
Informatics in Education, 2014, Vol. 13, No. 1, 87–119
© 2014 Vilnius University

87

A Survey on Teaching and Learning
Recursive Programming

Christian RINDERKNECHT
Department of Programming Languages and Compilers, Eötvös Loránd University
Budapest, Hungary
E-mail: rinderkn@caesar.elte.hu

Received: July 2013

Abstract. We survey the literature about the teaching and learning of recursive programming.
After a short history of the advent of recursion in programming languages and its adoption by
programmers, we present curricular approaches to recursion, including a review of textbooks and
some programming methodology, as well as the functional and imperative paradigms and the
distinction between control flow vs. data flow. We follow the researchers in stating the problem
with base cases, noting the similarity with induction in mathematics, making concrete analogies
for recursion, using games, visualizations, animations, multimedia environments, intelligent tutor-
ing systems and visual programming. We cover the usage in schools of the Logo programming
language and the associated theoretical didactics, including a brief overview of the constructivist
and constructionist theories of learning; we also sketch the learners’ mental models which have
been identified so far, and non-classical remedial strategies, such as kinesthesis and syntonicity.
We append an extensive and carefully collated bibliography, which we hope will facilitate new
research.

Key words: computer science education, didactics of programming, recursion, tail recursion, em-
bedded recursion, iteration, loop, mental models.

Foreword

In this article, we survey how practitioners and educators have been teaching recursion,
both as a concept and a programming technique, and how pupils have been learning it.
After a brief historical account, we opt for a thematic presentation with cross-references,
and we append an extensive bibliography which was very carefully collated. The bibli-
ography is the foundation of our contribution in the sense that we started from it, instead
of gathering it in support of our own ideas, as is usual in research papers.

In writing this survey, we committed ourself to several guidelines which the reader is
advised to keep in mind while reading.

We restricted ourself exclusively to the published literature on teaching and learn-1.
ing recursive programming, not computer programming in general. While it may

C. Rinderknecht88

be argued that, for example, articles and books about functional programming
almost constantly make use of recursion, we preferred to focus on the papers pre-
senting didactical issues explicitly and exclusively related to recursion.
We did not review the emergence of the concept of recursion from its mathemati-2.
cal roots, and we paint a historical account with our fingers, just enough to address
the main issues of this survey with a minimal background information.
We did not want to mix our personal opinion and assessment of the literature with 3.
its description, because we wanted this article to be in effect a thematic index to
the literature, even though it is not possible to cite all references in the text, for
room’s sake. The only places where we explicitly express our own ideas are in our
own publications, in the definitions found in the introduction (in the absence of
bibliographic reference) and in the conclusion.
We did not cover topics like the teaching of recursion and co-recursion in the con-4.
text of lazy evaluation, or programming languages based on process algebras or
dataflow, because they have not been addressed specifically in didactics publica-
tions, perhaps because they are advanced topics usually best suited for postgradu-
ate students, who are expected to master recursion, and most publications deal
with undergraduates or younger learners.
Despite our best efforts in structuring the ideas found in the literature, the follow-5.
ing presentation contains some measure of repetition because papers often cover
mutually related topics, so a printed survey cannot capture exactly what is actually
a semantic graph, and such a graph would better support a meta-analysis of the
literature (where cross-referencing, publication timelines, experimental protocols
and statistics would be in scope) rather than a survey.

Introduction

In abstract terms, a definition is recursive if it is self-referential. For instance, in pro-
gramming languages, function definitions may be recursive, and type definitions as well.
Give’on (1990) provided an insightful discussion of the didactical issues involved in the
different meanings ascribed to the word, which appeared first in print by Robert Boyle
in 1660 (New Experiments Physico-Mechanicall, chap. XXVI, p. 203) to qualify the
movement of a moving pendulum, which returns or “runs back”. (Beware the incorrect
and ominous “to recurse”.)

A short history. Formal definitions based on recursion played an important role in the
foundation of arithmetic (Peano, 1976) and constructive mathematics (Skolem, 1976,
Robinson, 1947, 1948), as well as in the nascent theories of computability (Soare, 1996,
Oudheusden, 2009, Daylight, 2010, Lobina Bona, 2012), with the caveat that recursion
theory is only named so for historical reasons. The first computers were programmed in
assembly languages and machine codes (Knuth, 1996), but the first step towards recur-
sion is the advent of labelled subroutines and hardware stacks, by the end of the 1950s.
BASIC epitomises an early attempt at lifting these features into a language more abstract
than assembly: recursion is simulated by explicitly pushing (GOSUB) program pointers

A Survey on Teaching and Learning Recursive Programming 89

(line numbers) on the (implicit) control stack, and by popping (RETURN) them. Accord-
ing to the definition above, this is not recursion, which is to be understood as being
purely syntactic (a function definition), not semantic (the evaluation of an expression).
Moreover, the lack of local scoping precludes passing parameters recursively. Neverthe-
less, “recursion” has been taught with BASIC by Daykin (1974).

With even more abstract programming languages, fully-fledged recursion became
a design option, first advocated in print by Dijkstra (1960) and McCarthy (1960), and
implemented in LISP, ALGOL, PL/I and Logo (Martin, 1985, Lavallade, 1985), with
the notable exceptions of Fortran and COBOL. Formal logic was then used to ascribe
meanings to programs, some semantics relying on recursion, like rewrite systems, some
others not, like set theory or λ-calculus (where recursion is simulated with fixed-point
combinators). Even though the opinion of Dijkstra (1974) (1975) varied, recursion
proved a powerful means for expressing algorithms (Dijkstra, 1999) (Reingold, 2012),
especially on recursive data structures like lists, i.e., stacks, and trees. With the legacy
of LISP and ALGOL, together with the rise and spread of personal computers, recursion
became a common feature of modern programming languages, and arguably an essential
one (Papert, 1980, Ford, 1982, Astrachan, 1994).

1. Recursion, Iteration and Loops

Recursion is often not clearly understood, as demonstrated by the frequent heated or
misguided discussions on internet forums, in particular about the optimisation of tail
calls. Moreover, some researchers implicitly equate loop and iteration, use the expres-
sion “iterative loop”, or call recursion a process implemented by means of a control
stack, whilst others use a syntactic criterion.We must define recursion in order to relate
it to other concepts, like loops, iteration, tail recursion, embedded recursion, structural
recursion etc.

Definitions. Give’on (1990) remarked: “the concept of recursion is being vaguely and
inconsistently constructed from some syntactical properties of the program, from its as-
sociated semantics and from features borrowed from models of execution of programs”.
Indeed, broadly speaking, there are two angles to approach the question: the static (syn-
tactic) approach and the dynamic approach to recursion. Sometimes the dichotomy is put
in terms of programs (structured texts or abstract syntax trees) versus processes (autono-
mous agents or stateful actors). In fact, to address the vast literature about the teaching
and learning of recursion, it is essential to understand both views and their relationship.

In the static comprehension, recursion is restricted to the general definition we gave
at the start of this introduction: the occurrence of the symbol being defined inside its
definition (what is called impredicativity in logic). Implicitly, this means of course that
it must be clear what the denotation of the occurring symbol is, in order to determine
whether it is an instance of the definition. For example, in the language OCaml, the func-
tion definition

let rec f x = (fun _ -> x) f

C. Rinderknecht90

is recursive because the name f in the right-hand side refers to the f in the left-hand
side. Note that there is no call to f in the definition of f, so the concept of recursive
call is actually irrelevant: recursion in this context is a property of definitions based on
lexical scoping rules, not of the objects potentially computed (values), nor the way they
are computed (semantics). In particular, the recursive definition of a function does not
necessarily entails that it is total, hence terminates for all inputs. (A type system may
enforce that property, as in Coq or Agda.) Sometimes, an examination of the program
cannot determine whether the occurrence of a symbol refers to the definition at hand. For
instance, let us consider the following fragment of Java:

public class T { public void g(T t) { ... t.g(t); ... } }

The occurrence of g in the expression t.g(t) does not necessarily refers to the cur-
rent definition of the method g, because that method may be overridden in subclasses.
Therefore, here, we cannot conclude that g is recursive according to the static criterion.
(It can be argued, though, that the class T is recursive because its definition includes the
declaration (type) of its method g, where T occurs – Interfaces perhaps illustrate this
better.)

The dynamic comprehension of recursive functions can be expressed abstractly as
a property about dynamic call graphs: recursion is a reachable cycle, which means, in
operational terms, that the control flow of calls returns to a vertex (a function) which
was previously called. Here, the notion of recursive definition is not central, and it makes
sense to speak of recursive call (a back edge closing a path). Another, less general, ap-
proach to a dynamic definition of recursion relies on a particular execution model, often
based on stack frames allocated to function calls and their lexical context. Anyway, as a
property about the control flow, recursion in that sense becomes undecidable in general
for Turing-complete languages.

It should be noted that the static and dynamic definitions of recursion may overlap,
but are different in general, that is, if a function is recursive according to the syntactic
criterion, it may not be recursive according to the dynamic criterion (as the above OCaml
function f illustrates), and vice versa. Consider the following OCaml program imple-
menting the factorial function:

let pre self n = if n = 0 then 1 else n * self(n-1);;
val pre : (int -> int) -> int -> int = <fun>
let rec fact n = pre fact n;;
val fact : int -> int = <fun>
fact 5;;

- : int = 120

The syntactic criterion decides that pre is not recursive and fact is; the dynamic
criterion sees these two functions as mutually recursive, that is, the control flow goes
from one to the other, and vice versa. Furthermore, there are different techniques to
achieve dynamic recursion without static recursion at all. For example, using fixed-point
combinators in OCaml with the command-line option –rectypes:

A Survey on Teaching and Learning Recursive Programming 91

let pre self n = if n = 0 then 1 else n * self(n-1);;
val pre : (int -> int) -> int -> int = <fun>
let y f = (fun x a -> f (x x) a) (fun x a -> f (x x) a);;
val y : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>
let fact = y pre;;
val fact : int -> int = <fun>
fact 5;;
- : int = 120

Here, neither the higher-order function y (called the call-by-value Y combinator),
nor the function pre are statically recursive (as the absence of the keyword rec shows
well), but they are mutually recursive in the dynamic sense. (The rationale behind the
definition of y is obscure, but relies on the fact that (y f) x yields the computation of
(f(y f)) x, showing that y f is the fixed point of f.) It is even possible to define
the factorial function without recursion, loops or jumps (goto) in C, but the program is
cryptic:

#include<stdio.h>
#include<stdlib.h>

typedef int (*fp)();

int fact(fp f, int n) {
return n? n * ((int (*)(fp,int))f)(f,n-1) : 1; }

int read(int dec, char arg[]) {
return (’0’ <= *arg && *arg <= ’9’)?
read(10*dec+(*arg - ’0’),arg+1) : dec; }

int main(int argc, char** argv) {
if (argc == 2) printf(“%u\n”,fact(&fact,read(0,argv[1])));
else printf(“Only one integer allowed.\n”);
return 0; }

(See Goldberg and Wiener (2009) for a practical use of such a simulated recursion
in Erlang.) References can also be used to define the factorial function without static
recursion, with a technique called Landin’s knot:

let g = ref (fun n -> 42);;
val g : (’_a -> int) ref = {contents = <fun>}
let f n = if n = 0 then 1 else n * !g(n-1);;
val f : int -> int = <fun>
let fact = g := f; fun n -> !g(n);;
val fact : int -> int = <fun>
fact 5;;
- : int = 120

C. Rinderknecht92

Here, none of the definitions are statically recursive, although f is dynamically re-
cursive.

Finally, it is perhaps worth insisting on the case where there are more than one
definition, like  () :=  ( – 1) and  () :=  ( + 1  ( – 1)). Neither defini-
tion is statically recursive, although they are mutually recursive according to the dy-
namic interpretation. Furthermore, it is clear that these definitions are equivalent to
 () :=  (  ( – 2)), which is statically recursive. This shows that the concept of
mutual recursion is dynamic, but the static criterion could be extended to apply transi-
tively to the static call graph, which is an over-approximation of the dynamic call graph,
so we can speak of mutual recursion in a static sense as well, but keeping in mind that
there can be mutual recursion statically when there is none dynamically.

Tail recursion, iteration and loops. The concept of tail recursion is difficult to appre-
hend because it is built upon both the dynamic call graph and the data flow. We have
already seen that recursion can be defined as a cycle in the dynamic call graph. Here,
we define the dataflow graph as the dynamic call graph with an additional kind of edges
oriented according to the direction where the data flows (it is a multigraph): if a caller
passes arguments to the callee, there is a data edge doubling the control edge; if the value
of a function call is needed to further compute an expression or complete an instruction,
there is a data edge from the callee to the caller, that is, a backward data edge with respect
to the control edge. Since, in the absence of run-time errors, the result of a call is needed,
at the very least, to stand for the result of the caller itself, there is always a back edge.
Therefore, we could make those edges implicit and only retain them when the value of
the call is needed in a strictly embedding expression, not just to be returned in turn. Tail
recursion is then a cycle along the control edges, which is not a retrograde cycle following
the data edges. In other words, the data flows solely in the same direction as the control
flows. (Note that, in general, there may be no data flow between two calls.)

For instance, the value of the recursive call in  ( ) :=  (  ()) is the value of
 ( ) being defined, so the call is tail recursive. On the other hand, the value of the
call  ( – 1) in  () :=  £  ( – 1) is not the value of the call  () being defined
because a multiplication by  is pending, so it is not tail recursive. The same holds for
 () :=  (  ( – 1)). Note that, within the dynamic interpretation of recursion, the
concept of tail recursion applies to function calls, not to function definitions as a whole,
so it is technically incorrect to say that a function definition is tail recursive.

