
Informatics in Education, 2014, Vol. 13, No. 2, 307–321
© 2014 Vilnius University
DOI: http://dx.doi.org/10.15388/infedu.2014.10

307

Situating Programming Abstractions  
in a Constructionist Video Game

David WEINTROP, Uri WILENSKY
Center for Connected Learning and Computer-based Modeling
Learning Sciences, Northwestern University
e-mail: dweintrop@u.northwestern.edu, uri@northwestern.edu

Received: January 2014

Abstract. Research on the effectiveness of introductory programming environments often relies 
on post-test measures and attitudinal surveys to support its claims; but such instruments lack the 
ability to identify any explanatory mechanisms that can account for the results. This paper reports 
on a study designed to address this issue. Using Noss and Hoyles’ constructs of webbing and 
situated abstractions, we analyze programming novices playing a program-to-play constructionist 
video game to identify how features of introductory programming languages, the environments 
in which they are situated, and the challenges learners work to accomplish, collectively affect 
novices’ emerging understanding of programming concepts. Our analysis shows that novices de-
velop the ability to use programming concepts by building on the suite of resources provided as 
they interact with the computational context of the learning environment. In taking this approach, 
we contribute to computer science education design literature by advancing our understanding of 
the relationship between rich, complex introductory programming environments and the learning 
experiences they promote.

Keywords: programming, computer science, constructionist video games, webbing, situated 
abstractions.

1. Introduction

With the ever-growing landscape of introductory programming environments, an im-
portant, yet unanswered (or at least not sufficiently answered), question is that of the 
relationship between a programming tool and the understandings it promotes. Does a 
student writing a program in Logo develop the same understanding of conditional logic 
as a student working in Scratch? Does learning to program with Alice, Snap!, or starting 
off with “Hello World” in Java all result in the same understanding of the programming 
concepts used? To a veteran programmer, the answer might be yes – a conditional state-
ment is a conditional statement is a conditional statement; syntax might differ, but the 
underlying concept is constant. Studies investigating the affordances of different intro-
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ductory programming tools often rely on direct comparisons between two environments; 
do students perform better on a post-test after they use environment A or environment B? 
(For example: Lewis, 2010). While much can be learned with this approach, it does not 
yield insight into the questions we pose above. By relying on post-test measures, we 
learn the outcome, but are unable to identify any explanatory mechanisms that can ac-
count for the differences. Answering these questions requires a different methodology 
and a different set of theoretical constructs. In this paper we present a study designed to 
address this issue, focusing on one specific type of introductory programming environ-
ment: program-to-play constructions video games. The goal of this study is to answer 
two, interrelated research questions: 

How are programming concepts encountered and used while playing a program-(1) 
to-play constructionist video game?
How do features of the game and the gameplay context contribute to a player’s (2) 
developing understanding of these programming concepts? 

Using Noss and Hoyles’ (1996) constructs of webbing and situated abstraction, we an-
alyze programming novices playing RoboBuilder (Weintrop and Wilensky, 2012), a pro-
gram-to-play constructionist video game of our own design, to answer these questions. 

2. Literature Review

The idea that young learners should be taught to program, and that doing so has far 
reaching benefits, originated with the Logo Project (Feurzeig et al., 1970; Papert et al., 
1979). Papert (1980) found that “when a child learns to program, the process of learn-
ing is transformed. It becomes more active and self-directed…The new knowledge is 
a source of power and is experienced as such from the moment it begins to form in 
the child’s mind” (p. 21). This view was part of a larger vision of the transformative 
potential of computers to fundamentally changing how learning takes place. diSessa 
(2000) argues that it is not just the act of programming, but also the medium, that 
promotes this new form of thinking: “Programs are not just analytic and a basis for 
reasoning. They are also synthetic. They can be run…Programming turns analysis 
into experience and allows a connection between analytic forms and their experiential 
implications” (p. 34). 

