German Informatics Society (GI), computer science is per se a subject that overlaps with
and connects to other subjects and thus, interdisciplinarity is regarded as a principle of
lesson planning (Gesellschaft fiir Informatik (GI) e.V., 2008). With physical computing,

250 M. Przybylla, R. Romeike

children can design and craft musical instruments, make arts exhibitions, build measur-
ing instruments for physical experiments or build new components for their construction
kits in electrical engineering classes. As many articles on physical computing activities
and own experiences in class and during teacher workshops show, methods of creative
thinking can be applied and are valued by the participants.

3.4. Results of the Analysis

The analysis of physical computing curricula has shown that physical computing can be
used to teach many aspects of computer science. It also adds new topics to the subject,
which contain powerful ideas of computer science. Among those topics are sensing
technologies, feedback and control mechanisms and the method of prototyping. The
analysis of computer science curricula has shown that physical computing can be used
for approaching several other topics in a creative and motivating way. The following
tables (Table 1 — Table 3) show an excerpt from the obtained results of the previously
described analyses. Contents identified as suitable for learning with physical comput-
ing are grouped by topics. The colors indicate if physical computing itself is the topic
or complements the topic (light grey), can be used as a new approach (dark grey) or as
a reference (grey).

4. Summary and Discussion

The analysis has shown that physical computing allows to address many topics of the
multifaceted scientific discipline of computer science, which includes theoretical and
technical aspects of computer science, the use of software and devices and the discussion
of influences from and on society as well as interdisciplinary work that is not to be im-
posed artificially, but innate in the topic. Further, it turned out that typical physical com-
puting activities could contribute to the subject with new contents that contain powerful
ideas of computer science. Some methods such as bread boarding or soldering need not
to be included in the curriculum, as it would lead too far away from the path. Nowadays
it is possible to avoid such activities in the classroom by using suitable construction kits.
The syllabus presented in this paper contains relevant contents for physical computing
and computer science that are based on powerful ideas of the discipline. In a next step
it will be investigated, how those powerful ideas that underlie the contents and concepts
can be taught, so that competencies to be gained in this field and competence levels de-
pending on learners’ age and grade can be defined. Until now, physical computing has
not been suitable for classroom use for many teachers. The further development of the
existing construction kit is supposed to help changing the situation. Curriculum projects
will be developed, implemented and evaluated in school, so that in the end we can pro-
vide the community with a constructionist computer science curriculum based on physi-
cal computing as well as settings, activities and examples for classroom use.

Physical Computing and its Scope — Towards a Constructionist ...

Table 1
(Embedded) Computing Systems

251

(Embedded) Computing Systems

Classification of computing systems

Embedded systems e

Control systems .

Interactive systems e
L]

Characteristics of embedded systems

Examples for embedded systems: e.g. household systems, industry, auto-
motive applications, medicine

Embedded systems as subsystems

Embedded software architecture: simple control loops, interrupt-controlled

systems

Examples and characteristics of control systems and real-time systems
Measurement, control, regulation
Computer-controlled artifacts (e.g. heat-control)

Characteristics of interactive objects/systems
Examples for interactive objects / systems, e.g. arts installations

Architecture of (embedded) computing systems

Memory

Processor .

Inputs o
L]

Outputs .
L]

Interaction]

Ubiquitous computing

Physical computing e
L[]
L]
L]
Remote presence
Remote User .
Interfaces .

Hardware Design

Sensors and actua-
tors

Design processes .

Microprocessors (compared to microcontrollers)

Input devices
GPIO: sensing technologies, e.g. light, temperature, moisture, distance,
noise

Output devices
GPIO: acting technologies, e.g. light, sound, motion

BUS
Extended IPO model
Microcontroller — organization and components

Physical interaction design
Wearable computing

Tangible computing

Methods of physical computing

Serial interface
Network interfaces

Common components, e.g.

o Switches, Buttons (digital sensors)

o Light, temperature sensors (analog sensors)
Human-machine interfaces
Usability

Iterations of design, prototyping, testing, debugging, redesign

252 M. Przybylla, R. Romeike

Table 2
Modeling and Implementing

Modeling and Implementing

Event-driven e Start-up code for continuously running (interactive) systems, set-up proce-
programming dures
o Infinite loop for interactive objects

Table 3

Data and Information

Digital Representation of Information

Data types

Analog and digital e Use of analog and digital input data

data e Pulse-width-modulation
e Analog and digital data processing
o Interpretation and conversion of analog and digital input data
e Data processing with arithmetic and logical operations
References

Banzi, M. (2011). Getting Started with Arduino (2nd Edition). O’Reilly Media / Make, Sebastopol, CA.