Within the static understanding of recursion, it is not possible to define tail recursion
in general because only definitions may be recursive and only calls may be in tail posi-
tion. The latter refers to a syntactic criterion which implies that the value of a call is only
used to become the value of the current function being called. In practice, however, it
is possible to speak of a tail recursive call when the static and dynamic interpretations
agree, that is, when a definition includes non-ambiguously a call to the function defined
(a special case of static recursion) and that call is in tail position. Nevertheless, since
the very reason to distinguish tail recursive calls is that they can often be compiled as
efficiently as loops are (a technique known as tail call optimisation), the interaction
between the control flow and the data flow must be made explicit anyway, even within
a static framework, and this proves challenging to students and professors alike. Even

A Survey on Teaching and Learning Recursive Programming 93

more puzzling is the fact that the optimisation applies to non-recursive calls as well, as
long as they are in tail position.

When a recursive call is not tail recursive, it is sometimes called an instance of em-
bedded recursion. In theory, it is always possible to rewrite any embedded recursion into
tail recursion, but the result can be rather hard to understand, hence difficult to design
directly. Moreover, in programming languages featuring conditional loops (while), re-
cursion can be avoided in theory, but, in practice, many algorithms are expressed more
compactly or more legibly if recursive. A loop is a segment of code syntactically distin-
guished and whose evaluation is repeated until a condition on the state of the memory is
met. The syntactic condition, e.g., a keyword and markers for a block, is meant to dif-
ferentiate loops from source code whose control flow relies on jumps (goto) and could
actually be an unstructured implementation of loops (using backward jumps), but are not
loops. Iteration is none other than the concept of repetition applied to a piece of source
code, therefore, from a theoretical standpoint, it should include recursion and loops, but,
in practice, iteration is often used as a synonym for the execution of a loop in an im-
perative language (looping); in a purely functional language, iteration is tail recursion.
Conditional loops (while) and recursion have the same expressive power, so using one
form or the other is a matter of style as long as side-effects are allowed, because loops
require a model of computation where data is mutable.

As we mentioned earlier, some researchers prefer to define recursion not on pro-
grams, but on processes, that is, on the dynamic interpretation of programs. For in-
stance, Kahney (1983) defines recursion as a process “that is capable of triggering new
instantiations of itself, with control passing forward to successive instantiations and
back from terminated ones.” Of course, one data structure suitable for implementing
this mechanism is the control stack, which we already mentioned about “recursion in
BASIC” (Daykin, 1974). It is perhaps interesting to notice the use of the “forward” and
“backward” terminology about the control flow on the call graph, although that graph is
oriented from callers to callees and there are no back edges because these would not de-
note calls but returns. (Our own definition of dynamic recursion is a cycle in the dynamic
call graph, where “backward” qualifies the data flow superimposed on the call graph.)
We will see in a forthcoming section that this operational interpretation of recursion
can be suitably exploited by kinesthetic teaching. The sections on analogies and mental
models also revisit this choice. Finally, when contrasting the static (syntactic) and dy-
namic (control stack) definitions, it is worth keeping in mind that it is possible to com-
pile recursive definitions of functions in such a way that the size of the control stack is
statically bounded; in other words, recursion can always be transformed into iteration.

Teaching. Clearly, recursion and loops are not mutually exclusive and may serve the
same purpose, which often bewilders the beginner. Consequently, a simple attempt at a
remedy consists in clearly separating the different concepts at stake in the evaluation of
a program (Velázquez-Iturbide, 2000), so that side-effects, for instance, do not get in the
way of learning recursion declaratively. To teach the difference between iteration and
embedded recursion, some researchers have proposed to teach how to translate an embed-
ded recursive definition into an iteration, while remaining in the same programming lan-
guage (Augenstein and Tenenbaum, 1976, Rubio-Sánchez and Velázquez-Iturbide, 2009,

C. Rinderknecht94

Rubio-Sánchez, 2010, Rinderknecht, 2012). Foltynowicz (2007) went even further by
deriving loops from embedded recursion, and vice versa, which is of great theoretical and
practical interest, in particular for understanding compilers and interpreters. By exhibit-
ing a systematic way to move back and forth from recursion to loops, while maintaining
the meaning invariant, these didactic approaches aim at demystifying recursion without
resorting to a low-level view of evaluation with the control stack.

Finite iteration is unidirectional in the sense that the control flow does not return to
a previous program location where the environment, i.e., the bindings of the variables
to their values, is the same. Embedded recursion is often called bidirectional when it
is based on the strict interpretation of the composition of functions, as opposed to a
non-strict semantics, like lazy evaluation, which is perhaps better explained by graph
rewriting. Consider for instance  ( ()), where  is a value. First, the value of  () is
computed (control and data flow forward), that value is bound to an implicit variable  
(control and data flow back) and then the call  () is evaluated (control and data flow
forward).

Finally, let us take note of a radical and contrarian view: to avoid recursion as much
as possible (Anonymous, 1977, Buneman and Levy, 1980). For instance, Harvey (1992)
advocates the use of a functional style where recursion is hidden inside higher-order
functions like maps and folds. This is indeed the approach often taken when teaching
purely functional programming languages, especially those with a non-strict semantics
like Miranda or Haskell.

2. Functional Programming

Segal (1994) notes that, in the context of the functional programming language Miran-
da, “by using the library of functions as a toolbox, recursion, the underlying structure
of many of the functions and the only repetitive construct provided by the language,
can remain largely hidden.” Er (1984) argued that recursion is made difficult by block-
structured programming languages, which suggests that one way of encouraging the use
of desirable constructs, like recursion, would be to employ or develop domain-specific
languages (Sinha and Vessey, 1992); cf. Brooks et al. (1992). It would then make sense
to teach recursion with functional languages, because these feature prominently math-
ematical functions and immutable data, forcing the programmer to think recursively
(Henderson and Romero, 1989, Howland, 1998).

Because it is possible, for the purpose of teaching, to define a semantics for function-
al languages based on term or graph rewriting, Velázquez-Iturbide (1999), Pareja-Flores
et al. (2007) and Rinderknecht (2012) can ask learners to trace by hand the evaluation
of their small programs. Segal (1994) remarks that “we would argue [...] that the ability
to be able to evaluate a recursive function mentally or ‘by hand’ (that is, independent of
a machine), is an essential component of recursive knowledge for both learners and ex-
perts.” In the case of teaching higher-order functions, using manual reductions is also a
recommendation of Clack and Myers (1995), who also list a long series of typical errors
and their analysis. Furthermore, Burton (1995) observes that

A Survey on Teaching and Learning Recursive Programming 95

perhaps students are puzzled, unnecessarily, by the the language (I refer to
natural language here) with which we talk to them about recursion. Peter
Landin is fond of pointing out the numerous inconsistencies with which such
language is riddled (the phrase “calls itself ”, for instance, probably elides
all kinds of different semantic levels). An advantage of teaching via reduc-
tion sequences is that it enables us to take the (natural) language out – just
reduce, reduce, reduce (perhaps with the aid of a machine).

He also recommends what he calls a “separation of concerns” in teaching at first list
processing, pattern matching and recursion in isolation: this avoids the issue for the stu-
dents to assimilate recursion at the same time as other imperfectly understood concepts.
Velázquez-Iturbide (1999) also relies on term rewriting to teach recursion before moving
to recursion in an imperative language with recursive data types. By writing down the
rewrite system in the exact order of a top-down design, students become accustomed to
laying out calls to functions yet to be defined; by also asking them to write down all the
left-hand sides of the rules (patterns) before proceeding to the right-hand sides in ran-
dom order, not only completeness is improved, but also the conception of a program as a
text written in one pass is undermined, and the model of a form or a blueprint is proposed
instead. This twofold method seems to defuse a bit the typical question of a recursive
call (right-hand side) to the current function “still under construction”, because at least
all the configurations of the input (left-hand side) have been already laid out and it is also
normal to call yet undefined functions, just like it is normal to have pending references
in a map being drawn to other parts yet to be filled. This view seems to be one of the
conclusions of Vitale (1989), when he writes, in abstract terms:

It is proposed that a restricted notion of “recursion” could be usefully de-
fined, entailing:

 1. that the attitude of the subject, with respect to the definition of a notion,
the solution of a problem, the answer to a question, etc., should contain a
measure of suspended attention, deferring in a way the final restructuring
of the definition solution, answer, etc., to the completion of a downward
and then upward spiralling path;
 2. that the spiralling path should be describable by the dialectical coexis-
tence of permanence (the path, global because relying on the various steps)
and change (the pitch of the spiral, local because defined – and possibly
changing – at every turn).

(For some technical corrections on the article of Vitale (1989) and some context
on the relevance of recursion in the cognitive sciences and artificial intelligence, see
the follow-ups by Trautteur (1989) and Apostel (1991), as well as Kieren (1989) in the
context of Logo.) Furthermore, by using directed acyclic graphs to represent programs
and data, instead of abstract syntax trees, aliasing (data sharing) becomes visible and the
control stack and heap can arise from this model without resorting to low-level descrip-
tions (Rinderknecht, 2012).

Another approach, advocated by Felleisen et al. (2001), consists in systematically
starting with the definition of recursive data types, because such types already suggest

C. Rinderknecht96

the recursive structure of the function definition to process their values. We will revisit
this method when presenting structural recursion. Pirolli (1986) showed that focusing
the teaching of recursion on the structure of the function definition is more effective than
insisting on the evaluation process, with traces of the control and data flows.

When loops are taught after recursion in a functional language, no transfer of skills
seems to be observed, undermining the idea that iteration is inherently simpler than re-
cursion (Mirolo, 2011). For an equivalent study with logic programming in Prolog, see
Haberman (2004). Moreover, simple functional programs on lists can be translated sys-
tematically in Java (Rinderknecht, 2012), following design patterns similar to those by
Felleisen and Friedman (1997), Bloch (2003) and Sher (2004). The programs which are
derived are in static single assignment form and eschew the null from Pandora’s vase
(Cobbe, 2008, Hoare, 2009). However, Segal (1994), Clack and Myers (1995) noted that
inducing students to think recursively with functional languages may yield some of the
problems encountered with imperative languages, and Paz and Lapidot (2004) showed
how prior experience with imperative programming influences the learning of functional
programming. This brings us to examine when is recursion taught.

3. Curricular Approaches

The scheduling of the teaching of recursion in school curriculums has long been debated
(Olson, 1987, Barfurth and Retschitzki, 1987, Greer, 1989). For example, Zmuda and
Hatch (2007) compare two approaches: the scheduling of consecutive units of teaching
on recursion versus the intermittent teaching of recursion, whereby two units about re-
cursion are separated by a different topic.

Secondary schools. In many countries, programming literacy, as opposed to vocation-
al training on software products (e.g., ICT in the United Kingdom since the 1990s),
is still absent in the secondary schools curriculums. For instance, the French govern-
ment officially introduced it only in July 2011, as an option for science majors, and
recursion is not even mentioned in the new regulation, whose implementation started
in September 2012. (The mathematics curriculum contains only one paragraph about
algorithms, which must be explicitly iterative (Modeste, 2012).) Wherever program-
ming is featured in introductory courses, recursion is usually avoided, even though it is
present in mathematics courses, usually in the guise of numerical progressions, Euclid’s
algorithm, Newton-Raphson approximation method, and proofs by mathematical induc-
tion (Buck, 1963). Therefore, because university students often experience significant
difficulties in grasping recursive programming (Sooriamurthi, 2001, Ginat, 2004), some
educators have insisted on a better articulation between secondary and post-secondary
curriculums. For instance, some researchers have been promoting a greater presence
of discrete mathematics and proof techniques in secondary schools (Abramovich and
Pieper, 1996, da Rosa, 2002, Rosenstein et al., 1997, Kaiser, 2004a,b), as well as the
creation of computing clubs with activities about recursion (Gunion et al., 2009a). Oth-
ers have emphasised the duality between recursive programming and mathematical in-
duction (Peelle, 1976, Ford, 1984, Leron and Zazkis, 1986, Anderson, 1992, Brandt and

A Survey on Teaching and Learning Recursive Programming 97

Richey, 2004, Polycarpou, 2006), which may be used as means to a transfer of skills
from secondary mathematics, as is, into college informatics. Even a reverse transfer of
skills, from recursive programming to problem solving in mathematics, has been envis-
aged by Hausmann (1985).

The teachers gleaning recursive definitions in the fields of secondary mathematics
often come up with numerical progressions, including the versatile Fibonacci numbers
(Rubio-Sánchez and Pająk, 2006, Rubio-Sánchez and Hernán-Losada, 2007, Rubio-
Sánchez, 2008), combinatorial identities from Pascal’s triangle, the pervasive factorial
or the game known as “The Tower(s) of Hanoi (or Brahma).” (Buneman and Levy,
1980, Anderson, 1992, Benander and Benander, 2008) Unfortunately, the pertinence of
such examples is undermined by the fact that they frequently enjoy closed forms (like
1 + 2 +    +  = ( + 1)2) or they are computationally inefficient (Er, 1984,
Knight, 1988, Costello, 1990, Robertson, 1999, Stojmenovic, 2000, Manolopoulos,
2005), which may not be an issue for a mathematician. Furthermore, to university stu-
dents interested in programming or professional training, these contrived exercises may
appear useless and fail to match their expectations, tainting recursion by association. The
same reaction is likely when outbidding with functions defined by more complex recur-
rent equations, like McCarthy’s “91 function,” Takeuchi’s function (Knuth, 2000) or the
simplified form of Ackermann’s function (Robinson, 1947, 1948).

Fortunately, most textbooks avoid these pitfalls.

Textbooks. Since the aim of a textbook is to cover a given curriculum, it should not come
as a surprise that there are no textbook exclusively devoted to recursive programming,
but there have been some companion books, at least up to the 1990s, when computer
programming entered mainstream education with the spread of personal computers. (As
mentioned before, during the same period, hardware architectures and programming
languages widely enabled recursion.)

In university education, from about 1965 to 1975, computer science emerged as a
discipline independent from mathematics, which explains the rigorous approach of the
books and the interest in theoretical explanations, as well as low-level implementations
of recursion. This didactic choice was enabled by the mathematical savvy of the students
and the few abstraction layers between programming languages and the hardware of
the time. For example, Barron (1968) is concerned with the pragmatics of recursion, its
implementation in run-time environments, the comparison with iteration, the natural ap-
plication to sorting, the mechanisms for recursion in compilers and numerical algorithms
– all this with ALGOL. Burge (1975) starts with λ-calculus and combinatory logic, and
proceeds with the evaluation of mathematical expressions, the definition and traversal of
recursive data structures (lists and trees), parsing, sorting algorithms – also in ALGOL.