Studying the process of learning to program begins with a programming language. 
For Papert it was Logo, for diSessa it was Boxer. Logo, Boxer, and other early lan-
guages designed for novices, such as Smalltalk (Kay and Goldberg, 1977), seeded an 
ever-growing tree of low-threshold, high-ceiling languages. New languages and envi-
ronments brought with them new ideas and innovations for making programming ac-
cessible and empowering for younger learners. NetLogo (Wilensky, 1999) introduces 
learners to emergent phenomena through programming large numbers of agents, mak-
ing it possible for novice programmers to explore the dynamics of complex systems. 
Scratch (Resnick et al., 2009), using a graphical programming interface, allows users 
to construct programs with only a mouse and provides an online forum for learners to 
explore, share, and remix programs written by others. Programming tools like Tern 
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(Horn and Jacob, 2007) use physical manipulatives to make writing programs a hands-
on activity. The computer science education community has also created and studied 
many introductory programming tools (for a review, see Kelleher and Pausch, 2005). 
Across these and other introductory programming environments, a large body of lit-
erature has emerged chronicling the thinking and learning that takes place as they are 
used. Papert’s early work with Logo focused on types of mathematical thinking that 
develop in young learners through working in computational settings, arguing for pro-
moting heuristic concepts like problem simplification and debugging over mathemati-
cal formalisms and terminology (Papert, 1972). This work launched multiple avenues 
of study, including the development of mathematical meaning with Logo and other 
computational microworlds (Noss et al., 1997; Noss and Hoyles, 1996), as well as 
the growth of programming practices like debugging and other general problem solv-
ing strategies (Clements and Gullo, 1984). Low-threshold programming environments 
have also been used to study thinking and learning in other disciplines beyond math 
and computer science (Blikstein and Wilensky, 2009; Goldenberg and Feurzeig, 1987; 
Wilensky and Reisman, 2006). It is also important to mention the successes construc-
tionist programming environments have had on shifting attitudes and perception of 
programming among girls and other underrepresented populations (Bruckman et al., 
2002; Maloney et al., 2008).

3. Constructionist, Program-to-Play Video Games

To study the relationship between the understanding that develops in learners and the 
programming language, environment, and activity, we use a program-to-play, construc-
tionist video game (Weintrop et al., 2012). Constructionist video games bring central 
constructionist ideas (learner-directed exploration, personally meaningful constructions, 
emphasis on powerful ideas) to the video game design genre. Program-to-play video 
games are a specific form of constructionist video games that make the writing of pro-
grams the central activity of gameplay (Weintrop and Wilensky, 2014). We chose this 
type of environment as it provides a rich set of features for learners to leverage, includ-
ing a blocks-based programming interface, a domain-specific programming language, 
a visual execution environment, and a familiar form of digital interaction. Collectively 
these features provide a productive context for analyzing how design features of the en-
vironment affect novices’ emerging understandings of programming concepts.

RoboBuilder (Fig. 1) is a program-to-play constructionist video game that chal-
lenges players to design and implement strategies to make their on-screen robot de-
feat a series of progressively more challenging opponents in one-on-one battle. To be 
successful, players must define instructions for their robot to locate and fire at their 
opponent while avoiding incoming fire; the first robot to make its opponent lose all of 
its energy wins. RoboBuilder’s interface has two distinct components: a programming 
environment (Fig. 1b), where players define and implement their robot’s strategy; and 
an animated robot battleground (Fig. 1a), where players watch their robot compete. 
Players first interact with the programming interface to define their robot’s behaviors 
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before launching the battleground screen. To program their robot, players are provided 
with a domain-specific, blocks-based programming language that includes basic robot 
actions, such as ‘turn right’ and ‘fire!’. RoboBuilder is a component-oriented 
microworld that gives players the ability to “build and think in terms of objects that are 
close to their domain of interest” (Kynigos et al., 1997, p. 231). RoboBuilder builds on 
two open source projects: Robocode (Nelson, 2001) and OpenBlocks (Roque, 2007). 

 
a)

b)
Fig. 1. RoboBuilder’s two screens: a) the battle screen, b) the construction space.
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4. Methods

