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Abstract. We survey the literature about the teaching and learning of recursive programming. 
After a short history of the advent of recursion in programming languages and its adoption by 
programmers, we present curricular approaches to recursion, including a review of textbooks and 
some programming methodology, as well as the functional and imperative paradigms and the 
distinction between control flow vs. data flow. We follow the researchers in stating the problem 
with base cases, noting the similarity with induction in mathematics, making concrete analogies 
for recursion, using games, visualizations, animations, multimedia environments, intelligent tutor-
ing systems and visual programming. We cover the usage in schools of the Logo programming 
language and the associated theoretical didactics, including a brief overview of the constructivist 
and constructionist theories of learning; we also sketch the learners’ mental models which have 
been identified so far, and non-classical remedial strategies, such as kinesthesis and syntonicity. 
We append an extensive and carefully collated bibliography, which we hope will facilitate new 
research.
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Foreword

In this article, we survey how practitioners and educators have been teaching recursion, 
both as a concept and a programming technique, and how pupils have been learning it. 
After a brief historical account, we opt for a thematic presentation with cross-references, 
and we append an extensive bibliography which was very carefully collated. The bibli-
ography is the foundation of our contribution in the sense that we started from it, instead 
of gathering it in support of our own ideas, as is usual in research papers.

In writing this survey, we committed ourself to several guidelines which the reader is 
advised to keep in mind while reading.

We restricted ourself exclusively to the published literature on teaching and learn-1. 
ing recursive programming, not computer programming in general. While it may 
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be argued that, for example, articles and books about functional programming 
almost constantly make use of recursion, we preferred to focus on the papers pre-
senting didactical issues explicitly and exclusively related to recursion.
We did not review the emergence of the concept of recursion from its mathemati-2. 
cal roots, and we paint a historical account with our fingers, just enough to address 
the main issues of this survey with a minimal background information.
We did not want to mix our personal opinion and assessment of the literature with 3. 
its description, because we wanted this article to be in effect a thematic index to 
the literature, even though it is not possible to cite all references in the text, for 
room’s sake. The only places where we explicitly express our own ideas are in our 
own publications, in the definitions found in the introduction (in the absence of 
bibliographic reference) and in the conclusion.
We did not cover topics like the teaching of recursion and co-recursion in the con-4. 
text of lazy evaluation, or programming languages based on process algebras or 
dataflow, because they have not been addressed specifically in didactics publica-
tions, perhaps because they are advanced topics usually best suited for postgradu-
ate students, who are expected to master recursion, and most publications deal 
with undergraduates or younger learners.
Despite our best efforts in structuring the ideas found in the literature, the follow-5. 
ing presentation contains some measure of repetition because papers often cover 
mutually related topics, so a printed survey cannot capture exactly what is actually 
a semantic graph, and such a graph would better support a meta-analysis of the 
literature (where cross-referencing, publication timelines, experimental protocols 
and statistics would be in scope) rather than a survey.

Introduction

In abstract terms, a definition is recursive if it is self-referential. For instance, in pro-
gramming languages, function definitions may be recursive, and type definitions as well. 
Give’on (1990) provided an insightful discussion of the didactical issues involved in the 
different meanings ascribed to the word, which appeared first in print by Robert Boyle 
in 1660 (New Experiments Physico-Mechanicall, chap. XXVI, p. 203) to qualify the 
movement of a moving pendulum, which returns or “runs back”. (Beware the incorrect 
and ominous “to recurse”.)

A short history. Formal definitions based on recursion played an important role in the 
foundation of arithmetic (Peano, 1976) and constructive mathematics (Skolem, 1976, 
Robinson, 1947, 1948), as well as in the nascent theories of computability (Soare, 1996, 
Oudheusden, 2009, Daylight, 2010, Lobina Bona, 2012), with the caveat that recursion 
theory is only named so for historical reasons. The first computers were programmed in 
assembly languages and machine codes (Knuth, 1996), but the first step towards recur-
sion is the advent of labelled subroutines and hardware stacks, by the end of the 1950s. 
BASIC epitomises an early attempt at lifting these features into a language more abstract 
than assembly: recursion is simulated by explicitly pushing (GOSUB) program pointers 
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(line numbers) on the (implicit) control stack, and by popping (RETURN) them. Accord-
ing to the definition above, this is not recursion, which is to be understood as being 
purely syntactic (a function definition), not semantic (the evaluation of an expression). 
Moreover, the lack of local scoping precludes passing parameters recursively. Neverthe-
less, “recursion” has been taught with BASIC by Daykin (1974).

With even more abstract programming languages, fully-fledged recursion became 
a design option, first advocated in print by Dijkstra (1960) and McCarthy (1960), and 
implemented in LISP, ALGOL, PL/I and Logo (Martin, 1985, Lavallade, 1985), with 
the notable exceptions of Fortran and COBOL. Formal logic was then used to ascribe 
meanings to programs, some semantics relying on recursion, like rewrite systems, some 
others not, like set theory or λ-calculus (where recursion is simulated with fixed-point 
combinators). Even though the opinion of Dijkstra (1974) (1975) varied, recursion 
proved a powerful means for expressing algorithms (Dijkstra, 1999) (Reingold, 2012), 
especially on recursive data structures like lists, i.e., stacks, and trees. With the legacy 
of LISP and ALGOL, together with the rise and spread of personal computers, recursion 
became a common feature of modern programming languages, and arguably an essential 
one (Papert, 1980, Ford, 1982, Astrachan, 1994).

1. Recursion, Iteration and Loops 

Recursion is often not clearly understood, as demonstrated by the frequent heated or 
misguided discussions on internet forums, in particular about the optimisation of tail 
calls. Moreover, some researchers implicitly equate loop and iteration, use the expres-
sion “iterative loop”, or call recursion a process implemented by means of a control 
stack, whilst others use a syntactic criterion.We must define recursion in order to relate 
it to other concepts, like loops, iteration, tail recursion, embedded recursion, structural 
recursion etc.

Definitions. Give’on (1990) remarked: “the concept of recursion is being vaguely and 
inconsistently constructed from some syntactical properties of the program, from its as-
sociated semantics and from features borrowed from models of execution of programs”. 
Indeed, broadly speaking, there are two angles to approach the question: the static (syn-
tactic) approach and the dynamic approach to recursion. Sometimes the dichotomy is put 
in terms of programs (structured texts or abstract syntax trees) versus processes (autono-
mous agents or stateful actors). In fact, to address the vast literature about the teaching 
and learning of recursion, it is essential to understand both views and their relationship.

In the static comprehension, recursion is restricted to the general definition we gave 
at the start of this introduction: the occurrence of the symbol being defined inside its 
definition (what is called impredicativity in logic). Implicitly, this means of course that 
it must be clear what the denotation of the occurring symbol is, in order to determine 
whether it is an instance of the definition. For example, in the language OCaml, the func-
tion definition

let rec f x = (fun _ -> x) f
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is recursive because the name f in the right-hand side refers to the f in the left-hand 
side. Note that there is no call to f in the definition of f, so the concept of recursive 
call is actually irrelevant: recursion in this context is a property of definitions based on 
lexical scoping rules, not of the objects potentially computed (values), nor the way they 
are computed (semantics). In particular, the recursive definition of a function does not 
necessarily entails that it is total, hence terminates for all inputs. (A type system may 
enforce that property, as in Coq or Agda.) Sometimes, an examination of the program 
cannot determine whether the occurrence of a symbol refers to the definition at hand. For 
instance, let us consider the following fragment of Java:

public class T { public void g(T t) { ... t.g(t); ... } }

The occurrence of g in the expression t.g(t) does not necessarily refers to the cur-
rent definition of the method g, because that method may be overridden in subclasses. 
Therefore, here, we cannot conclude that g is recursive according to the static criterion. 
(It can be argued, though, that the class T is recursive because its definition includes the 
declaration (type) of its method g, where T occurs – Interfaces perhaps illustrate this 
better.)