The following period, from about 1975 to 1985, saw recursion uprooted from theo-
retical grounds and presented both as a method and a programming technique for solving
problems whose data structures are recursive (structural recursion), making plain the
benefit because the program structure itself then matches that of the data it processes.
For instance, Rohl (1984) begins with linked lists and binary trees, explains the solving
strategy “divide and conquer” (The input is split, each non-atomic part is recursively
processed and the partial solutions are finally combined to form the complete solution.)

C. Rinderknecht98

and widens the scope to include mutual recursion (Rubio-Sánchez et al., 2008) and
recursion on graphs – all with Pascal. Roberts (1986) (2006) wrote the most enduring
book, first using Pascal and now Java, where the main difference with previous vol-
umes lies in recursion being illustrated by drawing fractals and backtracking when stuck
in a labyrinth, whereas implementation issues make up the last chapter only.

Methodology. To tackle the understanding of the control flow, it is useful to work on
design methodology (Kessler and Anderson, 1986). Indeed, embedded recursion is
wrongly conceived as an expression of the familiar counting or accumulation technique
within loops, not the consequence of the analysis of the original problem. As a rem-
edy, students could be taught to think declaratively when programming recursively in
imperative languages (Give’on, 1989, Ginat and Shifroni, 1999), that is, to distinguish
specification (what) from evaluation (how) (Ford, 1984). Equivalently, this means that
recursion could be taught first as a method for solving problems (analysis and synthesis,
familiar to mathematicians since Antiquity), before showing it to be also a program-
ming technique (McKavanagh, 1992, 2004). In the same vein, Ginat (2005), Ginat and
Armoni (2006) follow a principle of Pólya distinguishing working forwards, which is a
heuristics consisting in approaching the solution by stepwise deductions, and working
backwards, which supposes the goal attained and concentrating on the inductive chain,
back to the problem. In the context of functional programming, Rinderknecht (2012)
calls the first method small-step design because the programmer focuses on the least that
can be done in one evaluation step towards the solution, and the second big-step design
because they assume that the final value is obtained in one step and it has to be (recur-
sively) decomposed in terms of the input. In general, the first way leads to iteration,
whereas the second yields embedded recursion. These two methods should be taught as
complementary heuristics, because, for the same problem, they may not bear definitions
of commensurable efficiency.

Curriculum. To overcome students’ reluctance to use recursion within a course on pro-
cedural or object-oriented programming, it has been proposed to teach singly-linked
lists before arrays and loops (Turbak et al., 1999, Bruce et al., 2005, Goldwasser and
Letscher, 2007), which makes recursion appear as a rather natural way to move to and
fro inside a unidirectional data structure. It is not surprising that this proposal, where re-
cursion in data types comes before recursion in functions, often originates from the con-
text of object-oriented programming languages (Felleisen and Friedman, 1997, Levine,
2000, Bloch, 2003, Sher, 2004), but is also prominent in statically typed functional lan-
guages – refer to the book by Felleisen et al. (2001). Indeed, when generalised to other
recursive data types, like trees, this kind of recursion is called structural recursion and,
as mentioned earlier, it yields programs reflecting the structure of the data type, which
is helpful since the latter is designed first. For instance, a binary tree is either empty or
made of a root and two subtrees, thus the complete traversal of such a tree is expected to
require a test for the tree emptiness and two recursive calls.

Didactics. Some researchers have been tackling the issue of teaching and learning re-
cursion through the lenses of cognitive sciences and psychology, inferring the mental

A Survey on Teaching and Learning Recursive Programming 99

models of recursion (Sanders et al., 2006, Mirolo, 2009), in particular the faulty ones
that novices construct by interacting with experts and the problem to solve. As explained
by Bhuiyan et al. (1994), a mental model is twofold: “(1) a knowledge structure in a
person’s mind that incorporates descriptive knowledge and functional knowledge about
a concept or device; (2) a control mechanism that determines how this knowledge is
used in problem solving.” Many of the references we gave in previous sections already
contain significant discussions and analyses of mental models, as they are used as a ra-
tionale for guiding the design, for example, of a tutoring system or a curriculum. In the
introduction, we also have mentioned Give’on (1990), who discusses some pedagogical
issues with the different meanings of the word recursion, and it is fitting now to cite as
well Lobina and García-Albea (2009) and Lobina (2011), Lobina Bona (2012), who
bring forth a thoughtful analysis of the usages of the same word in the cognitive sciences,
with an emphasis on linguistics and psychology. Indeed, these disciplines are essential
to the didactics of programming. Lobina and García-Albea (2009) write: “In the 1950’s,
linguists correctly employed recursion in reference to specific rewrite rules, but ever
since their elimination from linguistic theory, most linguists have used recursion, rather
puzzlingly, to refer to those structures that recursive rewrite rules were used to generate.
This may well be the unfortunate legacy of employing rewrite rules.” Consequently, they
recommend to reserve the term recursion for processes, not the products of these, be-
cause not all hierarchy (self-embedding) is generated by recursive processes. With these
distinctions in mind, which will be touched upon again in the section about analogies, it
is further worth reading Kilpatrick (1985), who discusses the analogical use of the words
reflection and recursion in the didactics of mathematics.

According to the constructivist theory of learning (Wu, Dale and Bethel, 1998, Ben-
Ari, 2001) promoted by Jean Piaget, learners construct mental models to understand
the world and act proactively, instead of passively reproducing a series of facts and be-
ing enjoined belief in a theory, as happens with too many traditional lectures. Inhelder
and Piaget (1963) write: “the source of thinking making possible to design recursive
solutions to problems lies in elemental forms of reasoning arising from students’ com-
prehension of the relations between the elements to which his/her actions are applied
when attempting to solve instances of problems.” (The emphasis is ours.) The study of
da Rosa (2005) argues that the role of the teacher is to help the student to transform this
instrumental knowledge into a conceptual knowledge, and finally into formalisation, that
is, program writing. Some researchers speak of “misconceptions”, others do not because
they consider that these are simply transient stages, non-viable conceptions – a viable
conception allowing to predict the outcome of new experiments. Götschi et al. (2003)
explain: “Teachers should generate perturbations in the students’ existing conceptual
structures and hence foster new combinations of concepts. This means that lecturers
should present students with problems and examples that challenge their current under-
standing and reveal non-viable constructions.”

In the same vein, a constructionist theory, developed by Papert (1980), goes further
by insisting that learning is best or truly achieved by making tangible objects in interac-
tion with the environment, which includes the educator. These approaches do not dimin-
ish in any way the role of the teacher, who is simply encouraged to engage constructively

C. Rinderknecht100

with the pupils, and not to act as an oracle or a judge. It is assumed that the learners build
their knowledge themselves, based upon previous idiosyncratic conceptions, which they
reassess by means of interactive experiments under the benevolent supervision of an
expert. Within this framework, where reassessment entails either reinforcement or refu-
tation, the self-referential nature of recursive definitions may seem a priori a cognitive
challenge, which Papert (1960b) expresses as “the property of recursion being not the
repetition of the same act as such, but the repetition of an act that is at the same time the
same act and a different one.” In fact, the interest in mental models of recursion did not
wait for the personal computers to reach homes and classrooms, as it can be traced (in
the context of the psychology of mathematics first, and then computing) back to Papert
(1960a) (1960b) and Piaget (Inhelder and Piaget, 1963, Piaget and Stratz, 1974). (See
Matalon (1963), Eliot et al. (1979) also for early research on children.) Children and
adolescents were at the centre of pedagogical investigations with the programming lan-
guage Logo. One hypothesis of Papert is that the syntonicity enabled by Logo helps the
children to learn: “Turtle geometry is learnable because it is syntonic.” (Papert, 1980,
p. 68) Roughly speaking, syntonicity is a psychological feeling of identification with a
putative external agent, in this case the cursor on the screen, called the turtle. This feel-
ing, supported by the fact that the movements of the turtle are relative to its current posi-
tion (cf. PostScript below, in the section about Logo), entices the children to engage
and enjoy what they make, which is more than a drawing since it involves a (projected)
whole body experience.

Mental models. According to Kahney (1983), Kahney and Eisenstadt (1982), the mental
model of experts, called copies model, is based on dynamic instances of procedures, i.e.,
processes, either passing (“forwards”) the control to newly created instances, or, if ter-
minated, returning it (“backwards”) to the instance who passed it – George (2000a)
called the former active flow, and the latter passive flow. The copies model is the only
one viable, that is, consistent with the operational semantics of recursive definitions.
Students, on the other hand, seem to often build the looping model of recursion, whereby
embedded recursion is wrongly understood as a kind of iteration and, typically will con-
sider the base cases as halting conditions (Haberman and Averbuch, 2002). To reduce the
risk of confusion, McDougall (1985) recommended that, when teaching Logo, the “use
of tail recursion for iterative situations be deliberately avoided. [...] Avoidance of early
use in programming of tail recursion for repetition might avoid confusion with iteration
in children’s mental models of recursion.” Indeed, according to Tempel (1985), “other
flavors of recursion may not be encountered at all” by the learners.

Experiments with experts and novices were set up by Kahney to validate or refute
the hypothesis that students had a looping mental model. With high probability, it ap-
peared that most of the students held the looping model instead of the copies model, and
some of them had idiosyncratic models in mind, like the null model (when recursion is
rejected), the syntactic model (when the structure of the program is used to predict its
outcome, or, when writing it, the necessity of base and recursive cases is understood,
but not the derivation of the actions), and the odd model (when the meaning of some
keywords, e.g., EXIT and CONTINUE, is taken from their English usage).

A Survey on Teaching and Learning Recursive Programming 101

To explain the odd model, Paz and Lapidot (2004) suggest to consider the interfer-
ence of natural language in learning recursion, in the context of learning DrScheme:

It may be that some students attribute to the function the ability to change
the parameter’s value, because of the association they create between the
programming language and natural language. It is possible that students [...]
interpret the expression (first L) as, for example, ‘take the first element’.
The meaning of taking the first element, for them, is to extract it and drop the
remaining elements, so that L is left only with the first element.

In the same vein, some researchers insist on bringing to the fore and qualifying the
linguistic aspect of the relationship between learners and teachers. They set up experi-
ments, record all interactions with software and video, then analyse the transcripts to
pinpoint the misunderstandings, trace them back to plausible causes and try to capture
the mental model at work (Anderson et al., 1984, Levy and Lapidot, 2000, Levy et al.,
2001, Levy, 2001, Murnane and Warner, 2001, Levy and Lapidot, 2002). Furthermore,
these verbal exchanges can be conducted not solely to infer a mental model of the stu-
dent and reach a diagnostic and remedy, but even to become a maieutic process on its
own right (Chang et al., 1999, 2000).

Götschi and some collaborators (Götschi, 2003, Götschi et al., 2003, Sanders et al.,
2006) refined and extended Kahney’s classification of mental models; for instance, they
identified amongst their university students an active model, when they understand the
instantiations of recursive calls with smaller arguments and the reaching of the base
cases, but they nevertheless fail to grasp the backward, or passive, flow of control from
the completed instances to the current, pending one. They also proposed the step model,
whereby students have not a complete concept of recursive flow of control and execute
only one recursive call yielding a base case. There is also the return value model, which
stems from misconceptions about when the values of function calls are constructed. The
two last models are linked to some confusion about the evaluation of function calls in
general, like parameter passing and making a function’s return value.

Bhuiyan et al. (1989) (1991) prefer the expression mental method instead of mental
model and proposed a more detailed classification where generative methods comprise
the loop method, the syntactic method, the analytic method, and the analysis/synthesis
method; moreover, trace methods (Bhuiyan, 1992, Scholtz and Sanders, 2010) are used
by students to verify the correctness of their solutions. (Götschi et al., (2003) define
a trace as “a student’s representation of the flow of control and the calculation of the
solution of a recursive program.”) The loop method is the obvious consequence of the
flawed loop mental model. The syntactic method is frequently used by novices who have
little understanding of recursion as a problem-solving method, but a good declarative
knowledge about it. They know how to lie out a recursive template with base cases and
recursive cases fitting into simple categories, and it works well for a wide variety of
simple problems, but they have difficulties for more complex ones, for example when
generative recursion (Felleisen et al., 2004) is needed, that is, when a recursive call
does not apply directly to a substructure of the input, but to a transformed substructure.
This issue is linked to a lack of understanding of recursion as a design method, there-

C. Rinderknecht102

fore, the next method, i.e., the analytic method, applies to slightly complex problems
and proceeds from input and output requirements to an intermediary solution, before
writing the code. The analysis/synthesis method goes further by dividing the problem
into subproblems whose solutions must be combined: this is the most general method.
(See earlier paragraph on methodology.) Dicheva and Close (1996) (1997) focused on
misconceptions. Wu (1993) and Wu, Dale and Bethel (1998) explored the learning of
recursion in the framework of David Kolb’s model (experiential learning theory), which
we cannot detail here. For yet other angles, like programming competences, concrete vs.
abstract models, static vs. dynamic copies model, classes of recursive functions etc. see
Er (1995), Burton (1995), Chen (1998) and Mirolo (2010).