The data in this paper were collected in hour-long RoboBuilder sessions during which 
programming novices played the game in the presence of a researcher. Sessions begin 
with the researcher introducing participants to the game, which includes describing the 
game objective and features of the language. The gameplay protocol follows a three-
phase iterative cycle. First, participants are asked to verbally articulate their gameplay 
ideas and intentions. Next, participants work in the programming interface, constructing 
programs to carry out the ideas they just stated. The third phase of the protocol begins 
with the launching of a battle. As their robots compete, participants are asked to describe 
what they see their robot doing and whether or not it is behaving as expected. The end of 
the battle marks the completion of the cycle. The next iteration begins with participants 
explaining the next round of modifications or additions to their robot strategy they wish 
to carry out. This protocol is designed to elucidate players’ developing understanding of 
programming concepts over the course of the interview. Twelve subjects were recruited 
to participate in this study. Older participants were recruited from a university in a large 
American city. High school-aged participants were recruited through their affiliation 
with a community center in the same city that serves a predominantly African-American, 
low SES community. Table 1 provides basic information about each participant’s Ro-
boBuilder session(s).

5. Theoretical Framework

The analytic lens we bring to this work is built on a pair of interrelated theoretical con-
structs. In their analysis of mathematical meaning making in interactive computational 

Table 1
Information on the twelve participants included in this study

Name Grade Time Played # Robots Authored Highest 
Level

Jeff   9th grade 37:48 14 7
Benjamin 10th grade 31:15   4 2
Daniel 10th grade 44:47   8 7
Allen 11th grade 1:01:31   6 2
John 11th grade 37:27 16 2
Jane   1st year undergrad 39:32 10 1
Ruth   2nd year undergrad 47:15   7 2
Anne   3rd year undergrad 54:19 10 6
Morris   3rd year undergrad 46:03 16 7
Beth   4th year undergrad 3:47:06 46 (across 4 sessions) 7
Joseph Graduate student 45:59   9 5
Bram Graduate student 1:00:14   6 6
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environments, Noss and Hoyles (1996) developed the construct of webbing to capture 
the rich, diverse and interrelated features of constructionist environments that provide 
support to the leaner. Webbing describes “a structure that learners can draw upon and 
reconstruct for support – in ways that they choose as appropriate for their struggle to 
construct meaning” (p. 108). The construct of webbing is intended to capture the full 
network of supports provided to the learner, not just a single scaffold within the environ-
ment, allowing the designer to study the learning process as it emerges through the use 
of the features of the environment in concert, as opposed to elements used in isolation. 
Thus, researchers can remain faithful to the recognition that learning is not uniform 
across pupils, but is unique to the individual and provide a way for researchers to capture 
the nuance of the learner’s activity within a rich computational context.

The second theoretical construct we use in our work provides a way move from the 
webbing of a specific interaction to the general concepts and practices of the domain 
of interest. The construct of a situated abstraction was developed in order to “afford a 
means to describe and validate an activity from a mathematical vantage point, without 
necessarily mapping it onto standard mathematical discourse” (Hoyles and Noss, 2004, 
p. 2). In interacting with computational learning environments “learners web their own 
knowledge and understandings by actions within the microworld, and simultaneously ar-
ticulate and mesh fragments of that knowledge – abstracting within, not away from, the 
situation” (Noss et al., 1997, p. 228). Situated abstractions give us a way to both attend 
to the situated nature of the activity within the webbing of the environment, while also 
recognizing the ability of concepts to transcend contexts, and thus providing a way to 
link in situ activity with more general, abstract forms of conceptual knowledge. In bring-
ing this lens to the analysis of a RoboBuilder, we can see how learners forge connections 
with the features of the tool and the computational meaning they carry, and interpret and 
ascribe meaning to this process.

6. Programming Abstractions in RoboBuilder

In this section, we present our analysis of the RoboBuilder sessions. We coded the ses-
sions to see if and how participants encountered and used four specific programming 
concepts: object state, conditional logic, iterative logic, and flow of control. For each 
concept, we provide a brief example of a learner encountering it during gameplay, then 
report on its frequency across the full set of participants. Building on the constructs of 
webbing and situated abstraction, we link the use of these concepts back to RoboBuild-
er’s interface and the gameplay activity as part of the discussion for each concept. We 
coded for the use of the concepts throughout the RoboBuilder session, including the 
planning, construction and evaluation phases of the interview protocol. We begin this 
section with a vignette to provide a sense of how components of RoboBuilder’s webbing 
were appropriated to situate one learner’s emerging understanding, then continue with 
our analysis of the four programming concepts.