Banzi, M., Cuartielles, D., Igoe, T., Martion, G., Mellis, D. (2012). Arduino — Introduction.
http://arduino.cc/en/Guide/Introduction

Barragan, H. (2004). Wiring: Prototyping Physical Interaction Design. Interaction Design Institute Ivrea.

BirdBrain Technologies LLC. (2012). Hummingbird Robotics Kit.
http://www.hummingbirdkit.com

Blikstein, P. (2013). Gears of our childhood: constructionist toolkits, robotics, and physical computing, past
and future. In: Hourcade, J.P., Miller, E. A., Egeland, A. (Eds.), Proceedings of the 12th International Con-
ference on Interaction Design and Children. ACM. New York City, 173—-182.

Brennan, K., Chung, M., & Hawson, J. (2011). Creative Computing - a design-based introduction to compu-
tational thinking.
http://scratched.media.mit.edu/resources/scratch-curriculum-guide-draft

Physical Computing and its Scope — Towards a Constructionist ... 253

Carnegie Mellon Robotics Academy (2014). Introduction to Programming LEGO MINDSTORMS® EV3®
Teacher ’s Guide. http://www.education.rec.ri.cmu.edu/content/lego/ev3/files/
EV3%20teachers%$20guideWEB.pdf

Carnegie Mellon University (n.d.). Physical Computing. http://www.cmu.edu/ideate/concen-
trations-and-minors/physical-computing.html

Department for Education (2013). Computing programmes of study: key stages 1 and 2. National curriculum
in England.
https://www.gov.uk/government/uploads/system/uploads/attachment data/
file/239033/PRIMARY national curriculum - Computing.pdf

Gesellschaft fiir Informatik (GI) e.V. (2008). Grundsdtze und Standards fiir die Informatik in der Schule.
http://www.sn.schule.de/~istandard/docs/bildungsstandards_ 2008.pdf

Interactive Telecommunications Program (n.d.). /TP Physical Computing. http://itp.nyu.edu/physcomp/

O’Sullivan, D., & Igoe, T. (2004). Physical Computing: Sensing and Controlling the Physical World with
Computers. Thomson Course Technology PTR, Boston.

Papert, S. (1980). Mindstorms - Children, Computers, and Powerful Ideas. Basic Books, Inc., New York.

Papert, S., & Harel, 1. (1991). Situating Constructionism. In Papert, S., Harel, 1. (Eds.), Constructionism.
Ablex Publishing Corporation, Norwood.

Przybylla, M. (2013). My Interactive Garden. http://www.informatikdidaktik.de/MyIG

Przybylla, M., Romeike, R. (2012). My Interactive Garden — A Constructionist Approach to Creative Learning
with Interactive Installations in Computing Education. In: Kynigos, C., Clayson, J. E., Yiannoutsou, N. (Eds.),
Constructionism: Theory, Practice and Impact. Proceedings of Constructionism 2012, Athens, 395-404.

Przybylla, M., Romeike, R. (2014). Key Competences with Physical Computing. In Brinda, T, Reynolds, N,
Romeike, R. (Eds.), Proceedings of Key Competencies in Informatics and ICT 2014. Universititsverlag
Potsdam, Potsdam, 216-221.

Qiu, K., Buechley, L., Baafi, E., & Dubow, W. (2013). 4 curriculum for teaching computer science through
computational textiles. In: Hourcade, J.P., Miller, E. A., Egeland, A. (Eds.), Proceedings of the 12th Inter-
national Conference on Interaction Design and Children, ACM. New York City, 20-27.

Resnick, M. (1996). Distributed Constructionism. In: Edelson, D.C., Domesek, E.A. (Eds.), ICLS '96 Pro-
ceedings of the 1996 international conference on Learning sciences. International Society of the Learning
Sciences, 280-284.