Anzai and Uesato (1982) found that children’s understanding of a recursive defini-
tion in the context of mathematics is eased by prior experience with iteration, although
they added that it may be the case that writing recursive definitions in a programming
language requires different, additional skills. Kessler and Anderson (1986) worked in
the context of programming languages and searched for transfer of skills between tail
recursion and iteration for novices and they confirmed the conclusion of Anzai and
Uesato (1982): both studies found a positive transfer from writing loops to writing re-
cursive definitions, but not vice versa (although tail recursion is arguably too similar
to iteration). Moreover, it seems that the incorrect looping model of recursion, previ-
ously acquired on loops, is more helpful than learning recursion directly. By contrast,
Wiedenbeck (1988) found that previous knowledge of iterative examples does not seem
to facilitate subsequent learning on similar recursive problems, although comprehension
was slightly improved. Furthermore, Kurland and Pea (1985) studied how 12 year old
subjects understood recursive definitions and iterations in Logo. They found that previ-
ous familiarity with iteration helps understanding tail recursion but hampers the correct
grasping of embedded recursion, in accord with later work by Murnane (1992). Note
that this is not a direct contradiction of Kessler and Anderson (1986), because the latter
used tail recursion, and, for Wiedenbeck (1988), the transfer of skills is about compre-
hension, not design.

The role of examples in learning recursion has been investigated by Pirolli and An-
derson (1985), Wiedenbeck (1989), Pirolli (1991) and Tascón-Vidarte et al. (2010). Ex-
amples should be used to develop analogical problem-solving mechanisms, but care
must be taken not to rely too much on them too early, lest the learners get stuck in the
syntactic model of Kahney, and knowledge compilation mechanisms should also be built
from past experiences.

4. Visualisation and Animation

Many educators try to capitalise on the fact that vision plays an important role in acquir-
ing concepts and informing their composition to build new ones. This opens different
lines of inquiry: visual analogies of recursion, animating the evaluation of programs,
visual programming languages, integrated development environments, virtual worlds
and games.

A Survey on Teaching and Learning Recursive Programming 103

4.1. Analogies Objects

It is often claimed that everyday life lacks analogies for the concept of recursion (Pirolli
and Anderson, 1985), so it is no surprise that most authors come up with the same ob-
jects, such as cauliflowers, including the healthy broccoli, ringed targets, tree branches,
reflections on facing mirrors, tilings (Chu and Johnsonbaugh, 1987), ladders (Levy
and Lapidot, 2002) and Russian dolls (Bowman and Seagraves, 1985). Typical geo-
metric figures are fractals (Riordon, 1984b, Elenbogen and O’Kennon, 1988, Wakin,
1989, Bruce et al., 2005, Ammari-Allahyari, 2005, Stephenson, 2009b, Gordon, 2006)
and certain kinds of artwork, most notably by the Dutch graphic artist M. C. Escher
(Gunion et al., 2009b). Their structures are characterised by self-replication with self-
embedding (also called nesting), but, unfortunately, these examples are perhaps more
likely to suggest infinity than recursion (whose evaluation must terminate to be useful
and, in the case of embedded recursion, may require backtracking), and this involuntary
association of infinity and recursion may explain the avoidance of the latter by novices
(Wiedenbeck, 1989). By contrast, and with a more optimistic tone, Papert (1980) (p. 71)
wrote the following about an exercise with Logo aimed at demonstrating recursion:

Thus we have a trick called “recursion” for setting up a never-ending
process whose initial steps are shown [...]. Of all ideas I have introduced
to children, recursion stands out as the one idea that is particularly able to
evoke an excited response. I think this is partly because the idea of going on
forever touches on every child’s fantasies and partly because recursion itself
has roots in popular culture. For example, there is the recursion riddle: If
you have two wishes what is the second? (Two more wishes.) And there is
the evocative picture of a label with a picture of itself. By opening the rich
opportunities of playing with infinity the cluster of ideas represented by the
[...] procedure puts a child in touch with something of what it is like to be a
mathematician.

But it seems difficult to generalise this observation, as Turkle (1984) reports that
“Matthew, a good-natured and precocious child of five, was eagerly learning to write
computer programs to make graphic designs on the screen. His mood changed abruptly
and he left the computer in tears when he understood how to make a recursive program:
a program whose action includes setting in motion an exactly similar program whose
action includes setting in motion an exactly similar program, and so on.” McDougall
(1991), also using Logo, reported that recursion in objects (figures produced by Logo
processes) is firmly conceived by her daughter as different from recursion in processes
or programs, but claimed that this conception is nevertheless useful because her daugh-
ter, who did not confuse iteration and embedded recursion, used it for teaching a peer.
Earlier, Thompson (1985), also observing the dichotomy, asked the students to describe
verbally the recursive structure and move towards the recursive Logo program. Mur-
nane (1991) discussed the demerits and merits of various models of recursion, and also
uses Logo. (Section 4.5 will be devoted to Logo.)

C. Rinderknecht104

Processes. Researchers have also looked at everyday examples of recursive processes,
instead of objects, for example, the fall of dominoes aligned in a row, which seems to
suggest recurrent reasoning to children who are 12 years old or so, in the sense that they
almost express the fall of any domino by the fall of the previous one (a local property),
but descriptions by younger children are of the iterative type: the first domino falls and
lets the second fall, and so the third will fall etc. (Piaget and Stratz, 1974) Of course, the
recursion suggested here by the experiment is tail recursion, because it ends with the fall
of the last domino. Nevertheless, Yang (2004) (2008) went further and claimed that such
series of dominoes are an analogy for linear recursion, which is an embedded recur-
sion with one recursive call. More accurate are the processes which use backtracking, a
distinctive feature of embedded recursion, to model the behaviour of an avatar or robot
stuck in a labyrinth (Liss and McMillan, 1988, Dorf, 1992, Roberts, 2006).

Wirth (2008) provided an entertaining recursive method to randomly park cars in
a street, and Brown (1972) tried to familiarise social scientists with recursion through
examples in Logo.

Schiemenz (2002) came up with an application of recursion to business management,
with more examples of recursive objects and recursive problem-solving. Kimura (1977)
used businesses too as a framework for explaining the notions of program, processor and
process. Embedded recursion is then expressed as the delegation of a task to a group of
assistants working on complementary sets of the input. The same analogy is found in a
paper by Edgington (2007), and, if enacted by the students as theatrical roles, it becomes
kinesthesis and a multi-sensory experience for learning recursion in the classroom (Dorf,
1992, Levine, 2000, Begel et al., 2004, Kátai, 2009). In particular, Ben-Ari (1996) pro-
posed to dramatise recursive algorithms, that is, to associate the solution to a real-world
task with an algorithm having the same recursive structure, e.g., eating a chocolate bar
and searching an array. The students enact the solution and later write the program.
These playful activities can be considered as kinds of parlour games, which leads us now
to review computer games dedicated to recursion.

4.2. Computer Games

There is an increasing interest for games, or game-like features (e.g., achievement badg-
es), for supporting educational purposes (so-called gamification of education), even in
higher education. Although it was mentioned in section 3 that “The Tower(s) of Ha-
noi” has long been quite popular, very few studies have been carried out specifically
about teaching recursion with video games. Amongst them, the setting of Rossiou and
Papadakis (2007) is a virtual classroom, and Chaffin et al. (2009) designed a game to
facilitate the transfer of skills to writing recursive programs. While very limited in time
and number of participants, both studies support the use of computer games for teaching
and learning recursion as a concept. As an alternative to games, recursive processes can
also be merely illustrated by a series of snapshots or by an animation. The simplest form
of visualisation consists in augmenting the text of a program with semantic annotations
and pictures.

A Survey on Teaching and Learning Recursive Programming 105

4.3. Augmented Text

Since the 1970s, many graphical notations for inputs and activation trees, sometimes
called recursion graphs, have been proposed, allowing novices to record and follow the
evaluation of function calls (Jackson, 1976, Kruse, 1982, Haynes, 1995, Hsin, 2008).
For example, if the input is a binary tree to be traversed, the activation tree is also a
binary tree because each node is a call to the same function but with different subtrees
as arguments. The teacher can show on the blackboard the location in the data diagram
at the same moment that the activation tree is extended. Wei and Murray (2008) draw
activation trees within a hyperbolic geometry. Moreover, memory allocation and vari-
able assignments decorate the corresponding Java program. Kurtz and Johnson (1985)
animated the data diagram only.

The syntax of many imperative languages, like Pascal, is based on blocks, which
makes it hard to trace the execution of function calls, particularly in the presence of re-
cursion (Er, 1984). This leads some instructors to recur to a low-level simulation of the
execution, reifying the otherwise invisible control stack (Lee and Mitchell, 1985, Dupuis
and Guin, 1989), but, according to Ginat and Shifroni (1999), this puts too much empha-
sis on the computing model (see also the paragraph about methodology). See also Pirolli
(1986), whom we mentioned earlier in the section about functional programming.

Bell and Gilbert (1974) proposed to use Wirth’s syntax diagrams, designed for speci-
fying grammars of programming languages like Pascal. The usefulness of Backus-
Naur Forms (defining context-free languages) and Lindenmayer systems (L-systems) to
teach recursion has also been noted by Er (1984), Proulx (1997) and Velázquez-Iturbide
(1999) (2000). Zelenski (1999) proposed the generation of random sentences to experi-
ment recursion and Levine (2000) then commented that students have no trouble at all,
perhaps because the textual expansion of a non-terminal is hardly seen as a procedure
call, let alone calling itself.

For other closely related approaches, also based on annotations and pictures, see
Er (1995), Hui and Iverson (1995), Jehng et al. (1999), George (1995) (1996) (2000a)
(2000b) and Tung et al. (2001), some of whom we mentioned earlier about rewrite sys-
tems and functional languages.

4.4. Multimedia Environments

Animation has been more widely implemented by means of dedicated multimedia envi-
ronments (Rosenthal, 2005), either in isolation (for didactic purposes only), or in con-
nection with programming environments (Wilcocks and Sanders, 1994). Here, we will
only review briefly those systems designed specifically to teach recursion.

Stern and Naish (2002a) (2002b) proposed a classification based on an analysis
of recursive algorithms for sorting arrays and updating dictionaries: the first category
groups searches, the second sorts and the last insertions. They claim that such distinc-
tions enable the tailoring of better animations, aimed at reinforcing the understanding
of recursion. Fernández-Muñoz et al. (2007) proposed and implemented an automated
classification based on source code inspection from which a dedicated animation is gen-

C. Rinderknecht106

erated. That system was developed extensively (Velázquez-Iturbide et al., 2008) (2009a)
(2009b) (Velázquez-Iturbide and Pérez-Carrasco, 2010). The approach is practical and
eclectic, with animations not only of the activation tree, but also of the data structure,
the trace and the control stack.

Another direction is open by intelligent tutoring systems (Pirolli, 1986) (or interac-
tive learning environments), which are multimedia environments that provide interactive
feedback and advice to the programmer. The system contains typical beginners’ strate-
gies so it can comment upon the code being written (McCalla and Greer, 1993). These
strategies are based on mental models of the learners. It seems that the system designed
by Greer (1987) became a reference for Bhuiyan et al. (1989) (1992) (1994), Bhuiyan
(1992) and Greer et al. (1994).

As miscellanea, see Moreno-Armella (1992), Wu et al. (1996), Wu, Lee and Lin
(1998). For a structured text editor guaranteeing the termination of recursive predicates
in Prolog, see Bundy et al. (1991).

Visual programming. Visual programming languages enable the composition of program
constructs by manipulating graphical representations instead of writing text. Good and
Brna (1996) were the first to investigate whether these languages provided a better sup-
port for learning recursion than textual languages, and concluded negatively. Spreadsheet
languages are sometimes considered as visual programming languages or even functional
languages, and Burnett et al. (2001) focused on testing recursive programs with them.
Kim (2003) proposed a string of classroom exercises to learn recursion with Excel.

Virtual worlds. Tascón-Vidarte et al. (2010) designed an interactive interface based on
a tangible block-world with augmented reality to learn iteration on lists and aiming at
the transfer of skills to directly write tail recursive definitions in Erlang. An earlier,
three-dimensional virtual world was designed by Dann et al. (2001). For two-dimensional
geometry considered as a virtual world, we have Logo.

4.5. The Logo Years

We would be remiss not to devote a whole section to Logo. The first thing that strikes the
reader of the abundant literature about Logo is the enthusiasm that blows, page after page.
Microcomputers were arriving in the classrooms and everyone was excited and deeply
interested in their programming: teachers, of course, but also psychologists, didacticians,
mathematicians, computer scientists, software companies, and even the children them-
selves, whose education was the focal point of attention. The geometric figures produced
by the execution of Logo programs, the design underpinnings of the language, like its
recursive, functional programming style and its grounding in developmental psychology,
all this put Logo at the confluence of almost all the streams surveyed here: dynamic and
geometric analogies for recursion, virtual worlds (in a more abstract sense, they are called
microworlds in the context of Logo, like the microworld of the turtle, the microworld of
words, of lists etc.), integrated environments, functional programming, games and theory
of learning. Papert (1980) was a pioneer of this movement, taking part to the design of
Logo at the end of the 1960s, and we quoted him in section 4.1 about recursion.

A Survey on Teaching and Learning Recursive Programming 107

McDougall (1985) (1988) (1989) (1990a) (1990b) (1991) has used Logo to teach
her nine-year-old daughter, who ended mastering embedded recursion by age eleven.
According to her, this result confirmed what Papert conjectured, namely that young chil-
dren in a computer-rich environment can learn abstract or formal thinking – In pass-
ing, Papert never attributed this capability to Logo alone. Unfortunately, the size of the
study group makes it hard to generalise the findings. Rouchier (1986b) (1986a) (1987)
observed adolescents’ difficulties in learning embedded recursion after understanding
loops and iteration, and proposed to start teaching embedded recursion first. See also the
articles by Barfurth (1987), Barfurth and Retschitzki (1987).

Following in the same footsteps, others (Gobet et al., 1989, Retschitzki et al., 1989,
Gurtner et al., 1990, Retschitzki et al., 1991) noted that, in the geometric microworld
of Logo, it is difficult to come up with exercises which show the superiority of embed-
ded recursion over iteration, whereas the microworld of lists is more pertinent. Perhaps
the reason is that drawing is inherently a side-effect thereby it empowers loops. In the
case of PostScript, a concatenative programming language dedicated to graphics,
the implicit evaluation stack is used for all computations, including delaying the side-
effect of drawing, which is triggered by an explicit showpage instruction, so program-
ming remains declarative. Unfortunately, once embedded recursion has been wrongly
understood as an iteration in the turtle microworld, the misunderstanding is carried over
to the microworlds of words and lists. Moreover, these researchers observed the same
difficulties in recognising the base cases (STOP rule) as with any other programming lan-
guage. Give’on (1991) presented a variant of Logo with multiple turtles that can move
concurrently, and advocated that this paradigm yields simpler recursive programs than
traditional (singly threaded) dialects of Logo.

