
Informatics in Education, 2013, Vol. 12, No. 2, 153–179
© 2013 Vilnius University

153

Java Across Different Curricula, Courses and
Countries Using a Common Pool of
Teaching Material

Mirjana IVANOVIĆ1, Zoran BUDIMAC1, Anastas MISHEV2,
Klaus BOTHE3, Ioan JURCA4

1 Department of Mathematics and Informatics, Faculty of Sciences
 University of Novi Sad, Serbia
2 Institute of Informatics, Faculty of Natural Science and Mathematics
 University “Ss. Cyril and Methodius” in Skopje, FYR Macedonia
3 Institute of Informatics, Humboldt University Berlin, Germany
4 Department of Computer Science and Engineering, Faculty of Automation and Computers
 “Politehnica” University of Timișoara, Romania
e-mail: {mira, zjb}@dmi.uns.ac.rs, anastas.mishev@finki.ukim.mk, bothe@informatik

hu-berlin.de, ioan.jurca@cs.upt.ro

Received: July 2013

Abstract. Under the auspices of a DAAD funded educational project, a subproject devoted to
different aspects of teaching the Java programming language started several years ago. The initial
intention of the subproject was to attract members of the subproject to prepare some teaching ma-
terials for teaching essentials of the Java programming language. During the last two years, some
advanced Java topics have been selected and appropriate teaching materials have been produced.
The available pool of common teaching materials can be used in a wide range of university courses
in participating countries. In this paper we share some of the results and experiences collected dur-
ing the subproject that come from intensive use of the prepared teaching materials for a variety of
Java topics in different countries and universities.

Keywords: course development, preparation of teaching material, common course, Java program-
ming language.

1. Introduction

Coinciding with the introduction of the new and innovative trends in European high edu-
cation, under the auspices of the “Stability Pact of South-Eastern Europe” and “DAAD
– Deutscher Akademischer Austausch Dienst” (German foundation – “German Academic
Exchange Service”), a project in the domain of education has been established in 2001.
The main idea of the project was to create and develop common courses in several fields
of computer science and to enable the use of shared teaching materials at a wide range
of universities in member countries of the project consortium. In the ten years of its

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca154

existence, the project has included participants from fifteen universities, coming from
nine countries: Germany, Serbia, FYR Macedonia, Bulgaria, as the core members, and
Croatia, Bosnia and Herzegovina, Romania, Albania, and Montenegro as associate mem-
bers. More about the project, its goals and members can be found in (Bothe et al., 2009;
Budimac et al., 2011).

The general goal of the project has been improvement and adjustment of educational
processes in South-Eastern Europe, application of the current trends, which have been
already introduced and applied in the European Union countries. In the meantime, the
project has been divided into several subprojects. The results of activities and efforts
conducted under the subproject CTM_JOOP – “Common teaching materials on object-
oriented programming using Java”, which started in 2004, are presented in this paper.

The rest of the paper is organized as follows. Section 2 brings an overview of use of the
Java programming language in different courses/curricula/universities. Section 3 shortly
discusses different Java teaching material repositories and compares them with our ap-
proach. The structure of the common pool of Java teaching materials prepared and their
distribution and use within different courses and universities members of CTM_JOOP
are thoroughly discussed in Section 4. Concluding remarks about teachers’ and students’
satisfaction and about the teaching materials are presented in the last two sections.

2. Use of Java in Different Courses/Curricula/Universities

2.1. Java for Teaching Programming

During the 1970s and 1980s, Pascal was used by most educational institutions as the
first programming language, but over the following years a lot of different languages
have come into use. Along with these changes there has been an ongoing debate about
which programming language to adopt for an introductory programming course (Bishop,
1997; Böszörményi, 1998; Duke et al., 2000). From the early days of the Java program-
ming language (King, 1997), it has been seen as the answer to the problem of choosing
an appropriate language for an introductory programming course. Although some may
not agree, the current consensus and trend in teaching programming is that the object-
oriented languages are winners. Java has increasingly become the language of choice for
teaching beginners.

In the last several years many universities, including some members of CTM_JOOP,
have switched to Java in their introductory programming courses, regardless of whether
they chose to start from the imperative or the object-first approach. To prepare good, il-
lustrative, student-friendly teaching materials for Java we realized that it is important to
consider the problems and difficulties students encounter, which have been reported in
numerous papers (Bishop, 1997; Böszörményi, 1998; Bruce, 2004; Cooper et al., 2003;
Gálvez et al., 2009; Jian et al., 2009; Moritz and Blank, 2005). Different approaches can
significantly influence ways of teaching and adoption of adequate methodology. Some
advantages and disadvantages (Ivanović and Pitner, 2011) will shortly be addressed in the
rest of the section.

Java across Different Curricula, Courses and Countries Using a Common Pool 155

Advantages – ● Java possesses important advantages suitable for an introductory
programming course, it is: rather simple, object-oriented, distributed, robust, se-
cure, portable, interpreted, multithreaded, dynamic, but it is also suitable for ad-
vanced courses (this is crucial for the ideas of CTM_JOOP and intentions to prepare
common teaching materials on a wide range of Java features and functionalities).
Disadvantages ● – Some authors, on the other hand, agree that Java is not an ide-
al first course language (Böszörményi, 1998; Chen et al., 2004; Collins, 2002;
Hosch, 1996; Laakso et al., 2008). They have presented a significant list of Java
drawbacks. In the meanwhile, some of the drawbacks have been improved upon
in new versions of the language. However, others are still present: no separation
of specification from implementation, no preconditions and postconditions, “ba-
roque” visibility rules, the fact that the exceptions not caught within a method must
be declared as thrown by that method, lack of templates (Java in its latest versions
supports templates but still they are not as powerful as in some other languages).

By removing some of the syntactic absurdities of C++, in the last decade Java has
become the dominant language for the majority of undergraduate programming courses.
This has been the case at CTM_JOOP universities too and it influenced the main objec-
tives and the efforts in preparing the common pool of Java teaching materials spread over
different courses and curricula.

2.2. Use of Java in Different University Courses

Java can be employed in a variety of places in a curriculum, starting from the sequence of
introductory computer science courses, to an intermediate (or advanced) course in object-
oriented programming as well as in many specialized courses, e.g. networking (Yang,
2003), databases (Swain et al., 2002; Thomas, 2003) and software engineering (Benaya
and Zur, 2007; Gendreau, 2004).