The dynamic comprehension of recursive functions can be expressed abstractly as 
a property about dynamic call graphs: recursion is a reachable cycle, which means, in 
operational terms, that the control flow of calls returns to a vertex (a function) which 
was previously called. Here, the notion of recursive definition is not central, and it makes 
sense to speak of recursive call (a back edge closing a path). Another, less general, ap-
proach to a dynamic definition of recursion relies on a particular execution model, often 
based on stack frames allocated to function calls and their lexical context. Anyway, as a 
property about the control flow, recursion in that sense becomes undecidable in general 
for Turing-complete languages.

It should be noted that the static and dynamic definitions of recursion may overlap, 
but are different in general, that is, if a function is recursive according to the syntactic 
criterion, it may not be recursive according to the dynamic criterion (as the above OCaml 
function f illustrates), and vice versa. Consider the following OCaml program imple-
menting the factorial function:

# let pre self n = if n = 0 then 1 else n * self(n-1);;
val pre : (int -> int) -> int -> int = <fun>
# let rec fact n = pre fact n;;
val fact : int -> int = <fun>
# fact 5;;

- : int = 120

The syntactic criterion decides that pre is not recursive and fact is; the dynamic 
criterion sees these two functions as mutually recursive, that is, the control flow goes 
from one to the other, and vice versa. Furthermore, there are different techniques to 
achieve dynamic recursion without static recursion at all. For example, using fixed-point 
combinators in OCaml with the command-line option –rectypes:
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# let pre self n = if n = 0 then 1 else n * self(n-1);;
val pre : (int -> int) -> int -> int = <fun>
# let y f = (fun x a -> f (x x) a) (fun x a -> f (x x) a);;
val y : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>
# let fact = y pre;;
val fact : int -> int = <fun>
# fact 5;;
- : int = 120

Here, neither the higher-order function y (called the call-by-value Y combinator), 
nor the function pre are statically recursive (as the absence of the keyword rec shows 
well), but they are mutually recursive in the dynamic sense. (The rationale behind the 
definition of y is obscure, but relies on the fact that (y f) x yields the computation of 
(f(y f)) x, showing that y f is the fixed point of f.) It is even possible to define 
the factorial function without recursion, loops or jumps (goto) in C, but the program is 
cryptic:

#include<stdio.h>
#include<stdlib.h>

typedef int (*fp)();

int fact(fp f, int n) {
return n? n * ((int (*)(fp,int))f)(f,n-1) : 1; }

int read(int dec, char arg[]) {
return (’0’ <= *arg && *arg <= ’9’)?
read(10*dec+(*arg - ’0’),arg+1) : dec; }

int main(int argc, char** argv) {
if (argc == 2) printf(“%u\n”,fact(&fact,read(0,argv[1])));
else printf(“Only one integer allowed.\n”);
return 0; } 

(See Goldberg and Wiener (2009) for a practical use of such a simulated recursion 
in Erlang.) References can also be used to define the factorial function without static 
recursion, with a technique called Landin’s knot:

# let g = ref (fun n -> 42);;
val g : (’_a -> int) ref = {contents = <fun>}
# let f n = if n = 0 then 1 else n * !g(n-1);;
val f : int -> int = <fun>
# let fact = g := f; fun n -> !g(n);;
val fact : int -> int = <fun>
# fact 5;;
- : int = 120
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Here, none of the definitions are statically recursive, although f is dynamically re-
cursive.

Finally, it is perhaps worth insisting on the case where there are more than one 
definition, like  () :=  ( – 1) and  () :=  ( + 1  ( – 1)). Neither defini-
tion is statically recursive, although they are mutually recursive according to the dy-
namic interpretation. Furthermore, it is clear that these definitions are equivalent to 
 () :=  (  ( – 2)), which is statically recursive. This shows that the concept of 
mutual recursion is dynamic, but the static criterion could be extended to apply transi-
tively to the static call graph, which is an over-approximation of the dynamic call graph, 
so we can speak of mutual recursion in a static sense as well, but keeping in mind that 
there can be mutual recursion statically when there is none dynamically.

Tail recursion, iteration and loops. The concept of tail recursion is difficult to appre-
hend because it is built upon both the dynamic call graph and the data flow. We have 
already seen that recursion can be defined as a cycle in the dynamic call graph. Here, 
we define the dataflow graph as the dynamic call graph with an additional kind of edges 
oriented according to the direction where the data flows (it is a multigraph): if a caller 
passes arguments to the callee, there is a data edge doubling the control edge; if the value 
of a function call is needed to further compute an expression or complete an instruction, 
there is a data edge from the callee to the caller, that is, a backward data edge with respect 
to the control edge. Since, in the absence of run-time errors, the result of a call is needed, 
at the very least, to stand for the result of the caller itself, there is always a back edge. 
Therefore, we could make those edges implicit and only retain them when the value of 
the call is needed in a strictly embedding expression, not just to be returned in turn. Tail 
recursion is then a cycle along the control edges, which is not a retrograde cycle following 
the data edges. In other words, the data flows solely in the same direction as the control 
flows. (Note that, in general, there may be no data flow between two calls.)

For instance, the value of the recursive call in  ( ) :=  (  ()) is the value of 
 ( ) being defined, so the call is tail recursive. On the other hand, the value of the 
call  ( – 1) in  () :=  £  ( – 1) is not the value of the call  () being defined 
because a multiplication by  is pending, so it is not tail recursive. The same holds for 
 () :=  (  ( – 1)). Note that, within the dynamic interpretation of recursion, the 
concept of tail recursion applies to function calls, not to function definitions as a whole, 
so it is technically incorrect to say that a function definition is tail recursive.

Within the static understanding of recursion, it is not possible to define tail recursion 
in general because only definitions may be recursive and only calls may be in tail posi-
tion. The latter refers to a syntactic criterion which implies that the value of a call is only 
used to become the value of the current function being called. In practice, however, it 
is possible to speak of a tail recursive call when the static and dynamic interpretations 
agree, that is, when a definition includes non-ambiguously a call to the function defined 
(a special case of static recursion) and that call is in tail position. Nevertheless, since 
the very reason to distinguish tail recursive calls is that they can often be compiled as 
efficiently as loops are (a technique known as tail call optimisation), the interaction 
between the control flow and the data flow must be made explicit anyway, even within 
a static framework, and this proves challenging to students and professors alike. Even 
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more puzzling is the fact that the optimisation applies to non-recursive calls as well, as 
long as they are in tail position.

When a recursive call is not tail recursive, it is sometimes called an instance of em-
bedded recursion. In theory, it is always possible to rewrite any embedded recursion into 
tail recursion, but the result can be rather hard to understand, hence difficult to design 
directly. Moreover, in programming languages featuring conditional loops (while), re-
cursion can be avoided in theory, but, in practice, many algorithms are expressed more 
compactly or more legibly if recursive. A loop is a segment of code syntactically distin-
guished and whose evaluation is repeated until a condition on the state of the memory is 
met. The syntactic condition, e.g., a keyword and markers for a block, is meant to dif-
ferentiate loops from source code whose control flow relies on jumps (goto) and could 
actually be an unstructured implementation of loops (using backward jumps), but are not 
loops. Iteration is none other than the concept of repetition applied to a piece of source 
code, therefore, from a theoretical standpoint, it should include recursion and loops, but, 
in practice, iteration is often used as a synonym for the execution of a loop in an im-
perative language (looping); in a purely functional language, iteration is tail recursion. 
Conditional loops (while) and recursion have the same expressive power, so using one 
form or the other is a matter of style as long as side-effects are allowed, because loops 
require a model of computation where data is mutable.