Conclusion

The teaching and learning of recursion in computer programming courses has long been
a subject of inquiry, attracting a wide range of researchers from many fields of knowl-
edge. It is not possible to isolate a current trend of investigation, as the hallmark of the
newest papers can already be found in the early 1990s, although there seems to be a re-
cent decline in the number of publications and a concentration around a few researchers.
Here are a few points that may deserve some attention.

Perhaps the common weakness of many experimental protocols lies in the small ●
number of students (usually, one class), the short span of time (usually, one se-
mester) and the difficulty to define a control group. Consequently, it may help to
bring on board statisticians in order to design larger and longer experiments (at
least a three-year period).
Many studies lump all novices, whereas it seems useful to distinguish different ●
profiles and cater them with different learning strategies, as some have proposed.
But since the identification of the student mental model can only be achieved by
teaching, this begets the question of adaptive teaching strategies, once the student
has been classified.

C. Rinderknecht108

The approaches based on text rewriting (grammars, L-systems, rewrite systems) ●
do not seem to raise issues with learners as far as recursion is concerned. It would
be interesting to confirm this and explore whether the purported skills can be
transferred to block-structured programming languages.
Mutual recursion has been studied by Rubio-Sánchez and his colleagues (Rubio- ●
Sánchez and Pająk, 2006, Rubio-Sánchez et al., 2008), who deemed it sometimes
easier to teach than direct recursion. If confirmed, this would open a new way to
teach direct recursion by program transformation (inlining) (Kaser et al., 1993).
Examples of mutual recursion arise naturally in parsers, which were a favourite
example in early textbooks, and it was noted above that the derivation of sentences
from formal grammars (that is, the reverse function of parsing) usually does not
raise problems with recursion. Another use case is finite automata, as found in
telecommunication protocols, vending machines, automatic teller machines etc.
(One state is implemented by one function whose argument is any of the labels on
the outgoing transitions.)
Kinesthesis and syntonicity seem to be helpful and should be compared with ani- ●
mation, as it may be that watching or imagining the execution of a recursive func-
tion (in other words, tracing) is cognitively different from involving one’s own
body, or a psychological representation of it. Perhaps augmented reality may help
too, by creating an immersion (Tascón-Vidarte et al., 2010).
It should be impressed upon students that the control flow of recursion which ●
many authors qualify as being “bidirectional”, is actually not specific to recursion
by explaining the evaluation of arithmetic expressions with function compositions
(Burge, 1975). (In imperative languages where instructions are separated by semi-
colons, an instruction can be shown to be an implicit function – an assignment is
indeed an operator in the C family – and a semi-colon denotes composition.)
Many educators teaching recursion focus on the control flow, except perhaps if ●
the language is object-oriented, because, in that case, the data flow becomes more
relevant, and the design is more likely to be bottom-up. (An algorithm ends up
being scattered amongst several methods in different classes, so recursion is ob-
scured by the amount of code to be read and mutual recursion is more likely.) That
difference may explain why the professors teaching structural recursion on lists
before arrays and loops are using some object-oriented language or a functional
language. Those teaching a top-down design may end up reordering the defini-
tions in the program to have them compiled incrementally for testing purposes,
and also because this corresponds to the order of synthesis. (See the analysis/
synthesis method.) By strictly lying down the top-down design in the code, which
requires, for example, to use prototypes in C, or forward declarations in Pascal,
the students get used to read incomplete programs. (The same can be said about
using modules, of course.) Perhaps that skill is correlated with a better under-
standing of recursion.
Tail call optimisation should be explained without resorting to low-level concepts ●
(Rinderknecht, 2012).

A Survey on Teaching and Learning Recursive Programming 109

Acknowledgements

The research was carried out as part of the EITKIC_12-1-2012-0001 project, which is
supported by the Hungarian Government, managed by the National Development Agen-
cy, financed by the Research and Technology Innovation Fund and is performed in coop-
eration with the EIT ICT Labs Budapest Associate Partner Group (ictlabs.elte.hu).

The author thanks the following researchers for providing preprints, hard copies and
otherwise helpful information: Nell Dale, C. Mitchell Dayton, Carlisle George, David
Ginat, Shafee Give’on, Fernand Gobet, Jean-Luc Gurtner, Kátai Zoltán, Anne McDou-
gall, John Murnane, Peter Pirolli François Pottier, Ian Sanders, Manuel Rubio Sánchez,
Guiseppe Trautteur, Ángel Velázquez and Michael Zmuda. The anonymous reviewers
helped improve the introduction.

References

Abramovich, S., Pieper, A. (1996). Fostering recursive thinking in combinatorics through the use of manipula-
tives and computing technology. The Mathematics Educator, 7(1).

Ammari-Allahyari, M. (2005). Exploring Students’ Understanding of the Relationship Between Iteration and
Recursion. Institute of Education University of Warwick, United Kingdom.

Anderson, J.R., Pirolli, P.L., Farrell, R. (1984). Learning to program recursion. In: Proceedings of the Annual
Conference of the Cognitive Science Society. Boulder, Colorado, USA, 277–280.

Anderson, J.R., Pirolli, P.L., Farrell, R. (1988). In: Chi, M.T.H., Glaser, R., Farr, M.J. (Eds.), The Nature of
Expertise. Lawrence Erlbaum, Hillsdale, New Jersey, USA, 153–183.

Anderson, O. D. (1992). Induction, recursion, and the Towers of Hanoi. International Journal of Mathematical
Education in Science and Technology, 3, 339–343.

Anonymous. (1977). Depth-first digraph algorithms without recursion. In: Proceedings of the Seventh In-
ternational Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Atlanta,
Georgia, USA, 151–153.

Anzai, Y., Uesato, Y. (1982). Learning recursive procedures by middle-school children. In: Proceedings of the
Annual Conference of the Cognitive Science Society. Ann Arbor, Michigan, USA, 100–102.

Apostel, L. (1991). Elusive recursiveness – The necessity of a dynamic and pragmatic approach: a response to
Vitale. New Ideas in Psychology, 9(3), 367–373.

Astrachan, O. (1994). Self-reference is an illustrative essential. In: Proceedings of the Twenty-fifth Interna-
tional Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Phoenix, Ari-
zona, USA, 238–242.

Augenstein, M., Tenenbaum, A. (1976). A lesson in recursion and structured programming. In: Proceedings
of the Sixth International Technical Symposium on Computer Science and Education. ACM SIGCSE-
SIGCUE, ACM Press Anaheim, California, USA, 17–23.

Barfurth, M. (1987). Recursion: What is it? Memorandum No.31. Institut de Psychologie, Université de Fri-
bourg, Fribourg, Switzerland.

Barfurth, M., Retschitzki, J. (1987). The pedagogical relevance of children working with recursion. In: Pro-
ceedings of the Third Conference “Logo and Mathematical Education”. Montréal, Canada, 3, 164–172.

Barron, D.W. (1968). Recursive techniques in programming. Computer Monographs, MacDonald/Elsevier.
Begel, A., Garcia, D.D., Wolfman, S.A. (2004). Kinesthetic learning in the classroom. In: Proceedings of the

Thirty-fifth International Technical Symposium on Computer Science Education. ACM SIGCSE, ACM
Press Norfolk, Virginia, USA, 183–184.

Bell, S., Gilbert, E.J. (1974). Learning recursion with syntax diagrams. The SIGCSE Bulletin, 6(3), 44–45.
Ben-Ari, M. (1996). Recursion: from drama to program. Aspects of Teaching Computer Science, 7, 45–47.
Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Mathematics and

Science Teaching, 20(1), 45–73.
Benander, A.C., Benander, B.A. (2008). Student monks – Teaching recursion in an IS or CS programming

course using the Towers of Hanoi. Journal of Information Systems Education, 19(4), 455–468.

C. Rinderknecht110

Bhuiyan, S., Greer, J.E., McCalla, G.I. (1989). Mental models of recursion and their use in the SCENT pro-
gramming advisor. In: Proceedings of the International Conference on Knowledge-based Computer Sys-
tems (LNCS, 444). Springer-Verlag, Bombay, India, 135–144.

Bhuiyan, S., Greer, J.E., McCalla, G.I. (1991). Characterizing rationalizing, and reifying mental models of
recursion. In: Proceedings of the Thirteenth Annual Meeting of the Cognitive Science Society. Psychology
Press, Hillsdale, New Jersey, USA, 120–125.

Bhuiyan, S., Greer, J.E., McCalla, G.I. (1992). Learning recursion through the use of a mental model-based
programming environment. In: Proceedings of the Second International Conference on Intelligent Tutoring
Systems (LNCS, 608). Springer, Montréal, Canada, 50–57.

Bhuiyan, S., Greer, J.E., McCalla, G.I. (1994). Supporting the learning of recursive problem solving. Interac-
tive Learning Environments, 4(2), 115–139.

Bhuiyan, S.H. (1992). Identifying and Supporting Mental Methods of Recursion in a Learning Environment.
PhD thesis, University of Saskatchewan, Saskatoon Canada.

Bloch, S. (2003). Teaching linked lists and recursion without conditionals or null. Journal of Computing Sci-
ences in Colleges, 18(5), 96–108.

Bowman, B.C., Seagraves, K. (1985). Picturing recursion. The Computing Teacher, 12(7), 28–32.
Brandt, K., Richey, M. (2004). Studying mathematical induction and recursive programming together. Journal

of Computing Sciences in Colleges, 19(4),. 108–114.
Brooks, A., Miller, J., Roper, M., Wood, M. (1992). Criticisms of an empirical study of recursion and iteration.

Technical Report EFoCS-1-92. Empirical Foundations of Computer Science. Department of Computer
Science, University of Strathclyde, Glasgow, United Kingdom.

Brown, J.S. (1972). Recursive functional programming as a conceptual tool for social scientists. In: Pro-
ceedings of the ACM Annual Conference, 1. ACM SIGCUE, ACM Press, Boston, Massachusetts, USA,
320–320.

Bruce, K.B., Danyluk, A., Murtagh, T. (2005). Why structural recursion should be taught before arrays in
CS1. In: Proceedings of the International Technical Symposium on Computer Science Education. ACM
SIGCSE, ACM Press, St. Louis, Missouri, USA, 246–250.

Buck, R.C. (1963). Mathematical induction and recursive definitions. American Mathematical Monthly, 70(2),
128–135.

Bundy, A., Grosse, G., Brna, P. (1991). A recursive techniques editor for Prolog. Instructional Science,
20(2–3), 135–172.

Buneman, P., Levy, L. (1980). The towers of Hanoi problem. Information Processing Letters, 10(4–5), 243–
244.

Burge, W.H. (1975). Recursive Programming Techniques: The Systems Programming. Addison-Wesley.
Burnett, M., Ren, B., Ko, A., Cook, C., Rothermel, G. (2001). Visually testing recursive programs in spread-

sheet languages. In: Proceedings of the IEEE Symposia on Human-centric Computing Languages and
Environments. Stresa, Italy.

Burton, C.T.P. (1995). Conceptual structures for recursion. In: Proceedings of the First International Sym-
posium on Functional Programming Languages in Education (LNCS, 1022). Springer, Nijmegen, The
Netherlands, 179–193.

Chaffin, A., Doran, K., Hicks, D., Barnes, T. (2009). Experimental evaluation of teaching recursion in a video
game. In: Proceedings of the Symposium on Video Games. ACM SIGGRAPH, ACM Press, New Orleans
Louisiana, USA, 79–86.

Chang, K.-E., Lin, P.-C., Sung, Y.-T., Chen, S.-W. (2000). Socratic-dialectic learning system of recursion
programming. Journal of Educational Computing Research, 23(2), 133–150.

Chang, K.-E., Wang, K.-Y., Dai, C.-Y., Sung, T.-C. (1999). Learning recursion through a collaborative Socratic
dialectic process. Journal of Computers in Mathematics and Science Teaching, 18(3), 303–315.

Chen, M.-P. (1998). The effect of dynamic copies model in teaching recursive programming. Journal of Tai-
wan Normal University, 43(1), 63–78.

Chu, I.-P., Johnsonbaugh, R. (1987). Tiling and recursion. In: Proceedings of the Eighteenth International
Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, St. Louis, Missouri,
USA, 261–263.

Clack, C.D., Myers, C. (1995). The dys-functional student. In: Proceedings of the First International Sympo-
sium on Functional Programming Languages in Education. Number (LNCS, 1022). Springer, Nijmegen,
The Netherlands, 289–309.

Close, J., Dicheva, D. (1997). Misconceptions in recursion: diagnostic teaching. In: Proceedings of the Euro-
pean LOGO Conference (Mental Models of Recursion). Budapest, Hungary.

Cobbe, R. C. (2008). Much Ado about Nothing: Putting Java’s Null in Its Place. PhD thesis, College of Com-

A Survey on Teaching and Learning Recursive Programming 111

puter and Information Science, Northeastern University, Boston, Massachusetts, USA.
Costello, P. (1990). Analysis of a recursive algorithm for computing binomial coefficients. Computer Science

Education, 1(4), 317–329.
da Rosa, S. (2002). The role of discrete mathematics and programming in education. In: Proceedings of the

Workshop on Functional and Declarative Programming in Education. Technical Report 0210, University
of Kiel Pittsburgh, Pennsylvania, USA.

da Rosa, S. (2005). The Learning Of Recursive Algorithms And Their Functional Formalization. PhD thesis,
Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay.

da Rosa, S. (2007). The learning of recursive algorithms from a psychogenetic perspective. In: Proceedings of
the Workshop of the Psychology of Programming Interest Group. Joensuu, Finland.