At almost every member university of CTM_JOOP, there are consistent course se-
quences through which students further develop their programming knowledge and
skills, adopted through the introductory courses. A characteristic programming course
sequence involves the following courses: Introduction to Programming, Data Struc-
tures and Algorithms, (Intermediate/Advanced) Object-Oriented Programming, Oper-
ating Systems.

At the university level, students were taught usually a few representative program-
ming languages (paradigms) and afterwards they would be forced to use one of them as
a basic tool for learning other essential concepts and parts of subsequent courses. This
way students learned new topics in a particular course but at the same time they built
upon their experience and knowledge of a particular programming language (Advanced
networking; Benaya and Zur, 2005; Thramboulidis, 2005).

At all member universities of CTM_JOOP, after Java had been introduced during the
first two years of study, it has been further used as an essential tool for the subsequent
courses. According to that, we decided to concentrate our efforts in developing teaching
materials not only on basic Java topics but also on advanced topics, as much as it was
possible.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca156

2.3. Use of Java in Project Members’ Courses

Due to the wide range of advantages and disadvantages of teaching Java as a first pro-
gramming language, all teachers, members of CTM_JOOP, who teach the introductory
programming course, have been constantly in a dilemma whether to stay with the impera-
tive or to switch to the object-first approach. Still some of them apply the imperative and
other the object-first approach in their courses. Such diversity of approaches: either teach-
ing the imperative paradigm (with or without Java) or the object paradigm first; either
proceeding to the introduction to object-oriented programming (in the first case) or to the
advanced object-oriented programming (in the second case), etc., influenced activities,
preparation of materials and general results of CTM_JOOP.

All participating universities of CTM_JOOP, in their curricula for different study pro-
grams in informatics education, have had courses on introduction to programming. As an
essential part of these courses, a particular programming language (Pascal, C, or Java)
has been taught. All universities have used Java as a basis for the subsequent courses (see
Section 4).

During the first three years of the CTM_JOOP existence, the main goal had been to
create and develop common teaching, examination, and assessment materials covering the
essentials of the Java programming language within beginners’ courses: Introduction to
Programming and Object-Oriented Programming I. The main motivation for preparation
of the teaching materials was that it had to satisfy a range of requirements and had to be
useful for the following approaches in teaching the introductory programming course:

To serve as a basis for teaching Java as the first programming language in introduc- ●
tory programming courses for first year students.
To use Java as the first object-oriented language (2 ● nd or 3rd semester), for students
that have already used another language (C, Pascal or Modula-2) in the introduc-
tory programming course.
To serve as a good basis for teaching Java as the second programming language ●
and use teaching materials as illustrations for object-oriented concepts and pro-
gramming for second year students (i.e. 3rd semester students).
As a consequence of previous requirements it was both necessary and challeng- ●
ing to prepare different versions of teaching materials for a variety of topics. This
way, teachers could select the most suitable version of the topic and present it to
students: slides, case-studies, assignments, exam questions, literature, etc.

As several teachers prepared teaching materials for the same topic according to their
teaching styles, methodology and the students’ pre-knowledge at the given university, we
have reached soon a pool of teaching materials covering different essential topics (see
Table 2).

After continuation of the project in 2008, we decided to extend our efforts and try to
prepare additional teaching materials for different advanced Java topics. We concluded
that for the project consortium, the most important and useful would be to cover as many
Java topics that could be used in different subsequent courses as possible. Universities,
members of CTM_JOOP, have plenty of courses which rely on Java as basic tool for

Java across Different Curricula, Courses and Countries Using a Common Pool 157

teaching and illustration of particular course concepts, so efforts to cover more topics
would be justified.

Table 1 shows different courses that have been conducted over the last several years at
partner universities within which teachers have used intensively the common pool of Java
materials. Aims, prerequisites and audience of the courses are also specified.

Table 1
Use of Java in CTM_JOOP partners courses

University – course Aims of the course and prerequisites
(pre-knowledge)

Audience – Students and
study programs

Humboldt University Berlin, Germany

Introduction to 1.
Programming,
1st semester

To teach students the fundamentals of imperative
and object-oriented programming by means of Java.
There are no prerequisites.

First year students of
“Bachelors curriculum
Informatics”.

“Politehnica” University of Timișoara, Romania

 Object-Oriented 1.
Programming,
3rd semester

To teach students the object-oriented paradigm.
Students are familiar with programming in C, and
attend in parallel a course on Data Structures and
Algorithms.

“Computer and
Information Technology”,
an engineering-oriented
program.

Object-Oriented 2.
Programming II,
4th semester

To teach students the essential concepts of network
programming using mostly Java technologies.
Students are already familiar with the object-oriented
programming in Java, operating systems (mainly
UNIX), and computer network architecture.

“Computer and
Information Technology”,
an engineering-oriented
program.

University of Novi Sad, Serbia

Object-Oriented 1.
Programming I,
3rd semester

To teach students the fundamentals of object-
oriented programming. Students are familiar with
imperative programming and basic data structures
and algorithms.

“Business Informatics”
and “Computer Science”
programs.

Object-Oriented 2.
Programming II,
4th semester

To teach students the advanced Java features. Students
are familiar with object-oriented programming and
basic data structures and algorithms.

“Business Informatics”
and “Computer Science”
programs.

Operating 3.
Systems I,
5th semester

A classical course on operating systems. Students are
familiar with object-oriented programming and basic
data structures and algorithms. Some of them maybe
are familiar with advanced OOP II course.

“Business Informatics”
and “Computer Science”
programs.

Ss. Cyril and Methodius University, Skopje

Data Structures, 1.
4th semester

To teach students the fundamentals of data structures
and algorithms. Students are familiar with imperative
and object-oriented programming in Java.

“Business Informatics”
and “Computer Science”
programs.

Network Operating 2.
Systems,
6th semester

Aim of the course is to aggregate the concepts of
operating systems and computer networks and to
enable students to comprehend the higher-level
concepts. Students are familiar with Computer
Networks, Operating Systems, basics of Object-
Oriented Programming, Data Structures in Java
course.

Computer Architecture
and Networks program.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca158

3. Related Work

Nowadays there are many electronic versions of educational materials in private and or-
ganized repositories (e.g. Open Educational Resources – OER, http://www.oercommons.
org/community). There are also many electronic teaching resources including e-versions
of different freely available books.