As we mentioned earlier, some researchers prefer to define recursion not on pro-
grams, but on processes, that is, on the dynamic interpretation of programs. For in-
stance, Kahney (1983) defines recursion as a process “that is capable of triggering new 
instantiations of itself, with control passing forward to successive instantiations and 
back from terminated ones.” Of course, one data structure suitable for implementing 
this mechanism is the control stack, which we already mentioned about “recursion in 
BASIC” (Daykin, 1974). It is perhaps interesting to notice the use of the “forward” and 
“backward” terminology about the control flow on the call graph, although that graph is 
oriented from callers to callees and there are no back edges because these would not de-
note calls but returns. (Our own definition of dynamic recursion is a cycle in the dynamic 
call graph, where “backward” qualifies the data flow superimposed on the call graph.) 
We will see in a forthcoming section that this operational interpretation of recursion 
can be suitably exploited by kinesthetic teaching. The sections on analogies and mental 
models also revisit this choice. Finally, when contrasting the static (syntactic) and dy-
namic (control stack) definitions, it is worth keeping in mind that it is possible to com-
pile recursive definitions of functions in such a way that the size of the control stack is 
statically bounded; in other words, recursion can always be transformed into iteration.

Teaching. Clearly, recursion and loops are not mutually exclusive and may serve the 
same purpose, which often bewilders the beginner. Consequently, a simple attempt at a 
remedy consists in clearly separating the different concepts at stake in the evaluation of 
a program (Velázquez-Iturbide, 2000), so that side-effects, for instance, do not get in the 
way of learning recursion declaratively. To teach the difference between iteration and 
embedded recursion, some researchers have proposed to teach how to translate an embed-
ded recursive definition into an iteration, while remaining in the same programming lan-
guage (Augenstein and Tenenbaum, 1976, Rubio-Sánchez and Velázquez-Iturbide, 2009, 
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Rubio-Sánchez, 2010, Rinderknecht, 2012). Foltynowicz (2007) went even further by 
deriving loops from embedded recursion, and vice versa, which is of great theoretical and 
practical interest, in particular for understanding compilers and interpreters. By exhibit-
ing a systematic way to move back and forth from recursion to loops, while maintaining 
the meaning invariant, these didactic approaches aim at demystifying recursion without 
resorting to a low-level view of evaluation with the control stack.

Finite iteration is unidirectional in the sense that the control flow does not return to 
a previous program location where the environment, i.e., the bindings of the variables 
to their values, is the same. Embedded recursion is often called bidirectional when it 
is based on the strict interpretation of the composition of functions, as opposed to a 
non-strict semantics, like lazy evaluation, which is perhaps better explained by graph 
rewriting. Consider for instance  ( ()), where  is a value. First, the value of  () is 
computed (control and data flow forward), that value is bound to an implicit variable  
(control and data flow back) and then the call  () is evaluated (control and data flow 
forward).

Finally, let us take note of a radical and contrarian view: to avoid recursion as much 
as possible (Anonymous, 1977, Buneman and Levy, 1980). For instance, Harvey (1992) 
advocates the use of a functional style where recursion is hidden inside higher-order 
functions like maps and folds. This is indeed the approach often taken when teaching 
purely functional programming languages, especially those with a non-strict semantics 
like Miranda or Haskell.

2. Functional Programming 

Segal (1994) notes that, in the context of the functional programming language Miran-
da, “by using the library of functions as a toolbox, recursion, the underlying structure 
of many of the functions and the only repetitive construct provided by the language, 
can remain largely hidden.” Er (1984) argued that recursion is made difficult by block-
structured programming languages, which suggests that one way of encouraging the use 
of desirable constructs, like recursion, would be to employ or develop domain-specific 
languages (Sinha and Vessey, 1992); cf. Brooks et al. (1992). It would then make sense 
to teach recursion with functional languages, because these feature prominently math-
ematical functions and immutable data, forcing the programmer to think recursively 
(Henderson and Romero, 1989, Howland, 1998).

Because it is possible, for the purpose of teaching, to define a semantics for function-
al languages based on term or graph rewriting, Velázquez-Iturbide (1999), Pareja-Flores 
et al. (2007) and Rinderknecht (2012) can ask learners to trace by hand the evaluation 
of their small programs. Segal (1994) remarks that “we would argue [...] that the ability 
to be able to evaluate a recursive function mentally or ‘by hand’ (that is, independent of 
a machine), is an essential component of recursive knowledge for both learners and ex-
perts.” In the case of teaching higher-order functions, using manual reductions is also a 
recommendation of Clack and Myers (1995), who also list a long series of typical errors 
and their analysis. Furthermore, Burton (1995) observes that 
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perhaps students are puzzled, unnecessarily, by the the language (I refer to 
natural language here) with which we talk to them about recursion. Peter 
Landin is fond of pointing out the numerous inconsistencies with which such 
language is riddled (the phrase “calls itself ”, for instance, probably elides 
all kinds of different semantic levels). An advantage of teaching via reduc-
tion sequences is that it enables us to take the (natural) language out – just 
reduce, reduce, reduce (perhaps with the aid of a machine).

He also recommends what he calls a “separation of concerns” in teaching at first list 
processing, pattern matching and recursion in isolation: this avoids the issue for the stu-
dents to assimilate recursion at the same time as other imperfectly understood concepts. 
Velázquez-Iturbide (1999) also relies on term rewriting to teach recursion before moving 
to recursion in an imperative language with recursive data types. By writing down the 
rewrite system in the exact order of a top-down design, students become accustomed to 
laying out calls to functions yet to be defined; by also asking them to write down all the 
left-hand sides of the rules (patterns) before proceeding to the right-hand sides in ran-
dom order, not only completeness is improved, but also the conception of a program as a 
text written in one pass is undermined, and the model of a form or a blueprint is proposed 
instead. This twofold method seems to defuse a bit the typical question of a recursive 
call (right-hand side) to the current function “still under construction”, because at least 
all the configurations of the input (left-hand side) have been already laid out and it is also 
normal to call yet undefined functions, just like it is normal to have pending references 
in a map being drawn to other parts yet to be filled. This view seems to be one of the 
conclusions of Vitale (1989), when he writes, in abstract terms:

It is proposed that a restricted notion of “recursion” could be usefully de-
fined, entailing:

 1. that the attitude of the subject, with respect to the definition of a notion, 
the solution of a problem, the answer to a question, etc., should contain a 
measure of suspended attention, deferring in a way the final restructuring 
of the definition solution, answer, etc., to the completion of a downward 
and then upward spiralling path;
 2. that the spiralling path should be describable by the dialectical coexis-
tence of permanence (the path, global because relying on the various steps) 
and change (the pitch of the spiral, local because defined – and possibly 
changing – at every turn).

(For some technical corrections on the article of Vitale (1989) and some context 
on the relevance of recursion in the cognitive sciences and artificial intelligence, see 
the follow-ups by Trautteur (1989) and Apostel (1991), as well as Kieren (1989) in the 
context of Logo.) Furthermore, by using directed acyclic graphs to represent programs 
and data, instead of abstract syntax trees, aliasing (data sharing) becomes visible and the 
control stack and heap can arise from this model without resorting to low-level descrip-
tions (Rinderknecht, 2012).

Another approach, advocated by Felleisen et al. (2001), consists in systematically 
starting with the definition of recursive data types, because such types already suggest 
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the recursive structure of the function definition to process their values. We will revisit 
this method when presenting structural recursion. Pirolli (1986) showed that focusing 
the teaching of recursion on the structure of the function definition is more effective than 
insisting on the evaluation process, with traces of the control and data flows.