Dann, W., Cooper, S., Pausch, R. (2001). Using visualization to teach novices recursion. In: Innovation and
Technology in Computer Science Education. ACM SIGCSE-SIGCUE, ACM Press, Canterbury, United
Kingdom, 109–112.

Daykin, P.N. (1974). Teaching recursive programming using BASIC. SIGCUE Outlook, 8(1), 11–13.
Daylight, E.G. (2010). The advent of recursion in programming (1950s–1960s). In: Computability in Europe

(Programs, Proofs, Processes). Ponta Delgada Azores, Portugal.
Denman, R.T. (1996). Derivation of recursive algorithms for CS2. In: Proceedings of the Twenty-seventh Inter-

national Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Philadelphia
Pennsylvania, USA, 9–13.

Dicheva, D., Close, J. (1996). Mental models of recursion. Journal of Educational Computing Research,
14(1), 1–23.

Dijkstra, E.W. (1960). Recursive programming. Numerische Mathematik, 2(1), 312–318.
Dijkstra, E.W. (1974). Determinism and recursion versus non-determinism and the transitive closure. (Dijk-

stra archive EWD456).
Dijkstra, E. W. (1975). Correctness concerns and, among other things, why they are resented. In: Proceedings

of the International Conference on Reliable Software. Los Angeles, California, USA, 546–550.
Dijkstra, E.W. (1999). Computing Science: Achievements and Challenges. (Dijkstra archive EWD1284).
Dorf, M.L. (1992). Backtracking the rat way. In: Proceedings of the Twenty-third International Technical

Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Kansas City, Missouri, USA,
272–275.

Dupuis, C., Guin, D. (1989). Représentations du fonctionnement d’une procédure récursive en Logo. In: Pro-
ceedings of the 13th Conference “Psychology of Mathematics Education”. Paris, France, 220–227.

Early, G.G., Stanat, D.F. (1985). Chinese Rings and Recursion. The SIGSE Bulletin, 17(4), 69–82.
Edgington, J. (2007). Teaching and viewing recursion as delegation. Journal of Computing Sciences in Col-

leges, 23(1), 241–246.
Elenbogen, B.S., O’Kennon, M.R. (1988). Teaching recursion using fractals in Prolog. In: Proceedings of the

Nineteenth International Technical Symposium on Computer Science Education. ACM SIGCSE, ACM
Press Atlanta, Georgia, USA, 263–266.

Eliot, J., Lovell, K., Dayton, C.M., McGrady, B.F. (1979). A further investigation of children’s understanding
of recursive thinking. Journal of Experimental Child Psychology, 28(1), 149–157.

Er, M.C. (1984). On the complexity of recursion in problem-solving. International Journal of Man-Machine
Studies, 20(6), 537–544.

Er, M.C. (1995). Process frame: a cognitive device for recursion comprehension. Computers & Education,
24(1), 31–36.

Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S. (2001). How to Design Programs. The MIT Press.
Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S. (2004). The Structure and Interpretation of the Com-

puter Science Curriculum. Journal of Functional Programming, 14(4), 365–378.
Felleisen, M., Friedman, D.P. (1997). A little Java, a Few Patterns. The MIT Press.
Fernández-Muñoz, L., Pérez-Carrasco, A., Velázquez-Iturbide, J.A.,Urquiza-Fuentes, J. (2007). A framework

for the automatic generation of algorithm animations based on design techniques. In: Creating new learn-
ing experiences on a global scale (LNCS, 4753). Springer, 475–480.

Foltynowicz, I. (2007). Recursion versus iteration with the list as a data structure. Informatics in Education,
6(2), 283–306.

Ford, G. (1982). A framework for teaching recursion. The SIGCSE Bulletin, 14(2), 32–39.
Ford, G. (1984). An implementation-independent approach to teaching recursion. The SIGCSE Bulletin, 16(1),

213–216.
George, C.E. (1995). Supporting the learning of recursion. In: Proceedings of the Conference on the Teaching

of Computing. Dublin City University, Ireland.

C. Rinderknecht112

George, C.E. (1996). Investigating the Effectiveness of a Software-Reinforced Approach to Understanding
Recursion. PhD thesis, University of London London, United Kingdom.

George, C.E. (2000a). EROSI – Visualizing recursion and discovering new errors. In: Proceedings of the
International Technical Symposium on Computer Science Education. ACM Press, Austin, Texas, USA,
32, 305–309.

George, C.E. (2000b). Experiences with novices: the importance of graphical representations in supporting
mental models. In: Blackwell, A.F., E. Bilotta,E. (Eds.), Proceedings of the Workshop of the Psychology of
Programming Interest Group. Cosenza, Italy, 33–44.

Ginat, D. (2004). Do senior CS students capitalize on recursion?. In: Proceedings of the Ninth Annual Confer-
ence on Innovation and Technology in Computer Science Education. ACM SIGCSE-SIGCUE, ACM Press,
Leeds, United Kingdom, 82–86.

Ginat, D. (2005). The suitable way is backwards, but they work forward. Journal of Computers in Mathematics
and Science Teaching, 24(1). 73–88.

Ginat, D., Armoni, M. (2006). Reversing: an essential heuristic in program and proof design. In: Proceedings
of the International Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press,
Houston, Texas USA, 469–473.

Ginat, D., Shifroni, E. (1999). Teaching recursion in a procedural environment – How much should we em-
phasize the computing model?. In: Proceedings of the International Technical Symposium on Computer
Science Education. ACM SIGCSE, ACM Press, New Orleans, Louisiana, USA, 127–131.

Give’on, Y.S. (1989). Teaching recursive program composition in procedural environments. Machine-Medi-
ated Learning, 3, 125–145.

Give’on, Y.S. (1990). Is recursion well defined??. Computers & Education, 14(1), 35–41.
Give’on, Y.S. (1991). Teaching recursive programming using parallel multi-turtle graphics. Computers & Edu-

cation, 16(3), 267–280.
Gobet, F., Núñez, R., Retschitzki, J. (1989). Learning recursion with LOGO: adolescents’ difficulties. In: Pro-

ceedings of the Second European LOGO Conference. Gent, Belgique, 398–409.
Goldberg, M., Wiener, G. (2009). Anonymity in Erlang. In: Erlang User Conference. Stockholm.
Goldwasser, M., Letscher, D. (2007). Teaching strategies for reinforcing structural recursion with lists. In: Pro-

ceedings of the Conference on Object Oriented Programming, Systems, Languages and Applications. ACM
SIGPLAN, ACM Press, Montréal, Québec, Canada, 889–896

Good, J., Brna, P. (1996). Scaffolding for recursion; can visual languages help?. IEE Seminar Digests, 10(7),
1–3.

Gordon, A. (2006). Teaching recursion using recursively-generated geometric designs. Journal of Computing
Sciences in Colleges, 22(1), 124–130.

Götschi, T. (2003). Mental models of recursion. Technical report, Faculty of Science, University of the Wit-
watersand, Johannesburg, South Africa.

Götschi, T., Sanders, I., Galpin, V. (2003). Mental models of recursion. In: Proceedings of the Internationl
Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Reno, Nevada, USA,
346–350.

Greer, J.E. (1986). Techniques for teaching recursion. Research Seminar presented to the Department of Com-
puter Sciences, University of Texas at Austin, USA.

Greer, J.E. (1987). An Empirical Comparison of Techniques for Teaching Recursion in Introductory Computer
Sciences. PhD thesis, University of Texas at Austin USA, Department of Mathematics and Computer Sci-
ence Education.

Greer, J.E. (1989). A comparison of instructional treatments for introducing recursion. Computer Science
Education, 1(2), 111–128.

Greer, J.E., McCalla, G.I., Price, B., Holt, P. (1994). Supporting the learning of recursion at a distance. In: Pro-
ceedings of the World Conference on Educational Multimedia and Hypermedia (ED-MEDIA). Vancouver,
British Columbia, Canada, 652.

Gunion, K., Milford, T., Stege, U. (2009a). Curing recursion aversion. In: Proceedings of the Fourteenth An-
nual Conference on Innovation and Technology in Computer Science Education. ACM SIGCSE-SIGCUE,
ACM Press, Paris, France, 124–128.

Gunion, K., Milford, T., Stege, U. (2009b). The paradigm recursion: is it more accessible when introduced in
middle school?. Journal of Problem Solving, 2(2), 142–172.

Gurtner, J.-L., Gex, C., Gobet, F., Núñez, R., Retschitzki, J. (1990). La récursivité rend-elle l’intelligence
artificielle?. Revue Suisse de Psychologie, 49(1), 17–26.

Haberman, B. (2004). How learning logic programming affects recursion comprehension. Computer Science
Education, 14(1), 37–53.

A Survey on Teaching and Learning Recursive Programming 113

Haberman, B., Averbuch, H. (2002). The case of base cases: why are they so difficult to recognize? Student dif-
ficulties with recursion. In: Proceedings of the Seventh Annual Conference on Innovation and Technology
in Computer Science Education. ACM SIGCSE, ACM Press, Aarhus, Denmark, 84–88.

Harvey, B. (1992). Avoiding recursion. In: Hoyles, C., Noss, R. Learning Mathematics and LOGO. The MIT
Press Cambridge, Massachusetts, USA, 393–426.

Hausmann, K. (1985). Iterative and recursive modes of thinking in mathematical problem solving processes.
In: Proceedings of the Ninth Conference “Psychology of Mathematics Education”. Noordwijkerhout, The
Netherlands, 1, 18–23.

Haynes, S.M. (1995). Explaining recursion to the unsophisticated. The SIGCSE Bulletin, 27(3), 3–6.
Henderson, P.B., Romero, F.J. (1989). Teaching recursion as a problem-solving tool using Standard ML. In:

Proceedings of the Twentieth International Technical Symposium on Computer Science Education. ACM
SIGCSE/IEEE-CS, ACM Press, Louisville, Kentucky, USA, 27–31.

Hoare, T. (2009). Null references: The billion dollar mistake. In: The Annual International Software Develop-
ment Conference. London, England, United Kingdom.
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-
Mistake-Tony-Hoare

Howland, J.E. (1998). Recursion, iteration and functional languages. Journal for Computing in Small Col-
leges, 13(4).

Hsin, W.-J. (2008). Teaching recursion using recursion graphs. Journal of Computing Sciences in Colleges,
23(4), 217–222.

Hui, R. K. W., Iverson, K. E. (1995). Representations of recursion. In: Proceedings of the Conference on Ap-
plied Programming Languages. ACM SIGAPL, ACM Press, San Antonio, Texas, USA, 91–97.

Hulsizer, A. (2011). Teaching Recursion through Interactive Media. Master’s thesis, School of Computer Sci-
ence, College of Engineering, University of Oklahoma, USA.

Inhelder, B., Piaget, J. (1963). De l’itération des actions ą la récurrence élémentaire. In: Gréco, P., Inhelder, B.,
Matalon, B., Si Piaget, J. (Eds.), La Formation des Raisonnements Récurrentiels (Études d’épistémologie
génétique, XVII), Presses Universitaires de France, 47–120.

Jackson, G.A. (1976). A graphical technique for describing recursion. In: Proceedings of the Sixth Interna-
tional Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Williamsburg,
Virginia, USA, 30–32.

Jehng, J.-C.J., Tung, S.-H., Chang, C.-T. (1999). A visualisation approach to learning the concept of recursion.
Journal of Computer Assisted Learning, 15(4), 279–290.

Kahney, H. (1983). What do novice programmers know about recursion. In: Proceedings of the Conference
on Human Factors in Computing Systems. ACM SIGCHI, ACM Press, Boston, Massachusetts, USA,
235–239.

Kahney, H., Eisenstadt, M. (1982). Programmers’ mental models of their programming tasks: the interaction
of real world knowledge and programming knowledge. In: Proceedings of the Fourth Annual Conference
of the Cognitive Science Society. Ann Arbor, Michigan, USA, 143–145.

Kaiser, G. (Ed.). (2004a). Proof and Discrete Mathematics: Part A. ZDM: The International Journal on Math-
ematics Education, 36(2).

Kaiser, G. (Ed.). (2004b). Proof and Discrete Mathematics: Part B. ZDM: The International Journal on Math-
ematics Education, 36(3).

Kaser, O., Ramakrishnan, C.R., Pawagi, S. (1993). On the conversion of indirect to direct recursion. ACM
Letters on Programming Languages and Systems (LOPLAS), 2(1–4), 151–164.

Kátai, Z. (2009). Multi-sensory method for teaching-learning recursion. Computer Applications in Engineer-
ing Education, 19(2), 234–243.

Kay, J.S. (2000). Using the force: how Star Wars can help you teach recursion. Journal of Computing Sciences
in Small Colleges, 15(5), 277–288.

Kessler, C.M., Anderson, J.R. (1986). Learning flow of control: recursive and iterative procedures. Human-
Computer Interaction, 2(2), 135–166.

Kieren, T.E. (1989). Observation and recursion in LOGO mathematics: a response to Vitale. New Ideas in
Psychology, 7(3), 277–281.

Kilpatrick, J. (1985). Reflection and recursion. Educational Studies in Mathematics, 16(1), 1–26.
Kim, M. K. (2003). Recursive thinking and solving methods. Journal of the Korea Society of Mathematical

Education, series D (Research in Mathematical Education), 7(4), 211–222.
Kimura, T. (1977). Recursive programming in English for freshmen. In: Proceedings of the Seventh Interna-

tional Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Atlanta, Geor-
gia, USA, 129–132.

C. Rinderknecht114

Knight, D.G. (1988). Determinants and recursion. International Journal of Mathematical Education in Science
and Technology, 19(1), 67–71.

Knuth, D.E. (1996). Selected papers on Computer Science. CSLI Publications, Stanford University, Califor-
nia, USA, (CSLI Lecture Notes, 59) 205–226.

Knuth, D.E. (2000). Selected Papers on the Analysis of Algorithms. CSLI Publications, (CSLI Lecture Notes,
102) 391–414.

Kruse, R.L. (1982). On teaching recursion. In: Proceedings of the Thirteenth International Technical Sympo-
sium on Computer Science Education. ACM SIGCSE, ACM Press, Indianapolis, Indiana, USA, 92–96.