There is a similar situation in the domain of the Java programming language. There
are different sources of e-forms of teaching materials including: books, repositories and
a wide range of educational environments.

In this section we will shortly present some characteristic cases and compare them
with our approach.

One of many interesting e-books on Java is a free, on-line textbook on introduction to
programming, which is directed mainly towards beginner programmers, but might also
be useful for experienced programmers (Eck, 2011). It is a traditionally written book
containing mainly long textual explanations of Java notions and concepts. Contrary to
this book, our teaching materials are prepared in forms of .ppt presentations containing
essential, key concepts/notions and short effective explanations tailored to the level of
knowledge of our students. Our students of course may use this and other similar books
as an additional learning material.

Another kind of e-forms of Java teaching materials are repositories of .ppt presenta-
tions, more or less tightly connected to the specific courses taught at a particular uni-
versity. Usually they are created to satisfy local rules and needs and are devoted only
to a particular Java programming course. Probably the most organized, generalized and
complete set of Java materials is The Java Tutorials by Sun/Oracle (http://docs.oracle.
com/javase/tutorial/). It contains free, online practical guides for programmers who want
to use the Java programming language in order to create applications. The guides include
dozens of lessons and hundreds of complete, working examples. Since they were created
for a general purpose, proposed lessons in majority of cases are not adequate for varied
levels of teaching Java, varied courses and levels of students’ pre-knowledge. All of the
mentioned aspects as well as students’ abilities and the specific needs and methodology
within our project consortium, have been considered during developing our teaching
material.

Finally, there are some specific projects/environments devoted to learning the Java
programming language. Most of them are highly specialized and devoted to particular
needs and aspects of learning.

For example, the Greenfoot approach (Kölling, 2010) is one of the projects created
to increase motivation of beginner programmers. Greenfoot is an educational integrated
development environment aimed at learning and teaching, which combines an interac-
tive graphical output with programming in Java. It is aimed at pre-university and non-
technical students but may be used also as a supplementary source for Java programming
for college-level and university-level education.

Having in mind the characteristics and aims of Greenfoot it is obviously not an ap-
propriate instrument and can not satisfy the aims and goals of CTM_JOOP.

Java across Different Curricula, Courses and Countries Using a Common Pool 159

4. Distribution and Use of Common Pool of Java Teaching Materials

Most of the teacher members of CTM_JOOP already teach Java, either in introductory
programming courses (where some apply the object-first and others the imperative-first
approach) or very early in the curriculum, in an object-oriented programming course.
Since the students of advanced courses (e.g. Object-Oriented Programming I, Data Struc-
tures and Algorithms, Object-Oriented Programming II, Network Operating Systems,
Data Bases II, Operating Systems I) have some pre-knowledge of Java, teachers were
motivated to adjust their courses in order to use Java as a supporting programming instru-
ment. They were asked, in accordance with the CTM_JOOP goals, to adjust the already
available materials or to prepare new ones for their courses based on Java (WS, 2012).

4.1. Teaching Material for Basic Java Topics

Teaching methodology at different universities depends on a wide range of factors: stu-
dents’ motivation (most of them are interested only in achieving grades and not in learn-
ing how to program), good balance between theoretical and practical aspects of teaching,
tradition of teaching at a particular university and teacher’s specific teaching techniques.
Teaching programming to novices is a rather responsible and difficult task. Most of stu-
dents manage to be reasonably effective in adopting basic syntax and semantics, but
preparing students to put the theory into practice is a very sensitive task for teachers. Di-
versity of teaching approaches within introductory programming courses (especially in
Berlin, Novi Sad and Belgrade) among CTM_JOOP members resulted in the production
of different teaching materials for the same Java topics (Ivanović et al., 2010; OOJava).
Together, we have been developing teaching materials in a goal-oriented manner (at the
beginning independently, but in the later years together, through project workshops and
meetings, by discussing materials and adjusting them). We distinguished which topics
were important for our consortium and developed materials for them in several itera-
tions. The teaching materials produced cover basic Java concepts. They are more or less
intended for students who may or may not already be familiar with object-oriented pro-
gramming concepts. Names and short content of basic topics are enumerated in Table 2.

Regardless of whether we appreciated the diversity of students and teachers or not,
we agreed that the basic Java topics have to be introduced in a rather straightforward
manner. We agreed that for methodological reasons of teaching programming concepts
some logical order of teaching Java topics is necessary to be proposed and suggested.
The topic dependency graph in Fig. 1 represents a logical order of teaching basic topics
agreed within CTM_JOOP community. We also proposed two topics for teaching es-
sential object-oriented concepts (T05). The main reason was that at several CTM_JOOP
universities Java has been taught as the first programming language to students who are
not familiar with any other object-oriented language. In this case such concepts have
to be taught in a specific manner and with a lot of illustrative examples. On the other
hand, at several other universities Java has been taught after a C++ course and students
are already familiar with object-oriented concepts. In this case we suggested the more
advanced version of the topic T05.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca160

Topics are hierarchically ordered starting from the easiest one at the top level and
going to more and more complicated ones at the bottom level. At each level of hierarchy
there are one to three possible topics. There is no particular dependency and strict order
in teaching the topics on the same level as they are not strictly interdependent. An arrow
between two topics Tp (previous) and Tn (next) on different levels of hierarchy means
that the topic Tn depends on the topic Tp, i.e. that some of its notions require notions from
Tp. Arrows and dependences in our graph are in fact simplified forms of dependences
presented in the Truc framework (Pedroni and Meyer, 2010) for object-oriented modeling
of object-oriented concepts.

Teachers who do not absolutely agree with the proposed order of teaching or decide
to change it for some reason can apply their own logic and style, choosing an appropriate
topic from the common pool of teaching materials. So, a teacher can combine his/her own
teaching materials with some topics from the common pool.

Table 2
Basic Java topics

Basic Topics Contents

T01. Getting Started. Introduction to the Java technology, Java programming environment.

T02. The Language Overview
(Elements of Java).

Basic Java elements, Program structure.

T03. Primitive Data Types. Declaring and initializing variables, Simple I/O, Operators.

T04. Statements – Control
Structures.

Expressions, Java Statements (Declaration, Control flow statements).

T05. Introduction to OO
Programming.

Version1. Basic OO programming concepts for novices: Objects,
Classes, Built-in Java classes, Type casting, java.lang.*, java.util.*.
Version2. OO programming concepts in Java for students
familiar with C++: Objects, Classes, Inheritance in Java and other
programming languages.