When loops are taught after recursion in a functional language, no transfer of skills 
seems to be observed, undermining the idea that iteration is inherently simpler than re-
cursion (Mirolo, 2011). For an equivalent study with logic programming in Prolog, see 
Haberman (2004). Moreover, simple functional programs on lists can be translated sys-
tematically in Java (Rinderknecht, 2012), following design patterns similar to those by 
Felleisen and Friedman (1997), Bloch (2003) and Sher (2004). The programs which are 
derived are in static single assignment form and eschew the null from Pandora’s vase 
(Cobbe, 2008, Hoare, 2009). However, Segal (1994), Clack and Myers (1995) noted that 
inducing students to think recursively with functional languages may yield some of the 
problems encountered with imperative languages, and Paz and Lapidot (2004) showed 
how prior experience with imperative programming influences the learning of functional 
programming. This brings us to examine when is recursion taught.

3. Curricular Approaches

The scheduling of the teaching of recursion in school curriculums has long been debated 
(Olson, 1987, Barfurth and Retschitzki, 1987, Greer, 1989). For example, Zmuda and 
Hatch (2007) compare two approaches: the scheduling of consecutive units of teaching 
on recursion versus the intermittent teaching of recursion, whereby two units about re-
cursion are separated by a different topic.

Secondary schools. In many countries, programming literacy, as opposed to vocation-
al training on software products (e.g., ICT in the United Kingdom since the 1990s), 
is still absent in the secondary schools curriculums. For instance, the French govern-
ment officially introduced it only in July 2011, as an option for science majors, and 
recursion is not even mentioned in the new regulation, whose implementation started 
in September 2012. (The mathematics curriculum contains only one paragraph about 
algorithms, which must be explicitly iterative (Modeste, 2012).) Wherever program-
ming is featured in introductory courses, recursion is usually avoided, even though it is 
present in mathematics courses, usually in the guise of numerical progressions, Euclid’s 
algorithm, Newton-Raphson approximation method, and proofs by mathematical induc-
tion (Buck, 1963). Therefore, because university students often experience significant 
difficulties in grasping recursive programming (Sooriamurthi, 2001, Ginat, 2004), some 
educators have insisted on a better articulation between secondary and post-secondary 
curriculums. For instance, some researchers have been promoting a greater presence 
of discrete mathematics and proof techniques in secondary schools (Abramovich and 
Pieper, 1996, da Rosa, 2002, Rosenstein et al., 1997, Kaiser, 2004a,b), as well as the 
creation of computing clubs with activities about recursion (Gunion et al., 2009a). Oth-
ers have emphasised the duality between recursive programming and mathematical in-
duction (Peelle, 1976, Ford, 1984, Leron and Zazkis, 1986, Anderson, 1992, Brandt and 
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Richey, 2004, Polycarpou, 2006), which may be used as means to a transfer of skills 
from secondary mathematics, as is, into college informatics. Even a reverse transfer of 
skills, from recursive programming to problem solving in mathematics, has been envis-
aged by Hausmann (1985).

The teachers gleaning recursive definitions in the fields of secondary mathematics 
often come up with numerical progressions, including the versatile Fibonacci numbers 
(Rubio-Sánchez and Pająk, 2006, Rubio-Sánchez and Hernán-Losada, 2007, Rubio-
Sánchez, 2008), combinatorial identities from Pascal’s triangle, the pervasive factorial 
or the game known as “The Tower(s) of Hanoi (or Brahma).” (Buneman and Levy, 
1980, Anderson, 1992, Benander and Benander, 2008) Unfortunately, the pertinence of 
such examples is undermined by the fact that they frequently enjoy closed forms (like 
1 + 2 +    +  = ( + 1)2) or they are computationally inefficient (Er, 1984, 
Knight, 1988, Costello, 1990, Robertson, 1999, Stojmenovic, 2000, Manolopoulos, 
2005), which may not be an issue for a mathematician. Furthermore, to university stu-
dents interested in programming or professional training, these contrived exercises may 
appear useless and fail to match their expectations, tainting recursion by association. The 
same reaction is likely when outbidding with functions defined by more complex recur-
rent equations, like McCarthy’s “91 function,” Takeuchi’s function (Knuth, 2000) or the 
simplified form of Ackermann’s function (Robinson, 1947, 1948).

Fortunately, most textbooks avoid these pitfalls.

Textbooks. Since the aim of a textbook is to cover a given curriculum, it should not come 
as a surprise that there are no textbook exclusively devoted to recursive programming, 
but there have been some companion books, at least up to the 1990s, when computer 
programming entered mainstream education with the spread of personal computers. (As 
mentioned before, during the same period, hardware architectures and programming 
languages widely enabled recursion.)

In university education, from about 1965 to 1975, computer science emerged as a 
discipline independent from mathematics, which explains the rigorous approach of the 
books and the interest in theoretical explanations, as well as low-level implementations 
of recursion. This didactic choice was enabled by the mathematical savvy of the students 
and the few abstraction layers between programming languages and the hardware of 
the time. For example, Barron (1968) is concerned with the pragmatics of recursion, its 
implementation in run-time environments, the comparison with iteration, the natural ap-
plication to sorting, the mechanisms for recursion in compilers and numerical algorithms 
– all this with ALGOL. Burge (1975) starts with λ-calculus and combinatory logic, and 
proceeds with the evaluation of mathematical expressions, the definition and traversal of 
recursive data structures (lists and trees), parsing, sorting algorithms – also in ALGOL.

The following period, from about 1975 to 1985, saw recursion uprooted from theo-
retical grounds and presented both as a method and a programming technique for solving 
problems whose data structures are recursive (structural recursion), making plain the 
benefit because the program structure itself then matches that of the data it processes. 
For instance, Rohl (1984) begins with linked lists and binary trees, explains the solving 
strategy “divide and conquer” (The input is split, each non-atomic part is recursively 
processed and the partial solutions are finally combined to form the complete solution.) 
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and widens the scope to include mutual recursion (Rubio-Sánchez et al., 2008) and 
recursion on graphs – all with Pascal. Roberts (1986) (2006) wrote the most enduring 
book, first using Pascal and now Java, where the main difference with previous vol-
umes lies in recursion being illustrated by drawing fractals and backtracking when stuck 
in a labyrinth, whereas implementation issues make up the last chapter only.

Methodology. To tackle the understanding of the control flow, it is useful to work on 
design methodology (Kessler and Anderson, 1986). Indeed, embedded recursion is 
wrongly conceived as an expression of the familiar counting or accumulation technique 
within loops, not the consequence of the analysis of the original problem. As a rem-
edy, students could be taught to think declaratively when programming recursively in 
imperative languages (Give’on, 1989, Ginat and Shifroni, 1999), that is, to distinguish 
specification (what) from evaluation (how) (Ford, 1984). Equivalently, this means that 
recursion could be taught first as a method for solving problems (analysis and synthesis, 
familiar to mathematicians since Antiquity), before showing it to be also a program-
ming technique (McKavanagh, 1992, 2004). In the same vein, Ginat (2005), Ginat and 
Armoni (2006) follow a principle of Pólya distinguishing working forwards, which is a 
heuristics consisting in approaching the solution by stepwise deductions, and working 
backwards, which supposes the goal attained and concentrating on the inductive chain, 
back to the problem. In the context of functional programming, Rinderknecht (2012) 
calls the first method small-step design because the programmer focuses on the least that 
can be done in one evaluation step towards the solution, and the second big-step design 
because they assume that the final value is obtained in one step and it has to be (recur-
sively) decomposed in terms of the input. In general, the first way leads to iteration, 
whereas the second yields embedded recursion. These two methods should be taught as 
complementary heuristics, because, for the same problem, they may not bear definitions 
of commensurable efficiency.