Kurland, D.M., Pea, R.D. (1985). Children’s mental models of recursive LOGO programs. Journal of Educa-
tional Computing Research, 1(2), 235–243.

Kurtz, B.L., Johnson, D. (1985). Using simulation to teach recursion and binary tree traversals. In: Proceed-
ings of the Sixteenth International Technical Symposium on Computer Science Education. ACM SIGCSE,
ACM Press New Orleans, Louisiana, USA, 49–54.

Lavallade, D. (1985). In search of recursion. In: Hoyles, C., Noss, R. (Eds), Proceedings of the Confer-
ence “Logo and Mathematics Education”. University of London, Institute of Education, London, United
Kingdom.

Lee, P.C., Mitchell, M.A. (1985). Demystifying LOGO recursion: a storage process model of embedded recur-
sion. Computers in the Schools, 2(2), 197–208.

Leonard, M. (1991). Learning the structure of recursive programs in Boxer. Journal of Mathematical Behavior,
10(1), 17–53.

Leron, U. (1988). What makes recursion hard?. In: Proceedings of the Sixth International Congress on Math-
ematics Education. Budapest, Hungary.

Leron, U., Zazkis, R. (1986). Computational recursion and mathematical induction. For the Learning of Math-
ematics, 6(2), 25–28.

Levine, D. B. (2000). Helping students through multiplicities. Journal of Computing Sciences in Colleges,
15(5), 285–291.

Levy, D. (2001). Insights and conflicts in discussing recursion: a case study. Computer Science Education,
11(4), 305–322.

Levy, D., Lapidot, T. (2000). Recursively speaking: analyzing students. discourse of recursive phenomena. In:
Proceedings of the International Technical Symposium on Computer Science Education. ACM SIGCSE,
ACM Press, Austin, Texas, USA, 315–319.

Levy, D., Lapidot, T. (2002). Shared terminology, private syntax: the case of recursive descriptions. In: Pro-
ceedings of the Seventh Annual Conference on Innovation and Technology in Computer Science Educa-
tion. ACM SIGCSE ACM Press, Aarhus, Denmark, 89–93.

Levy, D., Lapidot, T., Paz, T. (2001). It’s just like the whole picture, but smaller’: expressions of gradualism,
self-similarity, and other pre-conceptions while classifying recursive phenomena. In: G. Kadoda (Ed.),
Proceedings of the Workshop of the Psychology of Programming Interest Group. Bournemouth United
Kingdom, 249–262.

Liss, I.B., McMillan, T.C. (1988). An amazing exercise in recursion for CS1 and CS2. The SIGCSE Bulletin,
20(1), 270–274.

Lobina Bona, D.J. (2012). Recursion in Cognition: A Computational Investigation into the Representation and
Processing of Language. PhD thesis University Rovira i Virgili, Department of Psychology, Tarragona,
Spain.

Lobina, D.J. (2011). “A running back” and forth: a review of recursion and human language. Biolinguistics,
5(1–2), 151–169.

Lobina, D.J., García-Albea, J.E. (2009). Recursion and cognitive science: data structures and mechanisms. In:
van Rijn, N.A. (Ed.), Proceedings of the 31st Annual Conference of the Cognitive Science Society. Austin
Texas, USA, 1347–1352.

Manolopoulos, Y. (2005). On the number of recursive calls of recursive functions. The SIGCSE Bulletin, 37(2),
61–64.

Marti, E. (1987). Différentes Approches (Théoriques et Expérimentales) de la Récursivité. Institut de Psy-
chologie, Université de Fribourg, Fribourg, Switzerland. (Memorandum, 32).

Martin, M.R. (1985). Recursion – a powerful but often difficult idea. Computers in the Schools, 2(2–3),.
209–217.

Matalon, B. (1963). Étude du raisonnement par récurrence sur un modèle physique. In: Gréco, P., Inhelder, B.,
Matalon, B., Si Piaget, J. (Eds.), La Formation des Raisonnements Récurrentiels (Études d’épistémologie
génétique, XVII), Presses Universitaires de France, 283–316.

McCalla, G.I., Greer, J.E. (1992). Helping novices learn recursion: giving granularity-based advice on strategies

A Survey on Teaching and Learning Recursive Programming 115

and providing support at the mental model level. In: Proceedings of the NATO Advanced Research Workshop
on Cognitive Models and Intelligent Environments for Learning Programming. Genoa, Italy, 57–71.

McCalla, G.I., Greer, J.E. (1993). Two and one-half approaches to helping novices learn recursion. In: Le-
mut, E., Duboulay, B., Dettori, G. (Eds.), Cognitive Models and Intelligent Environments for Learning
Programming. Springer Verlag, 185–197.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by machine (part I).
Communications of the ACM, 3(4), 184–195.

McDougall, A. (1985). Teaching and learning about recursion. In: Proceedings of the International Conference
on LOGO. Cambridge, Massachussets, USA.

McDougall, A. (1988). Children, Recursion and Logo Programming. PhD thesis, Monash University, Mel-
bourne, Australia.

McDougall, A. (1989). Teaching about recursion in Logo: a review. In: Dupe T. (Ed.), Proceedings of the
Australian Conference Computers in Education Conference. Computer Education Group of the A.C.T.,
Canberra, Australia.

McDougall, A. (1990a). Children, recursion and Logo programming: an investigation of Papert’s conjecture
about the variability of Piagetian stages in computer-rich culture. In: McDougall, A., Dowling, C. (Eds.),
Proceedings of the IFIP TC 3 Fifth World Conference on Computers in Education (WCCE). Sydney, Aus-
tralia, 415–418.

McDougall, A. (1990b). Student difficulties in programming with recursive Logo. In: McDougall, A. (Ed.),
Back to the Future, Forward to the Past. Computer Education Group of Victoria, Melbourne, Australia,
108–115.

McDougall, A. (1991). Structure and Process Microviews: Partial Understandings of Recursion in Logo Pro-
gramming. In: Proceedings of the Fifth Logo and Mathematics Education Conference (LME). Lake Tina-
roo Queensland, Australia.

McKavanagh, C.W. (1992). Recursion in problem solving. In: Proceedings of the Joint Conference of the Aus-
tralian Association for Research in Education and the New Zealand Association for Research in Education.
Deakin University Victoria, Australia.

McKavanagh, C.W. (2004). Recursion in everyday problem-solving. Australian Vocational Education Review,
11(1), 35–50.

Mendelsohn, P. (1985). Learning recursive procedures through Logo. In: Proceedings of the First confer-
ence “Logo and Mathematics Education”. Institute of Education, University of London, London, United
Kingdom.

Mirolo, C. (2009). Mental models of recursive computations vs. recursive analysis in the problem domain.
In: Proceedings of the Fourteenth Annual Conference on Innovation and Technology in Computer Science
Education. ACM SIGCSE, ACM Press, Paris, France, 397–397.

Mirolo, C. (2010). Learning (through) recursion: a multidimensional analysis of the competences achieved by
CS1 students. In: Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Com-
puter Science Education. ACM SIGCSE, ACM Press, Bilkent University, Ankara, Turkey, 160–164.

Mirolo, C. (2011). Is iteration really easier to master than recursion? Investigation in a functional-first CS1
context. In: Proceedings of the 16th annual joint onference on Innovation and Technology in Computer
Science Education. Darmstadt, Germany, 362.

Modeste, S. (2012). La pensée algorithmique: apports d’un point de vue extérieur aux mathématiques. In: Actes
du colloque Espace Mathématique Francophone. Geneva, Switzerland.

Moor, M. (n.d.). A recursion excursion with a surprising discovery. The Computing Teacher, 11(5), 49–52.
Moreno-Armella, L. (1992). Visualización y recursividad: un enfoque computacional. In: Congreso Iberoamer-

icano de Informática Educativa. CYTED/RIBIE, Santo Domingo, República Dominicana.
Murnane, J. (1991). Models of recursion. Computers & Education, 16(2), 197–201.
Murnane, J. (1992). To iterate or to recurse?. Computers & Education, 19(4), 387–394.
Murnane, J.S., Warner, J.W. (2001). An empirical study of junior secondary students. expression of algorithms

in natural language. In: McDougall, A., Murnane, J., Chambers, D. (Eds.), Proceedings of the Seventh World
Conference on Computers in Education. Australian Computer Society, Copenhagen, Denmark, 8, 81–85.

Olson, A.T. (1987). The curricular implications of recursion. In: Proceedings of the Third International Con-
ference for LOGO and Mathematics Education. Concordia University, Montréal, Canada.

Oudheusden, K.V. (2009). The Advent of Recursion & Logic in Computer Science. Master’s thesis, Institute for
Logic, Language and Computation University of Amsterdam, Amsterdam, The Netherlands.

Papert, S. (1960a). Problèmes épistémologiques et génétiques de la récurrence. In: Problèmes de la construc-
tion du nombre, Presses Universitaires de France, 117–148.

Papert, S. (1960b). Problèmes de la construction du nombre. In: Greco, P., Grize, J.B., Papert, S., Piaget, J.,

C. Rinderknecht116

Problèmes de la construction du nombre, (Études d’épistémologie génétique, XI), Presses Universitaires
de France.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. First edn, Basic Books.
Pareja-Flores, C., Urquiza-Fuentes, J., Rubio-Sánchez, M. (2007). WinHIP: An IDE for functional program-

ming based on rewriting and visualization. ACM SIGPLAN Notices, 42(3), 14–23.
Paz, T., Lapidot, T. (2004). Emergence of automated assignment conceptions in a functional programming

course. In: Proceedings of the Conference on Innovation and Technology in Computer Science Education.
ACM SIGCSE ACM Press, Leeds, United Kingdom, 181–185.

Peano, G. (1976). The principles of arithmetic, presented by a new method. In: Heijenoort, J. Van, From Frege
to Gödel :A Source Book in Mathematical Logic, 1879–1931. Third edn, Harvard University Press, 83–97.

Peelle, H.A. (1976). Learning mathematics with recursive computer programs. In: Proceedings of the Inter-
national Technical Symposium on Computer Science Education. ACM SIGCSE-SIGCUE, ACM Press,
116–130.

Piaget, J., Stratz, C. (1974). La chute récurrentielle de dominos alignés. In: Réussir et comprendre. Presses
Universitaires de France, 21–33.

Pirolli, P.L. (1986). A cognitive model and computer tutor for programming recursion. Human-Computer
Interaction, 2(4), 319–355.

Pirolli, P.L. (1991). Effects of examples and their explanations in a lesson on recursion: a production system
analysis. Cognition and Instruction, 8(3), 207–259.

Pirolli, P.L., Anderson, J.R. (1985). The role of learning from examples in the acquisition of recursive pro-
gramming skills. Canadian Journal of Psychology, 39(2), 240–272.

Polycarpou, I. (2006). Computer science students. difficulties with proofs by induction: an exploratory study.
In: Proceedings of the Southeast Regional Conference. ACM, Melbourne, Florida, USA, 601–606.

Proulx, V.K. (1997). Recursion and grammars for CS2. In: Proceedings of the Second Conference on In-
tegrating Technology into Computer Science Education. ACM SIGCSE-SIGCUE, ACM Press, Uppsala,
Sweden, 74–76.

Reingold, E.M. (2012). Four apt elementary examples of recursion. In: Dershowitz, N., Nissan, E. (Eds.), Lan-
guage, Culture, Computation: Essays Dedicated to Yaacov Choueka (Lecture Notes in Computer Science).
Springer-Verlag, Berlin, Germany.

Retschitzki, J. (1986). La récursivité comme méthode générale de résolution de problèmes. Bulletin du Cours
des Animateurs en Informatique, 15, 4–9.

Retschitzki, J., Gex, C., Gobet, F., Gurtner, J., Núñez, R. (1991). Pensée récursive et enseignement. In: Gurt-
ner, J., Retschitzki, J., LOGO et Apprentissages. Delachaux et Niestlé, Neuchatel, Switzerland, 229–240.

Retschitzki, J., Gobet, F., Núñez, R. (1989). Apprentissage de la Récursivité en LOGO. Technical Report 75,
Département de Psychologie, Université de Fribourg, Fribourg, Switzerland.

Rinderknecht, C. (2012). Design and Analysis of Purely Functional Programs (Texts in Computing, 15), sec-
ond edn, College Publications, United Kingdom.

Riordon, T. (1984a). Helping students with recursion: teaching strategies (Part II). The Computing Teacher,
11(6), 59–64.

Riordon, T. (1984b). Helping students with recursion: teaching strategies (Part III: Teaching students about
embedded recursion). The Computing Teacher, 11(7), 64–69.

Riordon, T. (n.d.). Helping students with recursion: teaching strategies (Part I). The Computing Teacher, 11(5),
59–64.

Roberts, E.S. (1986). Thinking Recursively. John Wiley & Sons.
Roberts, E.S. (2006). Thinking Recursively with Java. John Wiley & Sons.
Robertson, J.S. (1999). How many recursive calls does a recursive function make?. The SIGCSE Bulletin,

31(2).
Robinson, R.M. (1947). Primitive recursive functions. Bulletin of the American Mathematical Society, 53(10),

925–942.
Robinson, R.M. (1948). Recursion and double recursion. Bulletin of the American Mathematical Society,

54(10), 987–993.
Rohl, J.S. (1984). Recursion via Pascal. Cambridge Computer Science Texts Cambridge University Press.
Rosenstein, J.G., Franzblau, D.S., Roberts, F.S. (Eds.). (1997). Discrete Mathematics in the Schools, (DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, 36). American Mathematical Society
and National Council of Teachers of Mathematics.

Rosenthal, T. (2005). Introducing recursion by using multimedia. In: Proceedings of the Tenth Annual Confer-
ence on Innovation and Technology in Computer Science Education. ACM SIGCSE, ACM Press, Caparica
Portugal, 374–374.