T06. Reference Data Types. Creating new classes, Constructors, Overloading, Arrays Composition,
Inheritance, Polymorphism, Interfaces, Abstract classes, Inner classes.
Linked data structures.

T07. Packages. Creating and using packages, Naming packages, Managing source
and class files.

T08. Exception Handling. Try-catch and Throw statements, User defined exception handling,
User-defined generation of exceptions.

T09. JavaBeans Basics. Basic
Elements of Windows
and Applets.

JavaBean as a component model, Core concepts of JavaBeans, Properties,
Event model, Event handling, Introspection, Bean persistence, Bean
persistence in XML, JFrame, JApplet, Running applets.

T10. Quick Introduction to
UML.

What is UML and why is it useful? Why should UML be combined with
Java? UML diagrams: Class diagram, Collaboration diagram, Sequence
diagram, Activity diagram, State diagram, and Other diagrams: use
case, deployment, component, package. Several illustrative examples.

T11. Introducing SE Principles
in Java Programming.

Application of SE principles on “Mouse in Maze” example:
Requirements analysis, Design, Implementation and Test.

Java across Different Curricula, Courses and Countries Using a Common Pool 161

4.2. Teaching Materials for Advanced Java Topics

Teachers from CTM_JOOP universities, teaching other more or less advanced courses, have
had a rather easier task as they were involved only in preparation of particular teaching
materials for specific courses. As the final result of our efforts, we have been supplied
with a common pool of teaching materials for different advanced Java topics as well. The
produced teaching materials cover many advanced Java topics suitable for use mainly in
elective or higher-year courses at universities, members of CTM_JOOP. They are pri-
marily intended for students who enroll in advanced courses to broaden their knowledge
having in mind that they already must be familiar with basic Java programming concepts.
Similarly to the basic topics, for the advanced topics T21-T24 different presentations are
prepared, emphasizing particular aspects of the same notions and concepts.

Some possible advanced Java topics like Design Patterns; Model-View-Controller;
Domain-Specific Modeling (e.g. model transformations in Java) are not considered to
be included in the current course materials. The main reason is that some of them are
too specific and not interesting to the broader project community; some of them are part
of advanced master courses like “Design, Patterns and Architecture”. Names and short
content of advanced topics are presented in Table 3.

T01. Getting Started

T02. The Language
Overview

(Elements of Java)

T03. Privitive Data Types

T04. Statements – Control
Structures

T05. Introduction to OO
Programming

Version1. Basic OO
programming concepts for

novices

T05. Introduction to OO
Programming

Version2. OO programming
concepts in Java for C++

students

T06. Reference Data Types

T07. Packages T08. Exception Handling

T09. JavaBeans Basics,
Basic Elements of Windows

and Applets

T10. Quick Introduction to
UML and XML

T11. Introducing SE
Principles in Java

Programming

Fig. 1. Dependency graph for teaching basic Java topics.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca162

Table 3
Advanced Java topics

Advanced topic Contents

T12. Strings. String, StringBuilder, StringBuffer, StringTokenizer, Regular
Expressions, Formatting Input, Scanning Output.

T13. Windows & Applets. The JFrame Class, The JApplet Class, Running Applets, Drawing,
Introduction to Interactive Interfaces, Layout Management, The Swing
Event Model, Overview of Swing Components, Animations.

T14. Collections. What are and Why Collections, Core Collection Interfaces,
Implementations, Algorithms, Custom Implementations,
Interoperability, Arrays, Containers, Generics.

T15. The Java I/O System. What is an I/O Stream, Types of Streams, Stream Class Hierarchy,
Control Flow of an I/O Operation using Streams, Byte Streams,
Character Streams, Buffered Streams, Standard I/O Streams, Data
Streams, Object Streams, File Class.

T16. Serialization. What is Serialization, What is preserved when an object is serialized,
transient keyword, Process of Serialization, Process of Deserialization,
Changing the default Protocol, Creating own Protocol.

T17. Java 5 New Features. Generics, Boxing, Varargs, Enhanced for loop, Enumerations, Static
imports, Annotations, Formatting, Threading, Overriding return types,
Unicode.

T18. Generics. What are and why use Generics, Use of Generics, Generics and sub-
typing, Wildcard, Type erasure, Interoperability, Creating your own
generic class.

T19. Enumerated Types. Definitions, Constant Variable Implementation, Class
Implementation.

T20. Annotations. What are and Why use annotations, How to define and use Annotations,
3 different kinds of Annotations (Marker Annotation, Single Value
Annotation, Normal Annotation).

T21. Threads. Threads in Java: Spawning, Joining, Priority, User interface threads.
Classical Synchronization Problems in Java: Producer-Consumer
Problem, Readers-Writers Problem Generalizations, Dining
Philosophers, Semaphores, Event Counters, Bounded Semaphores,
Blocking Barriers.

T22. Network Programming
(TCP, UDP, URL,
Socket).

Network Programming: Basic Networking Concepts, Client and
Server Programming, IP and Java Sockets.
URL and URL Connection: HTTP Protocol, Associated Classes,
CGI, HTTP Commands.

T23. Distributed Applications. Client/Server Programming: TCP Client and Server Programming,
Application Level Protocols, Multithreading.
Serialization: Object Transport, Serialization Process,
Externalization.
RMI: Architecture, Stub, Skeleton, Communication, Parameter
Passing.

T24. Java Security. Security: Security Models, Concepts, Policies.
Java Cryptography Architecture: JCA/JCE, PKI, Secure
Communication, Tools in the JDK.

Java across Different Curricula, Courses and Countries Using a Common Pool 163

As the pool of materials encompasses a lot of advanced Java topics, some relationship
and interdependences between them have to be determined. Teachers from CTM_JOOP
universities, who teach advanced programming courses and who have significant practi-
cal experience in realization of a wide range of commercial software products in Java,
suggested the advanced Java topics dependency graph (see Fig. 2). An arrow between

Advanced topic Contents

T25. Data Bases (JDBC). What is JDBC, Step-by-Step Use of JDBC API, DataSource &
Connection Pooling, Transaction, Prepared and Callable Statements.

T26. Java Internet
Programming, Servlets,
JSP.

Server side Programming Model, JSP, JSTL, Servlets and Containers,
JSF, AJAX.