Curriculum. To overcome students’ reluctance to use recursion within a course on pro-
cedural or object-oriented programming, it has been proposed to teach singly-linked 
lists before arrays and loops (Turbak et al., 1999, Bruce et al., 2005, Goldwasser and 
Letscher, 2007), which makes recursion appear as a rather natural way to move to and 
fro inside a unidirectional data structure. It is not surprising that this proposal, where re-
cursion in data types comes before recursion in functions, often originates from the con-
text of object-oriented programming languages (Felleisen and Friedman, 1997, Levine, 
2000, Bloch, 2003, Sher, 2004), but is also prominent in statically typed functional lan-
guages – refer to the book by Felleisen et al. (2001). Indeed, when generalised to other 
recursive data types, like trees, this kind of recursion is called structural recursion and, 
as mentioned earlier, it yields programs reflecting the structure of the data type, which 
is helpful since the latter is designed first. For instance, a binary tree is either empty or 
made of a root and two subtrees, thus the complete traversal of such a tree is expected to 
require a test for the tree emptiness and two recursive calls.

Didactics. Some researchers have been tackling the issue of teaching and learning re-
cursion through the lenses of cognitive sciences and psychology, inferring the mental 



A Survey on Teaching and Learning Recursive Programming 99

models of recursion (Sanders et al., 2006, Mirolo, 2009), in particular the faulty ones 
that novices construct by interacting with experts and the problem to solve. As explained 
by Bhuiyan et al. (1994), a mental model is twofold: “(1) a knowledge structure in a 
person’s mind that incorporates descriptive knowledge and functional knowledge about 
a concept or device; (2) a control mechanism that determines how this knowledge is 
used in problem solving.” Many of the references we gave in previous sections already 
contain significant discussions and analyses of mental models, as they are used as a ra-
tionale for guiding the design, for example, of a tutoring system or a curriculum. In the 
introduction, we also have mentioned Give’on (1990), who discusses some pedagogical 
issues with the different meanings of the word recursion, and it is fitting now to cite as 
well Lobina and García-Albea (2009) and Lobina (2011), Lobina Bona (2012), who 
bring forth a thoughtful analysis of the usages of the same word in the cognitive sciences, 
with an emphasis on linguistics and psychology. Indeed, these disciplines are essential 
to the didactics of programming. Lobina and García-Albea (2009) write: “In the 1950’s, 
linguists correctly employed recursion in reference to specific rewrite rules, but ever 
since their elimination from linguistic theory, most linguists have used recursion, rather 
puzzlingly, to refer to those structures that recursive rewrite rules were used to generate. 
This may well be the unfortunate legacy of employing rewrite rules.” Consequently, they 
recommend to reserve the term recursion for processes, not the products of these, be-
cause not all hierarchy (self-embedding) is generated by recursive processes. With these 
distinctions in mind, which will be touched upon again in the section about analogies, it 
is further worth reading Kilpatrick (1985), who discusses the analogical use of the words 
reflection and recursion in the didactics of mathematics.

According to the constructivist theory of learning (Wu, Dale and Bethel, 1998, Ben-
Ari, 2001) promoted by Jean Piaget, learners construct mental models to understand 
the world and act proactively, instead of passively reproducing a series of facts and be-
ing enjoined belief in a theory, as happens with too many traditional lectures. Inhelder 
and Piaget (1963) write: “the source of thinking making possible to design recursive 
solutions to problems lies in elemental forms of reasoning arising from students’ com-
prehension of the relations between the elements to which his/her actions are applied 
when attempting to solve instances of problems.” (The emphasis is ours.) The study of 
da Rosa (2005) argues that the role of the teacher is to help the student to transform this 
instrumental knowledge into a conceptual knowledge, and finally into formalisation, that 
is, program writing. Some researchers speak of “misconceptions”, others do not because 
they consider that these are simply transient stages, non-viable conceptions – a viable 
conception allowing to predict the outcome of new experiments. Götschi et al. (2003) 
explain: “Teachers should generate perturbations in the students’ existing conceptual 
structures and hence foster new combinations of concepts. This means that lecturers 
should present students with problems and examples that challenge their current under-
standing and reveal non-viable constructions.”

In the same vein, a constructionist theory, developed by Papert (1980), goes further 
by insisting that learning is best or truly achieved by making tangible objects in interac-
tion with the environment, which includes the educator. These approaches do not dimin-
ish in any way the role of the teacher, who is simply encouraged to engage constructively 
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with the pupils, and not to act as an oracle or a judge. It is assumed that the learners build 
their knowledge themselves, based upon previous idiosyncratic conceptions, which they 
reassess by means of interactive experiments under the benevolent supervision of an 
expert. Within this framework, where reassessment entails either reinforcement or refu-
tation, the self-referential nature of recursive definitions may seem a priori a cognitive 
challenge, which Papert (1960b) expresses as “the property of recursion being not the 
repetition of the same act as such, but the repetition of an act that is at the same time the 
same act and a different one.” In fact, the interest in mental models of recursion did not 
wait for the personal computers to reach homes and classrooms, as it can be traced (in 
the context of the psychology of mathematics first, and then computing) back to Papert 
(1960a) (1960b) and Piaget (Inhelder and Piaget, 1963, Piaget and Stratz, 1974). (See 
Matalon (1963), Eliot et al. (1979) also for early research on children.) Children and 
adolescents were at the centre of pedagogical investigations with the programming lan-
guage Logo. One hypothesis of Papert is that the syntonicity enabled by Logo helps the 
children to learn: “Turtle geometry is learnable because it is syntonic.” (Papert, 1980, 
p. 68) Roughly speaking, syntonicity is a psychological feeling of identification with a 
putative external agent, in this case the cursor on the screen, called the turtle. This feel-
ing, supported by the fact that the movements of the turtle are relative to its current posi-
tion (cf. PostScript below, in the section about Logo), entices the children to engage 
and enjoy what they make, which is more than a drawing since it involves a (projected) 
whole body experience.

Mental models. According to Kahney (1983), Kahney and Eisenstadt (1982), the mental 
model of experts, called copies model, is based on dynamic instances of procedures, i.e., 
processes, either passing (“forwards”) the control to newly created instances, or, if ter-
minated, returning it (“backwards”) to the instance who passed it – George (2000a) 
called the former active flow, and the latter passive flow. The copies model is the only 
one viable, that is, consistent with the operational semantics of recursive definitions. 
Students, on the other hand, seem to often build the looping model of recursion, whereby 
embedded recursion is wrongly understood as a kind of iteration and, typically will con-
sider the base cases as halting conditions (Haberman and Averbuch, 2002). To reduce the 
risk of confusion, McDougall (1985) recommended that, when teaching Logo, the “use 
of tail recursion for iterative situations be deliberately avoided. [...] Avoidance of early 
use in programming of tail recursion for repetition might avoid confusion with iteration 
in children’s mental models of recursion.” Indeed, according to Tempel (1985), “other 
flavors of recursion may not be encountered at all” by the learners.

Experiments with experts and novices were set up by Kahney to validate or refute 
the hypothesis that students had a looping mental model. With high probability, it ap-
peared that most of the students held the looping model instead of the copies model, and 
some of them had idiosyncratic models in mind, like the null model (when recursion is 
rejected), the syntactic model (when the structure of the program is used to predict its 
outcome, or, when writing it, the necessity of base and recursive cases is understood, 
but not the derivation of the actions), and the odd model (when the meaning of some 
keywords, e.g., EXIT and CONTINUE, is taken from their English usage).
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To explain the odd model, Paz and Lapidot (2004) suggest to consider the interfer-
ence of natural language in learning recursion, in the context of learning DrScheme:

It may be that some students attribute to the function the ability to change 
the parameter’s value, because of the association they create between the 
programming language and natural language. It is possible that students [...] 
interpret the expression (first L) as, for example, ‘take the first element’. 
The meaning of taking the first element, for them, is to extract it and drop the 
remaining elements, so that L is left only with the first element.