The following interaction occurred early in Beth’s interview, during her second battle 
against the level one opponent whose strategy is to remain motionless until its energy 
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drops below 50, at which point it begins to move randomly. After seeing her opponent 
come to life during the first battle, Beth asks:

Beth: Do you know when this mysterious other thing is going to happen?
Interviewer: It happens at 50.
Beth: It happens when it reaches 50? OK, so that robot must have 

something built into it when it reaches 50. Oh! There we go, so 
that’s what the, that’s what the other boxes are for, so like if you 
reach a certain health level you can change the actions, oh, ok. 
I didn’t understand that.

In this exchange, we can see the invocation of two programming concepts to explain 
in-game behavior, and start to get a sense for how the webbing of the game helped situ-
ate their use. The two programming concepts Beth employs in this example are object 
state and conditional logic. Through her statement: “If you reach a certain health level” 
we can see both of the two concepts invoked. First is the recognition that robots have 
a health level, which is a value that serves to describe a characteristic of the robot (i.e. 
defines its state). Second, in starting her statement with “if” and then describing the con-
sequences for a given condition being reached (attaining a certain health level), she uses 
conditional logic to explain how to create the observed behavior. Interestingly, Beth’s 
explanation of how to use the programming blocks to create this behavior matches the 
actual program controlling her opponent (Fig. 2).

A number of features of RoboBuilder contributed to Beth, a programming novice, 
being able to correctly employ these two programming concepts. First, the displaying 
of the available blocks in the programming interface provided a key resource in her us-
ing these programming constructs; she even refers to the blocks (what she refers to as 
“boxes”) in her explanation. Second, Beth is describing the behavior of her opponent, 
not her own robot. Her being able to draw on opponent behaviors as a way to bootstrap 
her own understanding is a design strategy we have analyzed elsewhere (Weintrop and 
Wilensky, 2013) and constitutes another component of the webbing in which the con-
cepts of conditional logic and object state were situated. A third critical aspect of the 
webbing Beth uses in this episode is the visual enactment of the battle. While Beth did 
have all of the blocks explained to her during her introduction to the game, from this 
quote, it is clear that the first, out-of-context, explanation of the blocks was not suffi-

Fig. 2. The blocks that control the level-one opponent that Beth correctly articulated. 
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cient for her to understand their meaning. Her saying “so that’s what the other boxes are 
for” followed by “I didn’t understand that” highlights the difference between her being 
told what blocks do versus seeing their behaviors enacted during gameplay. This quote 
suggests that while she initially did not understand the utility of some of the blocks, 
through seeing them situated within the webbing of the game, their meaning emerged. 
Put another way, through the network of resources provided by RoboBuilder (its web-
bing), Beth was able to use the concepts of state and conditional logic to interpret game 
outcomes (i.e. situate these two programming abstractions). 

6.1. Programming Concept: Object State

Object state is the knowledge that computational entities contain data in the form of 
property-value pairs that define the object at any given moment in time. In RoboBuilder, 
there are two types of object state we coded for: internal robot state, which pertains to 
information about the properties of the robot, such as its energy, heading, or speed, and 
battle-state, which captures the state of a robot during battle, such as being hit or seeing 
an opponent. The event blocks of RoboBuilder’s language reflect the battle-states the ro-
bot can be in. The programming blocks, visual battleground, and larger game objectives 
and interview activity all contribute to the webbing in which the participants situated 
their developing understanding of object state in their programs.

In the vignette above, we saw Beth encounter object state as she thought through 
how her opponent used its energy level, a characteristic of its internal state. A second 
example of a novice attending to state can be seen early in Ruth’s RoboBuilder session. 
In explaining a strategy for defeating her level one opponent she says: “In level one, the 
robot doesn’t move much, so if you’re already facing the robot and hitting it, then there 
is not point in moving more.” By saying: “you’re already facing the robot”, she invokes 
one form of object state, describing her robot in terms of what direction it is facing. She 
continues by saying “and hitting it”, describing the second type of object state present 
in RoboBuilder, that of her robot having successfully hit its opponent. Here, Ruth, like 
Beth, draws on the visual enactment of the battle, RoboBuilder’s language, and the 
overarching game objective as part of the webbing in which to situate the concept of 
object state.