T27. Enterprise JavaBeans. Why is Enterprise Computing so Complex, Component Models and
Containers, Session Beans, Entity Beans.

T28. Mobile Agent
Technology Using Java.

What is an Agent, Why Mobile Agents, Timeline, Agent Standards
and Agent Systems, JADE Intro, JADE Programming Model, JADE
Agent Communication.

Fig. 2. Dependency graph for teaching advanced Java topics.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca164

two topics Tp (previous) and Tn (next) means that the topic Tn depends on the topic Tp
when any of its notions requires a notion from Tp. Arrows and dependences in our graph
are in fact simplified forms of dependences presented in the Truc framework (Pedroni and
Meyer, 2010).

Java 5 brought a number of improvements at the language level, including Enumer-
ated Types, Generics, and Annotations. In order to put those three topics into perspective,
the Java 5 New Features topic should be presented first. Furthermore, Generics should
be presented before Collections, because the modern Java collection framework makes
heavy use of generics. Although the given figure does not show direct dependencies of
almost all topics on collections and generics, these two Java features are present in every-
day use, especially in more complex applications.

Understanding of the Java I/O System and its extensive set of classes is crucial for
Network Programming – sending and receiving data through sockets and the URL con-
nection system. Similarly, because servers often accept connections in a blocking fashion,
students should understand Threads before venturing into the network programming.

The topic on Distributed Applications is divided into two subtopics – Client/Server
Programming and RMI. The first subtopic presents the client-server model, and it does so
using the concept of TCP sockets. Although low-level, this approach is important, because
all distributed communication in Java is ultimately performed through sockets. The second
subtopic then introduces the remote method invocation, which is at the higher level of ab-
straction, and significantly simplifies the development of distributed applications.

The most efficient implementation of Mobile Agents in Java is based on RMI. Mo-
bile agents also need to be protected from malicious attacks – e.g. during the migration
process, or while communicating with other agents. Therefore, the understanding of Java
Security features is beneficial.

Starting with the version 3.0, the development of Enterprise JavaBeans has been sim-
plified by replacing external descriptors with in-code Annotations. To exploit the full po-
tential of EJBs, students should therefore have a thorough understanding of the improved
approach. Finally, remote communication with EJBs is based on RMI (and/or CORBA),
so there is the interdependency between these topics.

4.3. Possible Use of Common Teaching Materials in Different Courses and Universities

Members of CTM_JOOP (from FYR Macedonia, Germany, Romania and Serbia) were
understandably enthusiastic, eager and motivated to prepare and use the common pool of
Java teaching materials. They were involved in educational processes at their universities
as teachers of core Java programming courses or other advanced courses within which
Java is an essential practical/implementation tool. So naturally they were highly moti-
vated a) to participate in preparing high-quality teaching materials and b) to use materials,
prepared by other colleagues, for their courses and particular subjects.

As there had been a significant level of consistency among introductory programming
courses (Introduction to Programming, Object-Oriented Programming) we have been de-
veloping teaching materials together in a goal-oriented manner. We distinguished impor-
tant topics for our community and developed materials for them in several iterations.

Java across Different Curricula, Courses and Countries Using a Common Pool 165

A teacher from Germany together with colleagues from Serbia translated and rear-
ranged German teaching materials already existing for the introductory programming
course in the object-first manner. The professors from Serbia translated and rearranged
Serbian teaching materials already existing for the Object-Oriented Programming I
course, in English. As a result, for most of the introductory topics there are at least two
different presentations. This gives an opportunity to all other teachers of Java program-
ming courses to combine their own teaching materials with some topics from the com-
mon materials according to their teaching style and students’ preferences, expectations
and abilities.

Distribution of efforts and credit hours for students for each course (which intensively
use topics from the common pool of teaching materials) and information on how much of
this budgeted effort will be used for Java-related issues where the common materials are
used are summarized in Table 4.

The CTM_JOOP project has its own Web site: http://perun.pmf.uns.ac.rs/java/. The
site is primarily used by the project members. The section of the site titled Archive, which
is updated whenever a new piece of material (slides, assignments, etc.) is developed, is
the most important one. Administrator for the site is a teaching assistant from Serbia.

This section is password protected so that only project members are able to download
the available resources. The available materials are divided in four parts: Basic Java,
Advanced Topics, Data Structures and Algorithms in Java, and Environments for Java
Programming. Every part consists of a number of topics covered by slides prepared for
lectures and possibly some supporting Java examples, short or longer exercises, or some
other additional materials. Apart from these core resources, all in English, some addition-
al, unsorted bits of material (for instance exam assignments) are provided in languages in
which they were originally written (Serbian, Romanian, and others).

Except that crucial body of joint teaching materials, in the section Workshop presen-
tations, project members can download slides and accompanying resources that were
used during presentations held at the annual project workshops. This section is thus

Table 4
Courses, credit hours, use of common material

University – course Credit hours
– ECTS

Java-related issues where the
common material is used.

Humboldt University Berlin, Germany
1. Introduction to Programming, 1st semester 12 ECTS 100% use of common material

“Politehnica” University of Timișoara, Romania
Object-Oriented Programming, 31. rd semester
Computer Network Programming, 62. th semester

4 ECTS
4 ECTS

 75% use of common material
 62.5 % use of common material

University of Novi Sad, Serbia
Object-Oriented Programming I, 31. rd semester
Object-Oriented Programming II, 42. th semester
Operating Systems I, 53. th semester

7 ECTS
7 ECTS
7 ECTS

100% use of common material
 80% use of common material
 20% use of common material

Ss. Cyril and Methodius University, Skopje
Data Structures, 41. th semester
Network Operating Systems, 62. th semester

6 ECTS
6 ECTS

 60% use of common material
 35% use of common material

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca166

updated annually (soon after the end of each workshop). Apart from providing an over-
view of activities conducted during the course of this subproject, this part of the site
serves as the source of valuable additional materials that can be used at some of the
institutions participating in the subproject either for teaching purposes or as guidelines
for conducting courses on object-oriented programming, tutorials on using various tools
and methodologies, etc.

In the rest of this section, a brief description of use of the available common teaching
materials in different courses and at different universities from several countries is given.
Each subsection is devoted to a particular course and describes specific aspects of the
course.