In the same vein, some researchers insist on bringing to the fore and qualifying the 
linguistic aspect of the relationship between learners and teachers. They set up experi-
ments, record all interactions with software and video, then analyse the transcripts to 
pinpoint the misunderstandings, trace them back to plausible causes and try to capture 
the mental model at work (Anderson et al., 1984, Levy and Lapidot, 2000, Levy et al., 
2001, Levy, 2001, Murnane and Warner, 2001, Levy and Lapidot, 2002). Furthermore, 
these verbal exchanges can be conducted not solely to infer a mental model of the stu-
dent and reach a diagnostic and remedy, but even to become a maieutic process on its 
own right (Chang et al., 1999, 2000).

Götschi and some collaborators (Götschi, 2003, Götschi et al., 2003, Sanders et al., 
2006) refined and extended Kahney’s classification of mental models; for instance, they 
identified amongst their university students an active model, when they understand the 
instantiations of recursive calls with smaller arguments and the reaching of the base 
cases, but they nevertheless fail to grasp the backward, or passive, flow of control from 
the completed instances to the current, pending one. They also proposed the step model, 
whereby students have not a complete concept of recursive flow of control and execute 
only one recursive call yielding a base case. There is also the return value model, which 
stems from misconceptions about when the values of function calls are constructed. The 
two last models are linked to some confusion about the evaluation of function calls in 
general, like parameter passing and making a function’s return value.

Bhuiyan et al. (1989) (1991) prefer the expression mental method instead of mental 
model and proposed a more detailed classification where generative methods comprise 
the loop method, the syntactic method, the analytic method, and the analysis/synthesis 
method; moreover, trace methods (Bhuiyan, 1992, Scholtz and Sanders, 2010) are used 
by students to verify the correctness of their solutions. (Götschi et al., (2003) define 
a trace as “a student’s representation of the flow of control and the calculation of the 
solution of a recursive program.”) The loop method is the obvious consequence of the 
flawed loop mental model. The syntactic method is frequently used by novices who have 
little understanding of recursion as a problem-solving method, but a good declarative 
knowledge about it. They know how to lie out a recursive template with base cases and 
recursive cases fitting into simple categories, and it works well for a wide variety of 
simple problems, but they have difficulties for more complex ones, for example when 
generative recursion (Felleisen et al., 2004) is needed, that is, when a recursive call 
does not apply directly to a substructure of the input, but to a transformed substructure. 
This issue is linked to a lack of understanding of recursion as a design method, there-
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fore, the next method, i.e., the analytic method, applies to slightly complex problems 
and proceeds from input and output requirements to an intermediary solution, before 
writing the code. The analysis/synthesis method goes further by dividing the problem 
into subproblems whose solutions must be combined: this is the most general method. 
(See earlier paragraph on methodology.) Dicheva and Close (1996) (1997) focused on 
misconceptions. Wu (1993) and Wu, Dale and Bethel (1998) explored the learning of 
recursion in the framework of David Kolb’s model (experiential learning theory), which 
we cannot detail here. For yet other angles, like programming competences, concrete vs. 
abstract models, static vs. dynamic copies model, classes of recursive functions etc. see 
Er (1995), Burton (1995), Chen (1998) and Mirolo (2010).

Anzai and Uesato (1982) found that children’s understanding of a recursive defini-
tion in the context of mathematics is eased by prior experience with iteration, although 
they added that it may be the case that writing recursive definitions in a programming 
language requires different, additional skills. Kessler and Anderson (1986) worked in 
the context of programming languages and searched for transfer of skills between tail 
recursion and iteration for novices and they confirmed the conclusion of Anzai and 
Uesato (1982): both studies found a positive transfer from writing loops to writing re-
cursive definitions, but not vice versa (although tail recursion is arguably too similar 
to iteration). Moreover, it seems that the incorrect looping model of recursion, previ-
ously acquired on loops, is more helpful than learning recursion directly. By contrast, 
Wiedenbeck (1988) found that previous knowledge of iterative examples does not seem 
to facilitate subsequent learning on similar recursive problems, although comprehension 
was slightly improved. Furthermore, Kurland and Pea (1985) studied how 12 year old 
subjects understood recursive definitions and iterations in Logo. They found that previ-
ous familiarity with iteration helps understanding tail recursion but hampers the correct 
grasping of embedded recursion, in accord with later work by Murnane (1992). Note 
that this is not a direct contradiction of Kessler and Anderson (1986), because the latter 
used tail recursion, and, for Wiedenbeck (1988), the transfer of skills is about compre-
hension, not design.

The role of examples in learning recursion has been investigated by Pirolli and An-
derson (1985), Wiedenbeck (1989), Pirolli (1991) and Tascón-Vidarte et al. (2010). Ex-
amples should be used to develop analogical problem-solving mechanisms, but care 
must be taken not to rely too much on them too early, lest the learners get stuck in the 
syntactic model of Kahney, and knowledge compilation mechanisms should also be built 
from past experiences.

4. Visualisation and Animation

Many educators try to capitalise on the fact that vision plays an important role in acquir-
ing concepts and informing their composition to build new ones. This opens different 
lines of inquiry: visual analogies of recursion, animating the evaluation of programs, 
visual programming languages, integrated development environments, virtual worlds 
and games.
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4.1. Analogies Objects

It is often claimed that everyday life lacks analogies for the concept of recursion (Pirolli 
and Anderson, 1985), so it is no surprise that most authors come up with the same ob-
jects, such as cauliflowers, including the healthy broccoli, ringed targets, tree branches, 
reflections on facing mirrors, tilings (Chu and Johnsonbaugh, 1987), ladders (Levy 
and Lapidot, 2002) and Russian dolls (Bowman and Seagraves, 1985). Typical geo-
metric figures are fractals (Riordon, 1984b, Elenbogen and O’Kennon, 1988, Wakin, 
1989, Bruce et al., 2005, Ammari-Allahyari, 2005, Stephenson, 2009b, Gordon, 2006) 
and certain kinds of artwork, most notably by the Dutch graphic artist M. C. Escher 
(Gunion et al., 2009b). Their structures are characterised by self-replication with self-
embedding (also called nesting), but, unfortunately, these examples are perhaps more 
likely to suggest infinity than recursion (whose evaluation must terminate to be useful 
and, in the case of embedded recursion, may require backtracking), and this involuntary 
association of infinity and recursion may explain the avoidance of the latter by novices 
(Wiedenbeck, 1989). By contrast, and with a more optimistic tone, Papert (1980) (p. 71) 
wrote the following about an exercise with Logo aimed at demonstrating recursion:

Thus we have a trick called “recursion” for setting up a never-ending 
process whose initial steps are shown [...]. Of all ideas I have introduced 
to children, recursion stands out as the one idea that is particularly able to 
evoke an excited response. I think this is partly because the idea of going on 
forever touches on every child’s fantasies and partly because recursion itself 
has roots in popular culture. For example, there is the recursion riddle: If 
you have two wishes what is the second? (Two more wishes.) And there is 
the evocative picture of a label with a picture of itself. By opening the rich 
opportunities of playing with infinity the cluster of ideas represented by the 
[...] procedure puts a child in touch with something of what it is like to be a 
mathematician.