6.2. Programming Concept: Conditional Logic

Conditional logic builds on the previous concept to allow a player to introduce differ-
ential behaviors based on the state of the robot or the state of the game. Above, we saw 
Beth encounter conditional logic while trying to make sense of the level one opponent’s 
behavior, which moved only if its energy was below 50. In coding for conditional logic, 
we looked for players proposing different outcomes based on state or explicitly referenc-
ing or using RoboBuilder’s conditional logic blocks. Conditional logic was also used by 
players when thinking through strategies, as we can see in this quote from Allen: 
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While I’m shooting at the other robot, if he misses, I’m pretty sure 
he’ll have to still shoot because I’m pretty sure the point of the game is 
to hit the other robot… If [my robot] does get hit, I guess he’s probably 
too close to the other robot, so I might have to tell him move back… 
If he has higher energy than the other robot, let’s say, he’s probably 
50 higher, I’d probably just tell him to get closer to the robot and just 
start shooting ‘cause he’s got energy to spare.

Here we see Allen laying out his robot’s strategy as a series of conditional state-
ments. In some cases, he depends on the battle-state to dictate his robot’s behavior (“if he 
misses…”); in other cases Allen uses robot-state to inform his robot’s behavior (“if he has 
higher energy…”). For Allen, the video game context served as an important resource for 
him to situate his use of conditional logic – by drawing on the webbing of the game (the 
game objects, the nature of gameplay, the in-game objects themselves) – he was able to 
articulate a potential robot strategy built around the concept of conditional logic. 

6.3. Programming Concept: Iterative Logic

Iterative logic can be used to repeat commands either a fixed number of times or until 
a specified condition is met. In our analysis, this code was applied when participants 
referred to an iterative aspect of the game (such as an in-game event repeating) or when 
either of RoboBuilder’s two iterative blocks (while and repeat) were used or dis-
cussed. We can see how the webbing of RoboBuilder supported the use of iterative logic 
and the situated nature of the in players in-the-moment understanding of it in how Joseph 
resolved the problem of his robot getting stuck against the wall of the battleground. In-
stead of constructing a sequence of instructions that would run once to solve the problem, 
Joseph composed a strategy that relied on iteratively running as many times as necessary. 
When his robot hit a wall, he gave it the instructions: back 10 then turn right 
30 then forward 50. This caused his robot to hit the wall repeatedly, turning a little 
bit each time. Upon completion of the implementation of his solution, Joseph explained: 
“this way [my robot will] back up and kind of parallel park away…till he’s not at the 
wall anymore.” Here, Joseph devised a strategy that relied on iteratively running as many 
times as necessary to move his robot away from the wall. In comparing the maneuvering 
of his robot to the act of parking, he includes parallels between in-game and out-of-game 
events as part of the webbing he uses to build his understanding of the concept. 

6.4. Programming Concept: Flow of Control

Flow of control captures the knowledge that programs are executed sequentially and 
serially. In analyzing the interviews, the flow of control code was applied when players 
discussed the execution order of blocks either within an event or across game events. In 
some cases, the concept of flow of control was confronted directly, including instances 
of participants systematically testing out the order of execution of the program by chang-
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ing the order of blocks within their program then running it to see how the behavior 
changed. In other cases, players encountered flow of control by trying to understand how 
and when different events ran. For example, when Bram was trying to reason through 
his implementation of When I see a robot, he slowed down the execution of his 
program, focusing specifically on how his robot behaved after first spotting its opponent. 
“So when [the When I see a Robot event] finishes, it moves up and does [the Run 
event].” Here we see Bram make a statement about how flow of control moves from one 
event to another, relying on the ability to slow down the speed at which his program 
executes to help him figure it out. Like with the other programming concepts, the visual 
execution, iterative nature of gameplay, and the ability to control the speed of program 
execution all contributed to the webbing in which he developed his understanding of the 
concept of flow of control. 