4.3.1. Introduction to Programming – Humboldt University, Berlin
The course Introduction to Programming is a comprehensive large module in the 1st se-
mester at the Institute of Informatics at Humboldt University Berlin, Germany. It covers
lectures, exercises and hands-on learning for the beginners in the Bachelors curriculum
Informatics. The idea is to teach them the fundamentals in imperative and object-oriented
programming by means of Java.

The diversity of students’ pre-knowledge is a hard challenge for the staff. At second-
ary school, students receive rather different qualifications concerning programming fun-
damentals and abilities. There is the scale from ‘not any’ to ‘very much’ (Fig. 3) novices
enrolled to Institute of Informatics claim to have in terms of programming knowledge
gained in secondary school. Apart from general prerequisites in programming, there is
also a wide diversity of programming languages that beginners gained experience with
before the studies: Basic, Pascal, Delphi, C, C++ and Java. Thus, some of them already
know what object-oriented programming is, some of them possess abilities in imperative
programming, and finally, a large part of them has to start from scratch. The same stands
for other universities, members of CTM_JOOP.

The intention in this course is to give the students with less pre-knowledge the chance
to be able to follow the lectures, and on the other hand, to present the subject matter in an
expeditious way. Besides pure programming, the course also introduces the main ideas
of software development, e.g. basic software life cycle models, some UML diagrams
and software quality issues. Topics from the common teaching materials delivered in the
course are: T01–T06, T08, T11, T13, T18, and T21.

0
5

10
15
20
25
30
35
40

not any little some much very much

Fig. 3. 2011 year, Questionnaire: Did you get programming skills before your study?

Java across Different Curricula, Courses and Countries Using a Common Pool 167

The whole content of the course is structured into 3 parts: I – Fundamentals (general
topics not related to Java); II – Concepts of imperative programming languages (T1–T4);
III – Concepts of object-oriented programming languages (T5 and onwards). About two
thirds of the whole course is devoted to object-orientation in part III.

As a support, tutorial groups specialized for students with little pre-knowledge are
introduced. The students with some pre-knowledge in programming view the course con-
tents as a valuable systematization and extension of their existing knowledge. They are
active participants in the lectures. The rest of the students in that group, however, would
like to have a faster delivery of course contents which are not possible for the average
student. Since the teaching materials are placed on the course website, some of the better
students decide not to take part in the lectures.

4.3.2. Object-Oriented Programming, “Politehnica” University of Timișoara
Object-Oriented Programming (OOP) is a core course for second year students, 3rd se-
mester, at the Department of Computer Science and Engineering, Faculty of Automation
and Computers of the “Politehnica” University of Timișoara, Romania. Students enrolled
this course are already familiar with programming in C, and attend in parallel a course
on Data Structures and Algorithms in C. The delivery of the course is based on a weekly
schedule of 2.5 hours of lectures and 2 hours of lab exercises.

OOP is the first course in which students encounter the object-oriented paradigm
and thus the lectures start with a motivation of the new paradigm and a presentation of
its main characteristics in a rather theoretical way. Elements of topics T10 and T11 are
used in these lectures. Afterwards, the lectures cover the main OOP concepts as found
in Java: classes and objects, inheritance and polymorphism, interfaces, nested classes
and interfaces, exceptions and assertions, generics, enumerated types, packages and the
collections framework (topics T05–T08, T12, T14, T15, T17–T19). The last part of the
semester is dedicated to the more advanced topic of concurrent programming (using topic
T21), and to an introduction to graphical user interfaces. Almost all lectures contain small
Java programs which are executed in front of the students and discussed with them. Lab
exercises are generally synchronized with the lecture topics for each week. It might ap-
pear that the contents of this course are rather ambitious, but most of the students are
doing well in lab exercises.

Polymorphism is a concept not easily understood by students, so it is required to in-
crease the number of exercises dealing with it. Students especially like the lectures on con-
current programming, feeling that threads are useful especially in the context of multicore
processors, but have some difficulty in grasping the new concepts introduced in Java 5. The
GUI part of the course is perceived as rather complicated, in spite of the obvious interest for
event-driven programming.

4.3.3. Object-Oriented Programming I, University of Novi Sad
Object-Oriented Programming I is a core course, for second year students, 3rd semester, at
the Faculty of Sciences, University of Novi Sad, Serbia. Students who enroll this course
are already familiar with imperative programming and basic data structures and algo-
rithms. Nevertheless, the experience of over 8 years of delivering this course tells us that
our students are not still ready for more advanced Java topics. It might seem somewhat

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca168

strange having in mind the ambitious introductory programming course for first year stu-
dents in Berlin. The main reasons can be found in the following facts:

Educational and social policies and students’ needs in the two countries are differ- ●
ent: after finishing secondary school in Serbia, young people have no real oppor-
tunity to get an appropriate job. Most of them see studying as a better option than
looking for a job (and as a way of postponing decisions). They continue their edu-
cation lacking real motivation for hard/serious studying. On the other hand, young
people in western countries mostly decide to continue education since that is what
they really wish and they are motivated to gain high-quality knowledge.
Year after year, quality of the pre-knowledge that students in Serbia gain in sec- ●
ondary school is rapidly decreasing, which is influenced by a wide spectrum of
reasons, and as a consequence the introductory programming course also must be
taught at a lower level.

We believe that it is more useful and convenient that most of the second year students
master the essentials of Java and OO programming which they can further improve and
upgrade in subsequent courses or by self-studying. Most of them in fact have had average
or modest grades and success in secondary school and are neither used to hard work nor
motivated to deal with advanced Java programming in the second year of study. Thus, the
course covers basic topics T01–T11. Starting from the next school year, we plan to gradu-
ally introduce the essential parts covered by topic T17 to the students.

At the end of the course we give students a quick overview of the basic elements of
Windows and Applets. Optional topics for the course are: T10 – Quick Introduction to
UML and XML and T11 – Introducing SE Principles in Java Programming. Whether they
are taught depends on students’ quality and motivation (they are not too excited about
them) and usually they have been skipped.

4.3.4. Data Structures, Ss. Cyril and Methodius University, Skopje
Data Structures is one of the fundamental programming courses in the 3rd semester, at
the Institute of Informatics, Faculty of Natural Science and Mathematics, Ss. Cyril and

Table 5
Topics in the Data Structures Course

Topic Contents

Algorithms and complexity. Detailed and simplified model of a computer, Counting
operations, Time and space complexity.