But it seems difficult to generalise this observation, as Turkle (1984) reports that 
“Matthew, a good-natured and precocious child of five, was eagerly learning to write 
computer programs to make graphic designs on the screen. His mood changed abruptly 
and he left the computer in tears when he understood how to make a recursive program: 
a program whose action includes setting in motion an exactly similar program whose 
action includes setting in motion an exactly similar program, and so on.” McDougall 
(1991), also using Logo, reported that recursion in objects (figures produced by Logo 
processes) is firmly conceived by her daughter as different from recursion in processes 
or programs, but claimed that this conception is nevertheless useful because her daugh-
ter, who did not confuse iteration and embedded recursion, used it for teaching a peer. 
Earlier, Thompson (1985), also observing the dichotomy, asked the students to describe 
verbally the recursive structure and move towards the recursive Logo program. Mur-
nane (1991) discussed the demerits and merits of various models of recursion, and also 
uses Logo. (Section 4.5 will be devoted to Logo.)
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Processes. Researchers have also looked at everyday examples of recursive processes, 
instead of objects, for example, the fall of dominoes aligned in a row, which seems to 
suggest recurrent reasoning to children who are 12 years old or so, in the sense that they 
almost express the fall of any domino by the fall of the previous one (a local property), 
but descriptions by younger children are of the iterative type: the first domino falls and 
lets the second fall, and so the third will fall etc. (Piaget and Stratz, 1974) Of course, the 
recursion suggested here by the experiment is tail recursion, because it ends with the fall 
of the last domino. Nevertheless, Yang (2004) (2008) went further and claimed that such 
series of dominoes are an analogy for linear recursion, which is an embedded recur-
sion with one recursive call. More accurate are the processes which use backtracking, a 
distinctive feature of embedded recursion, to model the behaviour of an avatar or robot 
stuck in a labyrinth (Liss and McMillan, 1988, Dorf, 1992, Roberts, 2006).

Wirth (2008) provided an entertaining recursive method to randomly park cars in 
a street, and Brown (1972) tried to familiarise social scientists with recursion through 
examples in Logo.

Schiemenz (2002) came up with an application of recursion to business management, 
with more examples of recursive objects and recursive problem-solving. Kimura (1977) 
used businesses too as a framework for explaining the notions of program, processor and 
process. Embedded recursion is then expressed as the delegation of a task to a group of 
assistants working on complementary sets of the input. The same analogy is found in a 
paper by Edgington (2007), and, if enacted by the students as theatrical roles, it becomes 
kinesthesis and a multi-sensory experience for learning recursion in the classroom (Dorf, 
1992, Levine, 2000, Begel et al., 2004, Kátai, 2009). In particular, Ben-Ari (1996) pro-
posed to dramatise recursive algorithms, that is, to associate the solution to a real-world 
task with an algorithm having the same recursive structure, e.g., eating a chocolate bar 
and searching an array. The students enact the solution and later write the program. 
These playful activities can be considered as kinds of parlour games, which leads us now 
to review computer games dedicated to recursion.

4.2. Computer Games

There is an increasing interest for games, or game-like features (e.g., achievement badg-
es), for supporting educational purposes (so-called gamification of education), even in 
higher education. Although it was mentioned in section 3 that “The Tower(s) of Ha-
noi” has long been quite popular, very few studies have been carried out specifically 
about teaching recursion with video games. Amongst them, the setting of Rossiou and 
Papadakis (2007) is a virtual classroom, and Chaffin et al. (2009) designed a game to 
facilitate the transfer of skills to writing recursive programs. While very limited in time 
and number of participants, both studies support the use of computer games for teaching 
and learning recursion as a concept. As an alternative to games, recursive processes can 
also be merely illustrated by a series of snapshots or by an animation. The simplest form 
of visualisation consists in augmenting the text of a program with semantic annotations 
and pictures.
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4.3. Augmented Text

Since the 1970s, many graphical notations for inputs and activation trees, sometimes 
called recursion graphs, have been proposed, allowing novices to record and follow the 
evaluation of function calls (Jackson, 1976, Kruse, 1982, Haynes, 1995, Hsin, 2008). 
For example, if the input is a binary tree to be traversed, the activation tree is also a 
binary tree because each node is a call to the same function but with different subtrees 
as arguments. The teacher can show on the blackboard the location in the data diagram 
at the same moment that the activation tree is extended. Wei and Murray (2008) draw 
activation trees within a hyperbolic geometry. Moreover, memory allocation and vari-
able assignments decorate the corresponding Java program. Kurtz and Johnson (1985) 
animated the data diagram only.

The syntax of many imperative languages, like Pascal, is based on blocks, which 
makes it hard to trace the execution of function calls, particularly in the presence of re-
cursion (Er, 1984). This leads some instructors to recur to a low-level simulation of the 
execution, reifying the otherwise invisible control stack (Lee and Mitchell, 1985, Dupuis 
and Guin, 1989), but, according to Ginat and Shifroni (1999), this puts too much empha-
sis on the computing model (see also the paragraph about methodology). See also Pirolli 
(1986), whom we mentioned earlier in the section about functional programming.

Bell and Gilbert (1974) proposed to use Wirth’s syntax diagrams, designed for speci-
fying grammars of programming languages like Pascal. The usefulness of Backus-
Naur Forms (defining context-free languages) and Lindenmayer systems (L-systems) to 
teach recursion has also been noted by Er (1984), Proulx (1997) and Velázquez-Iturbide 
(1999) (2000). Zelenski (1999) proposed the generation of random sentences to experi-
ment recursion and Levine (2000) then commented that students have no trouble at all, 
perhaps because the textual expansion of a non-terminal is hardly seen as a procedure 
call, let alone calling itself.

For other closely related approaches, also based on annotations and pictures, see 
Er (1995), Hui and Iverson (1995), Jehng et al. (1999), George (1995) (1996) (2000a) 
(2000b) and Tung et al. (2001), some of whom we mentioned earlier about rewrite sys-
tems and functional languages.

4.4. Multimedia Environments

Animation has been more widely implemented by means of dedicated multimedia envi-
ronments (Rosenthal, 2005), either in isolation (for didactic purposes only), or in con-
nection with programming environments (Wilcocks and Sanders, 1994). Here, we will 
only review briefly those systems designed specifically to teach recursion.

Stern and Naish (2002a) (2002b) proposed a classification based on an analysis 
of recursive algorithms for sorting arrays and updating dictionaries: the first category 
groups searches, the second sorts and the last insertions. They claim that such distinc-
tions enable the tailoring of better animations, aimed at reinforcing the understanding 
of recursion. Fernández-Muñoz et al. (2007) proposed and implemented an automated 
classification based on source code inspection from which a dedicated animation is gen-
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erated. That system was developed extensively (Velázquez-Iturbide et al., 2008) (2009a) 
(2009b) (Velázquez-Iturbide and Pérez-Carrasco, 2010). The approach is practical and 
eclectic, with animations not only of the activation tree, but also of the data structure, 
the trace and the control stack.

Another direction is open by intelligent tutoring systems (Pirolli, 1986) (or interac-
tive learning environments), which are multimedia environments that provide interactive 
feedback and advice to the programmer. The system contains typical beginners’ strate-
gies so it can comment upon the code being written (McCalla and Greer, 1993). These 
strategies are based on mental models of the learners. It seems that the system designed 
by Greer (1987) became a reference for Bhuiyan et al. (1989) (1992) (1994), Bhuiyan 
(1992) and Greer et al. (1994).

As miscellanea, see Moreno-Armella (1992), Wu et al. (1996), Wu, Lee and Lin 
(1998). For a structured text editor guaranteeing the termination of recursive predicates 
in Prolog, see Bundy et al. (1991).

Visual programming. Visual programming languages enable the composition of program 
constructs by manipulating graphical representations instead of writing text. Good and 
Brna (1996) were the first to investigate whether these languages provided a better sup-
port for learning recursion than textual languages, and concluded negatively. Spreadsheet 
languages are sometimes considered as visual programming languages or even functional 
languages, and Burnett et al. (2001) focused on testing recursive programs with them. 
Kim (2003) proposed a string of classroom exercises to learn recursion with Excel.

Virtual worlds. Tascón-Vidarte et al. (2010) designed an interactive interface based on 
a tangible block-world with augmented reality to learn iteration on lists and aiming at 
the transfer of skills to directly write tail recursive definitions in Erlang. An earlier, 
three-dimensional virtual world was designed by Dann et al. (2001). For two-dimensional 
geometry considered as a virtual world, we have Logo.