6.5. Programming Concepts – Frequency Across Participants

Table 2 shows the results of our coding the full set of interviews. Three things about 
this table are noteworthy. First, every participant encountered at least one program-
ming concept during their session, with most participants encountering a majority of 
the concepts. Object state was observed in all 12 of the participants’ interviews, while 
flow of control and conditional logic were both used at least once by a majority of 
participants. Iterative logic was the least frequently encountered concept of the four 
we coded for, but was still seen in half of the sessions. Participants encountered the 
coded-for programming concepts an average of 19 times during their hour-long Ro-
boBuilder sessions. 

Table 2
Frequency of each programming concept across the full set of participants

Participant State Conditional 
logic

Iterative 
logic

Flow of 
control

Total

Jeff   10   0   0   0   10
Benjamin     9   0   0   0     9
Daniel   10   0   1   4   15
John     6   0   0   1     7
Allen   12   7   0   7   26
Jane   17   2   0   1   20
Ruth   10   7   1   2   20
Anne   15   3   1   3   22
Morris   17   4   1   3   25
Beth   12, 15, 14, 23   3, 1, 6, 2   4, 2, 1, 1   2, 4, 2, 1   21, 22, 23, 27
Bram   10   0   0   5   15
Joseph   10   3   3   7   23

Mean   12.7   2.5   1   2.8   19

Total 190 38 15 42 285
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A second item of interest is the relatively high frequency of players employing the 
concept of object state. This can be attributed to the nature of the in-game objective and 
the accessibility of the concept. The central activity of controlling a robot, paired with 
the visual execution of the battle and the design of the protocol, facilitated players at-
tending to the current state of the robot in terms of its position, energy, and the events 
that did (or could) occur during battle. Reference to any of these constituted an invoca-
tion of the concept of state. Additionally, when players were asked to describe what 
they were observing while watching their robot compete, comments frequently referred 
to different components of the game-state or robot-state. We interpret this to mean that 
object state was more accessible and central to the gameplay activity than the other con-
cepts and see it as evidence for how the design of a the environment and the webbing it 
provides can foreground certain concepts over others. 

Finally, these data show that as participants advanced in their schooling, the frequen-
cy of use of the concepts increased. Pre-university aged participants (rows 1–5) used an 
average of 13.4 concepts during their RoboBuilder session, while university aged par-
ticipants (rows 6–12) used an average of just over 21 concepts. This seemed especially 
true for the iterative logic concept as only one of the pre-university participants used it, 
while all but two of the older participants did. While these data do suggest a develop-
mental trend for the use of programming concepts in a program-to-play game, as this 
was not the focus of the study, we hesitate to make any strong claims of a developmental 
nature and instead note it as a possible avenue for future research.

7. Discussion

Programming concepts are often taught removed from a meaningful, authentic contexts, 
resulting in the observation that students know “the syntax and semantics of individual 
statements, but they do not know how to combine these features into valid programs” 
(Winslow, 1996, p. 17). Research in the learning sciences shows that creating a meaning-
ful context is important for learning (National Research Council., 2000), a finding rep-
licated in the CS education literature (Cooper and Cunningham, 2010; Guzdial, 2010). 
In our constructionist, program-to-play game, learners encounter programming concepts 
situated within a context that provides a rich array of resources upon which learners can 
interpret and employ them. The language primitives developed meaning for the players 
through the iterative construction process central to gameplay. Providing such webbed 
contexts aid in the meaning-making process, as “these meanings become reshaped as 
learners exploit the available tools to move the focus of their attention onto new objects 
and relationships” (Noss and Hoyles, 1996, p. 122). By having players express their 
ideas in the computational medium and then witness their expressed ideas enacted, the 
game context provides an opportunity for learners to interact with the programming con-
cepts and develop an understanding of the computational behavior they embody. This 
promotes understandings of programming concepts that are built upon the webbing of 
the learning context, situated within the game play experience, and consistent with the 
abstract, transferable version that educators seek to teach.
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In this study we used a video game context to introduce learners to programming 
concepts and study how the webbing it provided shaped the experience the learners had. 
There are a number of features of the game context that make it an effective medium for 
such a task including the expectation of challenges and early failures, a progression from 
easy to more difficult objectives, and the cultural syntonicity between programming and 
the computational nature of the video game medium. The rich, dynamic interactions 
of video games provide an array of potential scaffolds that collectively can serve as an 
effective webbing for situating programming abstractions that can be leveraged by a di-
verse range of learners based on their specific disposition, prior knowledge, and general 
approach to gameplay. It is important to note that using video games as a medium for 
introducing programming concepts to learners does have its drawbacks. For example, as 
most learners are familiar with video games, they come with expectations about video 
games that may not be desirable. As one participant put it: “[In RoboBuilder], you actu-
ally have to think, but like with other games you just sit there with the remote control and 
just play or whatever.” The statement that most games do not require thought is not an 
ideal mindset for learners to have going into an educational experience. A second poten-
tial drawback for the game context is from potential repercussions if the game does not 
conform to players’ expectations. One high school aged participant in our study decided 
to end his RoboBuilder session early, explaining that he was not a “computer gamer” 
and that he was more of a “systems person” (i.e. Play Station or Xbox). While this only 
happened once, it is important to be aware of the various ways learners might interpret 
and respond to the designed environment.