Asymptotic notation. Asymptotic upper and lower bound, Asymptotic analysis.
Foundational data structures. Arrays, Linked lists, Performance issues.
Abstract data types. Abstraction, Specification, Implementation.
Stacks and queues, Lists, Hash tables,
Trees, Priority queues and heaps.

Various abstract data types.

Sorting. Abstract sorter, Sorting with comparison, Other sorting
algorithms.

Search trees. Binary search trees, AVL trees, B-trees.

Java across Different Curricula, Courses and Countries Using a Common Pool 169

Methodius University, Skopje, FYR Macedonia. The course is delivered through 2 lec-
ture hours, 3 hours of exercises and 3 hours of lab work per week and it is the third in
the sequence of programming courses. The first course in the sequence introduces basic
programming concepts to the students, using C as the supporting language. The second
course is in fact introduction to the Data Structures course and presents to the students the
basic elements of object-oriented programming in Java. Topics T01–T08 from the com-
mon pool of materials are used in this course. The course Data Structures continues the
use of Java as the language for practical exercises. The additional topics covered by the
course are listed in the Table 5.

From the Java point of view, the course introduces several advanced language fea-
tures, with generics being the most notable (T18 from the common pool). Design pat-
terns, covered in the T14 and T17, are also presented.

4.3.5. Object-Oriented Programming II, University of Novi Sad
Object-Oriented Programming II, is an elective course, for second year students, 4th se-
mester, at the Faculty of Sciences, University of Novi Sad, Serbia. Students who enroll
this course have already completed the Object-Oriented Programming I course and two
courses on Data Structures and Algorithms (I and II). This course has been designed
recently and we have not delivered it yet, so we do not have any experience on whether
the topics are properly and consistently selected. However, looking through different ad-
vanced Java programming courses available on the Internet, we can see that most of them
have a more or less similar structure. Large scale program design and implementation
issues will be covered, using the Java API, the Java Abstract Windowing Toolkit and the
Java Collections Framework. Generally, topics include data and procedural abstraction,
generics, collection interfaces and implementations, the event-driven model of computa-
tion, GUI building using Swing, streams and files. The aims of the course are: to provide
deeper insights into object-oriented programming techniques; to let students practice a
component-based approach to large program design; to introduce the key aspects of the
Java API and Swing; to establish a consistent programming style in Java.

Apart from topics T12–T21, introductory parts of topics T22 and T23 from the com-
mon pool of Java teaching materials could be considered to be included in the course.
Topics: T22 – Network Programming (TCP, UDP, URL, Socket) and T23 – Distributed
Applications, are rather demanding and require that students have additional knowledge
and understanding of operating systems and networking concepts. According to that, these
topics are planned to be an optional part of the course. Basic networking concepts, and
basic client and server programming concepts could be presented only if students have
appropriate skills and pre-knowledge and are able to cope with such advanced concepts.
On the other hand students will have an opportunity to study the topics they missed later,
in some other advanced courses (i.e. Operating Systems, Elective Seminars).

4.3.6. Operating Systems I, University of Novi Sad
Another course for which some selected topics from the common pool of teaching ma-
terials could be used is Operating Systems I, a core course for third year students, 5th
semester, at the Faculty of Sciences, University of Novi Sad, Serbia. Students who enroll

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca170

this course have already completed the core course Object-oriented Programming I and
some of them, probably a minority, have completed the elective course Object-Oriented
Programming II. Generally speaking, as our students are not highly motivated to select
demanding elective courses, such as Object-Oriented Programming II, the majority of
students who enroll the Operating Systems I course will not be familiar with advanced
Java features. But this knowledge could prove very useful for understanding some of
necessary features in Java like the concurrency library. To understand these concepts bet-
ter and to quickly adopt and use them, students should be presented with some parts of
topics T14 and T18.

As a consequence of the growing importance of application servers and the excellent
support in Java for thread handling, threads and locking have become topics that every
computer science graduate ought to know. So, a course on operating systems can take
advantage of Java’s support for threads and the teacher can select appropriate topics from
the common pool of teaching materials. A highly suggested topic is T21, which can serve
as a core for the course. The topic T17 can be useful in presenting the modern concur-
rency library added in Java 1.5. The library provides an example of a well structured
and powerful concurrency library that is simple to use and shows elegant solutions for
common concurrency problems. As an introduction to the practical use of concurrency,
the topic T23 can be used. The parts dealing with details of proper implementation of
multi-threaded servers, introduction of thread pools, and use of background threads in
client applications when communicating over network are some of the more important
highlights of the topic.

4.3.7. Computer Network Programming, “Politehnica” University of Timișoara,
Romania

Computer Network Programming is an elective course for third year students, 6th semes-
ter, at the Department of Computer Science and Engineering, Faculty of Automation and
Computers of the “Politehnica” University of Timișoara, Romania. Students are already
familiar with OOP (Java), operating systems (mainly UNIX), and computer network ar-
chitecture. The course consists of 2 hours of lectures per week, and 2 hours of lab exer-
cises per week, and is selected by approximately one third of the students.

The lectures start with a short review of the TCP/IP family of protocols, followed by
the presentation of sockets API, and examples of client/server programming with sockets
and UNIX system calls in C. Next, the concept of Remote Procedure Calls (RPC) is in-
troduced and illustrated with the SUN’s implementation. Almost two thirds of the course
consists, however, of the techniques of Java platform for object-oriented network pro-
gramming: sockets, Remote Method Invocation (RMI), servlets and JSPs, and Enterprise
Java Beans (EJB). In recent years the topic of Web Services has also been introduced.
The lectures use the topics T22–24, T26 and T27 of the common teaching materials, with
some adaptations and additions.

For the lab exercises students are required to develop 3 small projects: the first uses
sockets in C, the second is based on sockets in Java, and for the third the students can
opt between developing an RMI-based application or a Web application with servlets and
JSP, possibly including EJBs.

Java across Different Curricula, Courses and Countries Using a Common Pool 171

The most obvious missing part in the list of topics is JDBC, which is partially covered
in a different course, and students might use it in the third project. However, the intention
for the future is to cover it explicitly during lectures.

4.3.8. Network Operating Systems, Sts. Cyril and Methodius University
One of the advanced courses which can highly benefit from using the wide range of topics
available in the common pool of teaching materials is Network Operating Systems, elec-
tive course, for third year students, 6th semester, at the Institute of Informatics, Faculty
of Natural Science and Mathematics, Ss. Cyril and Methodius University, Skopje. The
prerequisites for this course include courses Computer Networks, Operating Systems and
Data Structures and students who take this course are familiar with basic OOP and data
structures in Java.