4.5. The Logo Years

We would be remiss not to devote a whole section to Logo. The first thing that strikes the 
reader of the abundant literature about Logo is the enthusiasm that blows, page after page. 
Microcomputers were arriving in the classrooms and everyone was excited and deeply 
interested in their programming: teachers, of course, but also psychologists, didacticians, 
mathematicians, computer scientists, software companies, and even the children them-
selves, whose education was the focal point of attention. The geometric figures produced 
by the execution of Logo programs, the design underpinnings of the language, like its 
recursive, functional programming style and its grounding in developmental psychology, 
all this put Logo at the confluence of almost all the streams surveyed here: dynamic and 
geometric analogies for recursion, virtual worlds (in a more abstract sense, they are called 
microworlds in the context of Logo, like the microworld of the turtle, the microworld of 
words, of lists etc.), integrated environments, functional programming, games and theory 
of learning. Papert (1980) was a pioneer of this movement, taking part to the design of 
Logo at the end of the 1960s, and we quoted him in section 4.1 about recursion.
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McDougall (1985) (1988) (1989) (1990a) (1990b) (1991) has used Logo to teach 
her nine-year-old daughter, who ended mastering embedded recursion by age eleven. 
According to her, this result confirmed what Papert conjectured, namely that young chil-
dren in a computer-rich environment can learn abstract or formal thinking – In pass-
ing, Papert never attributed this capability to Logo alone. Unfortunately, the size of the 
study group makes it hard to generalise the findings. Rouchier (1986b) (1986a) (1987) 
observed adolescents’ difficulties in learning embedded recursion after understanding 
loops and iteration, and proposed to start teaching embedded recursion first. See also the 
articles by Barfurth (1987), Barfurth and Retschitzki (1987).

Following in the same footsteps, others (Gobet et al., 1989, Retschitzki et al., 1989, 
Gurtner et al., 1990, Retschitzki et al., 1991) noted that, in the geometric microworld 
of Logo, it is difficult to come up with exercises which show the superiority of embed-
ded recursion over iteration, whereas the microworld of lists is more pertinent. Perhaps 
the reason is that drawing is inherently a side-effect thereby it empowers loops. In the 
case of PostScript, a concatenative programming language dedicated to graphics, 
the implicit evaluation stack is used for all computations, including delaying the side-
effect of drawing, which is triggered by an explicit showpage instruction, so program-
ming remains declarative. Unfortunately, once embedded recursion has been wrongly 
understood as an iteration in the turtle microworld, the misunderstanding is carried over 
to the microworlds of words and lists. Moreover, these researchers observed the same 
difficulties in recognising the base cases (STOP rule) as with any other programming lan-
guage. Give’on (1991) presented a variant of Logo with multiple turtles that can move 
concurrently, and advocated that this paradigm yields simpler recursive programs than 
traditional (singly threaded) dialects of Logo.

Conclusion

The teaching and learning of recursion in computer programming courses has long been 
a subject of inquiry, attracting a wide range of researchers from many fields of knowl-
edge. It is not possible to isolate a current trend of investigation, as the hallmark of the 
newest papers can already be found in the early 1990s, although there seems to be a re-
cent decline in the number of publications and a concentration around a few researchers. 
Here are a few points that may deserve some attention.

Perhaps the common weakness of many experimental protocols lies in the small  ●
number of students (usually, one class), the short span of time (usually, one se-
mester) and the difficulty to define a control group. Consequently, it may help to 
bring on board statisticians in order to design larger and longer experiments (at 
least a three-year period).
Many studies lump all novices, whereas it seems useful to distinguish different  ●
profiles and cater them with different learning strategies, as some have proposed. 
But since the identification of the student mental model can only be achieved by 
teaching, this begets the question of adaptive teaching strategies, once the student 
has been classified.
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The approaches based on text rewriting (grammars, L-systems, rewrite systems)  ●
do not seem to raise issues with learners as far as recursion is concerned. It would 
be interesting to confirm this and explore whether the purported skills can be 
transferred to block-structured programming languages.
Mutual recursion has been studied by Rubio-Sánchez and his colleagues (Rubio- ●
Sánchez and Pająk, 2006, Rubio-Sánchez et al., 2008), who deemed it sometimes 
easier to teach than direct recursion. If confirmed, this would open a new way to 
teach direct recursion by program transformation (inlining) (Kaser et al., 1993). 
Examples of mutual recursion arise naturally in parsers, which were a favourite 
example in early textbooks, and it was noted above that the derivation of sentences 
from formal grammars (that is, the reverse function of parsing) usually does not 
raise problems with recursion. Another use case is finite automata, as found in 
telecommunication protocols, vending machines, automatic teller machines etc. 
(One state is implemented by one function whose argument is any of the labels on 
the outgoing transitions.)
Kinesthesis and syntonicity seem to be helpful and should be compared with ani- ●
mation, as it may be that watching or imagining the execution of a recursive func-
tion (in other words, tracing) is cognitively different from involving one’s own 
body, or a psychological representation of it. Perhaps augmented reality may help 
too, by creating an immersion (Tascón-Vidarte et al., 2010).
It should be impressed upon students that the control flow of recursion which  ●
many authors qualify as being “bidirectional”, is actually not specific to recursion 
by explaining the evaluation of arithmetic expressions with function compositions 
(Burge, 1975). (In imperative languages where instructions are separated by semi-
colons, an instruction can be shown to be an implicit function – an assignment is 
indeed an operator in the C family – and a semi-colon denotes composition.)
Many educators teaching recursion focus on the control flow, except perhaps if  ●
the language is object-oriented, because, in that case, the data flow becomes more 
relevant, and the design is more likely to be bottom-up. (An algorithm ends up 
being scattered amongst several methods in different classes, so recursion is ob-
scured by the amount of code to be read and mutual recursion is more likely.) That 
difference may explain why the professors teaching structural recursion on lists 
before arrays and loops are using some object-oriented language or a functional 
language. Those teaching a top-down design may end up reordering the defini-
tions in the program to have them compiled incrementally for testing purposes, 
and also because this corresponds to the order of synthesis. (See the analysis/
synthesis method.) By strictly lying down the top-down design in the code, which 
requires, for example, to use prototypes in C, or forward declarations in Pascal, 
the students get used to read incomplete programs. (The same can be said about 
using modules, of course.) Perhaps that skill is correlated with a better under-
standing of recursion.
Tail call optimisation should be explained without resorting to low-level concepts  ●
(Rinderknecht, 2012).
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Rekursinio programavimo mokymo ir mokymosi apžvalga
Christian RINDERKNECHT 

Straipsnyje pateikiama rekursinio programavimo mokymo ir mokymosi literatūros apžvalga. 
Trumpai apžvelgęs rekursijos pradmenis programavimo kalbose ir kaip ją priima programuotojai, 
autorius pristato rekursijos mokymo metodus, įskaitant vadovėlių apžvalgą ir keletą programavimo 
metodologijų, taip pat funkcinę ir imperatyvinę paradigmas bei skirtumą tarp valdymo ir duomenų 
struktūrų. Autorius pritaria kitiems tyrėjams, teigiantiems, kad problema turi būti nagrinėjama re-
miantis bendraisiais atvejais, pažymint panašumą su indukcija matematikoje, pateikiant konkrečias 
rekursijos analogijas, naudojant žaidimus, animaciją, multimediją, virtualiąsias mokymosi aplinkas 
ir vizualųjį programavimą. Straipsnyje aptariami Logo programavimo kalbos taikymo mokyklose 
didaktiniai aspektai, taip pat apžvelgiamos konstruktyvistinio ir konstrukcionistinio mokymosi te-
orijos. Straipsnyje pateikiami ansksčiau identifikuoti mokinių mentaliniai modeliai, kurie modifi-
kuoti praplečiant juos kinestetiniu ir sintoniniu modeliais. 