8. Conclusion

In this paper we showed how features of an introductory programming environment’s 
language, design, and activity could inform and support how novices encounter and use 
programming concepts. Using a program-to-play constructionist video game, we ana-
lyzed when and how 12 programming novices encountered and used object state, con-
ditional logic, iterative logic, and flow of control in order to accomplish in-game goals. 
Using Noss and Hoyles’ (1996) constructs of webbing and situated abstraction, we iden-
tified how specific components of the environment supported the use of programming 
concepts and tied the meaning making and abstraction processes to specific instances of 
gameplay. In taking this approach, we argue for the importance of evaluating an environ-
ment’s full set of design features, along with the programing activity learners engage in, 
and the prior knowledge they bring to the experience, when studying novices learning 
to program, as they collectively contribute to the webbing within which learning occurs. 
This stands in contrast to approaches that rely solely on post-test comparisons as the pri-
mary analytic tool for such research. In bringing this lens to introductory programming 
experiences, we showed in more detail how learners experience programming concepts 
in a way that post-test analyses cannot. As the importance of programming grows, the 
question of how best to introduce novices to these concepts becomes more important. 
Building on work from the constructionist tradition, we showed how a detailed investi-
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gation of a single environment can advance our understanding of the way learners draw 
on the environment to make sense of these ideas in a way that complements the post 
test comparison approach. Combined, these methodologies paint a clearer picture and 
provide insights into designing new introductory programming tools to teach the next 
generation of programmers.
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Programavimo abstrakcijų išdėstymas kontrukcionistiniame  
vaizdo žaidime
David WEINTROP, Uri WILENSKY

Mokymosi aplinkų, skirtų programavimo pradmenims mokytis, efektyvumo tyrimai dažnai 
priklauso nuo galutinio testo vertinimo rezultatų ir požiūrių apklausų. Tačiau pastarieji būdai ne-
tinkami gaunamiems rezultatams paaiškinti. Straipsnyje pristatomas šioje srityje atliktas tyrimas. 
Naudojant Noss ir Hoyles’ susietumo konstruktus ir abstrakcijų išdėstymą buvo analizuotas pra-
dedančiųjų mokytis programavimo konstrukcionistinis vaizdo žaidimas, kuriuo buvo siekiama 
nustatyti, kaip įvadinių programavimo kalbų aspektai, aplinkų, kuriose žaidžiama, iššūkiai, su ku-
riais susiduria mokiniai, daro įtaką programavimo sąvokų supratimui. Analizė parodė, kad prade-
dantieji geba naudoti programavimo sąvokas, veikdami skaičiuojamajame kontekste su pateiktais 
ištekliais. Atlikti tyrimai papildo informatikos mokslo projektavimo literatūrą, atskleisdami ryšį 
tarp praturtintų, kompleksinių programavimo aplinkų ir mokymosi patirčių, kurias jos suteikia.