Resnick, M. (2006). Computer as Paint Brush: Technology, Play, and the Creative Society. In: Singer, D.G.,
Golinkoff, R.M., Hirsh-Pasek, K. (Eds.), Play = Learning: How play motivates and enhances children’s
cognitive and social-emotional growth, Oxford University Press, Oxford, 192-208.

Resnick, M. (2007). Sowing the Seeds for a More Creative Society. Learning & Leading with Technology,
18-22.

Richards, M., Smith, N. (2010). Teaching UbiComp with Sense. In: Hvannberg, E, Larusdottir, M, Blandford,
A, Gulliksen, J (Eds.), Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Ex-
tending Boundaries, ACM, New York, 765-768.

Romeike, R. (2008). Kreativitdit im Informatikunterricht. Universitit Potsdam, Potsdam.

Romeike, R., & Reichert, D. (2011). PicoCrickets als Zugang zur Informatik in der Grundschule. In: Thomas,
M(Ed.), Informatik in Bildung und Beruf (Proceedings of INFOS 2011), Kéllen, Miinster, 177-186.

Royal College of Art. (n.d.). Design Interactions at the RCA.
http://www.design-interactions.rca.ac.uk

Ryan, R. M., Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions.
Contemproary Educational Psychology, 25(1), 54—67.

School of Visual Arts. (n.d.). Curriculum - MFA Program.
http://interactiondesign.sva.edu/curriculum

Siemers, C. (2012). Handbuch Embedded Systems Engineering V 0.61a.
http://www.in.tu-clausthal.de/uploads/media/Embedded Systems Engineer-
ing Handbuch V0 6la.pdf

Tinkerkit. (2012). TinkerKit!. http://www.tinkerkit.com/

Tucker, A (Ed). (2003). 4 Model Curriculum for K—12 Computer Science: Final Report of the ACM K-12 Task
Force Curriculum Committee. ACM, New York.

Wagner, O. (2005). LEGO Roboter im Informatikunterricht - Eine Untersuchung zum Einsatz des LEGO-
Mindstorms-Systems zur Steigerung des Kooperationsvermogens im Informatikunterricht eines Grund-
kurses (12. Jahrgang, 2. Lernjahr) der Otto-Nagel-Oberschule (Gymnasium). Berlin.

Weber, M. (2008). Vermittlung von informatischen Grundkonzepten der Realschulbildung anhand einer robo-
tergesteuerten Lagerverwaltung. Universitit Erlangen-Niirnberg, Erlangen.

254 M. Przybylla, R. Romeike

M. Przybylla is research associate and doctoral student at the professorship for Didac-
tics of Computer Science at the University of Potsdam, Germany. In 2012 she completed
her studies in English and Computer Science with a Master’s of Education. Her main
research interest is on physical computing in computer science education and its effects
on students.

R. Romeike is the head of the Computing Education Research Group at the
Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU), Germany.

Fizikiniai skai¢iavimai ir jy apimtis — link konstrukcionistinés
informatikos kartu su fizikiniais skai¢iavimais ugdymo programos
kiirimo

Mareen PRZYBYLLA, Ralf ROMEIKE

Fizikiniai skai¢iavimai apima interaktyviy objekty projektavima, jgyvendinimg ir jdiegima.
Jie suteikia mokiniams galimybe¢ sukurti konkre¢ius, apfiuopiamus realaus pasaulio produktus,
atsirandancius mokinio vaizduotés déka. Tai gali buti naudojama informatikos mokymui, siekiant
sudominti ir motyvuoti mokinius pasirinkti skirtingas mokomojo dalyko temas konstrukcionis-
tinése ir kiirybingose mokymosi aplinkose. Siekiant pritaikyti tokiame projekte egzistuojancias
veiklas ir pavyzdzius pamokose bei praplésti temy sritis tokiose aplinkose, buvo sukurta fizikinius
skai¢iavimus apimanti programa informatikos kursams bendrojo lavinimo mokyklose. Straipsny-
je pristatomi nagrinéti metodai ir skirtingos perspektyvos. Sukurta programa gali bti pagrindas
konstrukcionistinéms informatikos kartu su fizikiniais skai¢iavimais ugdymo programoms kurti.