A Survey on Teaching and Learning Recursive Programming 117

Rossiou, E., Papadakis, S. (2007). Educational games in higher education: a case study in teaching recursive
algorithms. In: O’Doherty, E. (Ed.), Proceedings of the Fourth International Conference on Education
in a Changing Environment. University of Salford, Informing Science Press, Salford, United Kingdom,
149–157.

Rouchier, A. (1986a). Central recursive calls and nesting in learning Logo programming. In: Proceedings of
the Second Conference “Logo and Mathematical Education”, 2. London, United Kingdom.

Rouchier, A. (1986b). Learning recursive calls in building up LOGO procedures. In: Proceedings of the Tenth
Conference “Psychology of Mathematics Education”, 10. University of London, Institute of Education,
London United Kingdom.

Rouchier, A. (1987). The writing and interpretation of recursive procedures in LOGO. Psychologie Française,
32(4), 281–285.

Rubio-Sánchez, M. (2008). An introduction to problem equivalence with combinatorics. In: Proceedings of
the Thirteenth Annual Conference on Innovation and Technology in Computer Science Education. ACM
SIGCSE ACM Press, Madrid, Spain, 313–313.

Rubio-Sánchez, M. (2010). Tail recursive programming by applying generalization. In: Proceedings of the Fif-
teenth Annual Conference on Innovation and Technology in Computer Science Education. ACM SIGCSE
ACM Press, Bilkent University, Ankara, Turkey, 98–102.

Rubio-Sánchez, M., Hernán-Losada, I. (2007). Exploring recursion with Fibonacci numbers. In: Proceedings
of the Twelfth Annual Conference on Innovation and Technology in Computer Science Education. ACM
SIGCSE-SIGCUE, ACM Press, Dundee, Scotland, United Kingdom, 359–359.

Rubio-Sánchez, M., Pająk, B. (2006). Fibonacci numbers using mutual recursion. In: Salakoski, T., Mäntylä,
Mikko, L. (Eds.), Proceedings of the Fifth Annual Finnish/Baltic Sea Conference on Computer Science
Education, 41. TUCS General Publications, Finland, 174–177.

Rubio-Sánchez, M., Urquiza-Fuentes, J., Pareja-Flores, C. (2008). A gentle introduction to mutual recursion.
In: Proceedings of the Thirteenth Annual Conference on Innovation and Technology in Computer Science
Education. ACM SIGCSE-SIGCUE, ACM Press, Madrid, Spain, 235–239.

Rubio-Sánchez, M., Velázquez-Iturbide, J.A. (2009). Tail recursion by using function generalization. In: Pro-
ceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer Science
Education. Paris, France, 394.

Samurçay, R. (1986). Initial representations of students in using recursive Logo procedures. In: Proceedings
of the Tenth Conference “Psychology of Mathematics Education”, 10. University of London, Institute of
Education, London, United Kingdom.

Sanders, I.D., Galpin, V.C. (2007). Students. mental models of recursion at Wits. In: Proceedings of the Twelfth
Annual Conference on Innovation and Technology in Computer Science Education. ACM SIGCSE, ACM
Press Dundee, Scotland, United Kingdom, 317–317.

Sanders, I., Galpin, V., Götschi, T. (2006). Mental models of recursion revisited. In: Proceedings of the Elev-
enth Annual Conference on Innovation and Technology in Computer Science Education. ACM SIGCSE,
ACM Press Bologna, Italy, 138–142.

Schiemenz, B. (2002). Managing complexity by recursion. In: Proceedings of the Symposium on Management
and Organizational Change. European Meeting on Cybernetics and Systems Research. Vienna, Austria.

Scholtz, T.L., Sanders, I. (2010). Mental models of recursion: investigating students. understanding of recur-
sion. In: Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Sci-
ence Education. ACM SIGCSE, ACM Press, Bilkent University, Ankara, Turkey, 103–107.

Segal, J. (1994). Empirical studies of functional programming learners evaluating recursive functions. Instruc-
tional Science, 22(5), 385–411.

Settle, A. (2013). Reaching the ‘Aha!’ moment: Web development as a motivator for recursion. In: Proceed-
ings of the 14th Annual ACM SIGITE Conference on Information Technology Education. Orlando, Florida,
USA, 69–70.

Sher, D.B. (2004). Recursive objects: an object oriented presentation of recursion. Mathematics and Computer
Education, Winter issue.

Sinha, A.P., Vessey, I. (1992). Cognitive fit: an empirical study of recursion and iteration. IEEE Transactions
on Software Engineering, 18(5), 368–379.

Skolem, T. (1976). The foundation of elementary arithmetic established by means of the recursive mode of
thought without the use of apparent variables ranging over infinite domains. In: Heijenoort, J. Van, From
Frege to Gödel :A Source Book in Mathematical Logic, 1879–1931. Third edn, Harvard University Press,
302–333.

Soare, R.I. (1996). Computability and recursion. The Bulletin of Symbolic Logic, 2(3), 284–321.
Sooriamurthi, R. (2001). Problems in comprehending recursion and suggested solutions. In: Proceedings of

C. Rinderknecht118

the Conference on Innovation and Technology in Computer Science Education. ACM SIGCSE-SIGCUE,
ACM Press Canterbury, United Kingdom, 25–28.

Stephenson, B. (2009a). Using graphical examples to motivate the study of recursion. Journal of Computing
Sciences in Colleges, 25(1), 42–50.

Stephenson, B. (2009b). Visual examples of recursion. In: Proceedings of the Conference on Innovation and
Technology in Computer Science Education. ACM SIGCSE, ACM Press, Paris, France, 400–400.

Stern, L., Naish, L. (2002a). Animating recursive algorithms. Interactive Multimedia Electronic Journal of
Computer-Enhanced Learning, 4(2).
http://imej.wfu.edu/articles/2002/2/02/index.asp.

Stern, L., Naish, L. (2002b). Visual representations for recursive algorithms. In: Proceedings of the Interna-
tional Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press, Cincinnati,
Kentucky, USA, 196–200.

Stockmeyer, P.K. (2005). The Tower of Hanoi: A Bibliography.
http://www.cs.wm.edu/~pkstoc/biblio2.pdf

Stojmenovic, I. (2000). Recursive algorithms in computer science courses: Fibonacci numbers and binomial
coefficients. IEEE Transactions on Education, 43(3), 273–276.

Tascón-Vidarte, J.D., Rinderknecht, C., Kim, J.-I., Kim, H. (2010). A tangible interface for learning recursion
and functional programming. In: IEEE Symposium on Ubiquitous Virtual Reality. Gwangju Institute of
Science and Technology, Gwangju, Republic of Korea.

Tempel, M. (1985). What’s so hard about recursion?. In: Proceedings of the International Conference on
LOGO. Cambridge, Massachussets, USA.

Tessler, J., Beth, B., Lin, C. (2013). Using Cargo-Bot to provide contextualized learning of recursion. In: Pro-
ceedings of Ninth Annual International ACM Conference on International Computing Education Research
(ICER). San Diego, California, USA, 161–168.

Thompson, P.W. (1985). Understanding recursion: process ≈ object. In: Damarin, S. (Ed.), Proceedings of the
Seventh Annual Meeting of the North American Chapter of the International Group for the Psychology of
Mathematics Education. Ohio State University, Colombus, Ohio, USA, 357–362.

Trautteur, G. (1989). Remarks on recursion: a response to Vitale. New Ideas in Psychology, 7(3), 376–378.
Tung, S.-H., Chang, C.-T., Wong, W.-K., Jehng, J.-C. (2001). Visual representations for recursion. Interna-

tional Journal of Human-Computer Studies, 54(3), 285–300.
Turbak, F., Royden, C., Stephan, J., Herbst, J. (1999). Teaching recursion before loops in CS1. Journal of

Computing in Small Colleges, 14(4), 86–101.
Turkle, S. (1984). The Second Self: Computers and the Human Spirit, Simon & Schuster, New York, USA.
Velázquez-Iturbide, J.A. (1999). A progressive approach to recursion. In: Proceedings of the Twenty-ninth

Conference on the Frontiers in Education., 1. IEEE, San Juan, Puerto Rico, 34–38.
Velázquez-Iturbide, J.A. (2000). Recursion in gradual steps (Is recursion really that difficult?). In: Proceedings

of the International Technical Symposium on Computer Science Education. ACM SIGCSE, ACM Press,
Austin, Texas USA, 310–314.

Velázquez-Iturbide, J.A., Pérez-Carrasco, A. (2010). InfoVis interaction techniques in animation of recursive
programs. Algorithms, 3(1), 76–91.

Velázquez-Iturbide, J.A., Pérez-Carrasco, A., Urquiza-Fuentes, J. (2008) SRec: an animation system of recur-
sion for algorithm courses. In: Proceedings of the Thirteenth Annual Conference on Innovation and Tech-
nology in Computer Science Education. ACM SIGCSE, ACM Press, Madrid, Spain, 225–229.

Velázquez-Iturbide, J.A., Pérez-Carrasco, A., Urquiza-Fuentes, J. (2009a). A design of automatic visualiza-
tions for divide-and-conquer algorithms. In: Proceedings of the Program Visualization Workshop (Elec-
tronic Notes in Theoretical Computer Science, 224), 159–167.

Velázquez-Iturbide, J.A., Pérez-Carrasco, A., Urquiza-Fuentes, J. (2009b) Interactive visualization of recur-
sion with SRec. In: Proceedings of the Fourteenth Annual Conference on Innovation and Technology in
Computer Science Education. ACM SIGCSE, ACM Press, Paris, France, 339–339.

Vitale, B. (1989). Elusive recursion: a trip in recursive land. New Ideas in Psychology, 7(3), 253–276.
Wakin, S. (1989). Proof without words: recursion. Mathematics Magazine, 62(3), 172.
Wei, X., Murray, K. (2008). A detail+context approach to visualize function calls. Journal of Computing Sci-

ences in Colleges, 23(3), 162–167.
Wiedenbeck, S. (1988). Learning recursion as a concept and as a programming technique. In: Proceedings of

the Nineteenth International Technical Symposium on Computer Science Education. ACM SIGCSE, ACM
Press Atlanta, Georgia, USA, 275–278.

Wiedenbeck, S. (1989). Learning iteration and recursion from examples. International Journal of Man-Ma-
chine Studies, 30(1), 1–22.

A Survey on Teaching and Learning Recursive Programming 119

Wilcocks, D., Sanders, I. (1994). Animating recursion as an aid to instruction. Computers & Education, 23(3),
221–226.

Wirth, M. (2008). Introducing recursion by parking cars. The SIGCSE Bulletin, 40(4), 52–55.
Wu, C.-C. (1993). Conceptual Models and Individual Cognitive Learning Styles in Teaching Recursion to

Novices. PhD thesis, University of Texas, Austin, Texas USA.
Wu, C.-C., Dale, N.B., Bethel, L.J. (1998). Conceptual models and cognitive learning styles in teaching recur-

sion. In: Proceedings of the Twenty-ninth International Technical Symposium on Computer Science Educa-
tion. ACM SIGCSE, ACM Press, Atlanta, Georgia, USA, 292–296.

Wu, C.-C., Lee, G.C., Lin, J.M.-C. (1998). Visualizing programming in recursion and linked lists. In: Pro-
ceedings of the Australasian Conference on Computer Science Education, 3. ACM SIGCSE, ACM Press,
University of Queensland, Queensland, Australia, 180–186.

Wu, C.-C., Lin, J.M.-C., Chiou, G.-F. (1996). Visualizing recursion and linked lists. In: Proceedings of the
First Conference on Integrating Technology into Computer Science Education. ACM SIGCSE-SIGCUE,
ACM Press Barcelona, Spain, 232–232.

Yang, F.-J. (2004). The domino effect and linear recursion. In: Proceedings of the International Conference on
Modeling, Simulation, and Visualization Methods. Las Vegas, Nevada, USA, 201–206.

Yang, F.-J. (2008). Another outlook on linear recursion. The SIGCSE Bulletin, 40(4), 38–41.
Zelenski, J. (1999). Nifty Assignments. In: Proceedings of the Thirtieth SIGCSE Technical Symposium on

Computer Science Education. p. 355.
Zmuda, M., Hatch, M. (2007). Scheduling topics for improved student comprehension of recursion. Comput-

ers & Education, 48(2), 318–328.

C. Rinderknecht. Christian Rinderknecht’s doctoral research at INRIA (French Na-
tional Institute for Research in Computer Science and Control) dealt with the application
of formal methods to telecommunication protocols and was defended in 1998, at Uni-
versité Pierre et Marie Curie. From 2003 to 2012, he was an Assistant Professor at École
Supérieure d’Ingénieurs Léonard de Vinci (France) and Konkuk University (Republic of
Korea). Since 2013, he works at Eötvös Loránd University (Budapest, Hungary) in the
EIT ICT Labs (ictlabs.elte.hu).

Rekursinio programavimo mokymo ir mokymosi apžvalga
Christian RINDERKNECHT

Straipsnyje pateikiama rekursinio programavimo mokymo ir mokymosi literatūros apžvalga.
Trumpai apžvelgęs rekursijos pradmenis programavimo kalbose ir kaip ją priima programuotojai,
autorius pristato rekursijos mokymo metodus, įskaitant vadovėlių apžvalgą ir keletą programavimo
metodologijų, taip pat funkcinę ir imperatyvinę paradigmas bei skirtumą tarp valdymo ir duomenų
struktūrų. Autorius pritaria kitiems tyrėjams, teigiantiems, kad problema turi būti nagrinėjama re-
miantis bendraisiais atvejais, pažymint panašumą su indukcija matematikoje, pateikiant konkrečias
rekursijos analogijas, naudojant žaidimus, animaciją, multimediją, virtualiąsias mokymosi aplinkas
ir vizualųjį programavimą. Straipsnyje aptariami Logo programavimo kalbos taikymo mokyklose
didaktiniai aspektai, taip pat apžvelgiamos konstruktyvistinio ir konstrukcionistinio mokymosi te-
orijos. Straipsnyje pateikiami ansksčiau identifikuoti mokinių mentaliniai modeliai, kurie modifi-
kuoti praplečiant juos kinestetiniu ir sintoniniu modeliais.