The goal of the course is to aggregate the concepts of operating systems and computer
networks and to enable the students to comprehend the higher-level concepts. Course
lectures cover 4 major areas: multi-processor scheduling, network and distributed pro-
cessing, distributed process management and security. The foundational topics include
introduction to Java threads, synchronization and serialization. On top of them, topics like
network programming, URL handling, general notion of client/server programming and
remote method invocation are built up. Finally, selected topics in security are presented,
using Java security and cryptographic architecture. The use of Java in this course has
proven to be a good choice.

Within the course the following topics from the common pool of teaching materials
are used: T16, T21–T24. The latest version of these topics includes detailed presentations,
lecture notes and additional examples. Along with the presentations and examples, the
materials include homework assignments and practical exams.

4.3.9. Possibilities for Some Other Courses
In the last several years, a lot of Web-based applications have employed databases as data
repositories, and many existing database systems are adopting the Web as the interface
to provide easy access to the data from the Internet. Similar to the situation in other edu-
cational institutions and countries, most of our graduate students have been starting their
careers in the domain of developing Web-based applications, especially using Java and
Java-based technologies. Thus, it would be very beneficial for students to gain experience
in developing Web applications with database support.

During the preparation of the common pool of Java teaching materials and having in
mind several advanced courses on information systems, databases and software engineer-
ing at our institutions, we thought that it could be useful to cover the necessary additional
Java concepts connected to development and implementation of Web-based information
systems like JDBC, servlets and JSP, Enterprise JavaBeans.

Elective courses Databases (DB) II, Information Systems (IS) II and Advanced Topics
in Software Engineering (ATSE) are part of the curriculum at the University of Novi Sad,
Serbia so teachers who are responsible for delivering these courses can use previously
prepared presentations as basic or additional teaching materials. Within the DB II course,
the teacher can use material from the topic T25, especially for the practical part of the

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca172

course; the topics T26 and T27 could be useful within the IS II course; while the topic T28
can be used within the ATSE course.

Other project partners will also have an opportunity in the future to re-consider the
possibility of incorporation of these advanced topics in their other advanced courses.

Finally, a summary showing which topics have been used at which university so far
and which topics could be used by some other courses in the near future, is given in
Table 6. It is obvious that the common teaching materials developed within CTM_JOOP
are highly useful and broadly exploited in a wide range of project member courses. Such
large-scale use of the common topics confirms students’ and teachers’ satisfaction and
proves quality and appropriateness of the prepared teaching materials.

5. Discussion and Experiences about the Common Teaching Materials

Members of CTM_JOOP, i.e. teachers of different courses based on the Java program-
ming language, especially for Introductory and Object-Oriented Programming I courses,
have been intensively using a number of topics from the common pool of teaching materi-
als, for the last several years. In the meanwhile, presentations of some topics have been
slightly changed and improved and some ideas for adding new topics (e.g. 3D program-
ming) appeared. Teachers of introductory and object oriented courses based on Java are
very satisfied with the common pool of teaching materials for several reasons:

They have access to plenty of high-quality teaching Java materials prepared to ●
support different teaching/learning styles (a kind of multi-view, multi-functional
approach).

Table 6
The current and possible future use of common teaching materials for different courses

University – course Topics which used within the
course

Topics which
could be used
in future

Humboldt University Berlin, Germany
1. Introduction to Programming, 1st semester T01–T06, T08, T11, T13, T18, T21

“Politehnica” University of Timișoara, Romania
Object-Oriented Programming, 31. rd semester
Computer Network Programming, 62. th semester

T05–T12, T14, T15, T17–T19, T21
T22–T24, T26, T27

University of Novi Sad, Serbia
Object-Oriented Programming I, 31. rd semester
Object-Oriented Programming II, 42. th semester
Operating Systems I, 53. th semester
Databases II4.
Information Systems II5.
Advanced Topics in Software Engineering6.

T01–T11, T17
T12–T23
T14, T17, T18, T21, T23

T25
T26, T27
T28

Ss. Cyril and Methodius University, Skopje
Data Structures, 41. th semester
Network Operating Systems, 62. th semester

T01–T08, T14, T17, T18
T16, T21–T24

Java across Different Curricula, Courses and Countries Using a Common Pool 173

There are several different presentations for the same Java topics, which gives ●
them the opportunity to select the most appropriate one depending on, first of
all, students’ pre-knowledge and abilities (which vary from year to year). They
can easily swap one presentation with another or even use different parts of dif-
ferent presentations for the same topic. Sometimes, another teacher’s approach
might allow students to understand better certain concepts of a programming
language.
Based on above mentioned facts, an exchange of experiences in teaching and using ●
the prepared materials in different socio-cultural environments, among teachers is
much easier. It brings new flavor and new ideas for further improvements and in-
novations in teaching materials and methodology. Thus, year after year we produce
more high-quality Java teaching materials together. The joint work shortens time
necessary to prepare and update the materials, compared to how it would be if there
was only one teacher doing it.
Each year, teaching assistants exchange ideas and experiences about practical tasks ●
and problems for lab exercises. They have been enriching the common pool of
tasks and problems for the practical part of the programming courses. This gives
an opportunity to the teaching assistants to choose the most appropriate tasks to
illustrate a particular topic, depending on the students’ pre-knowledge and motiva-
tion. They can also offer additional tasks for students’ homework depending on
their skills:

More advanced tasks for more skilled and ambitious students.a.
Additional, simpler tasks for students who struggle to understand the pre-b.
sented topic.

Generally speaking, for students who learnt basic concepts of imperative program- ●
ming, it is usually difficult to understand the underlying concepts of OOP (Jian et
al., 2009; Madden and Chambers, 2002).

From time to time, at the University of Novi Sad, Serbia, we use questionnaires
to try to find out the reasons and difficulties in adopting Java and OO concepts.
However, it is still not clear whether imperative-first approach in the introduc-
tory programming course is the main reason. Some other authors, teachers within
CTM_JOOP, have tried to define a path of teaching Java specially designed for the
students who have already learned an imperative programming language (Jian et
al., 2009). Along this path, the concepts of the Java language and the principles
of OOP have to be taught step by step, gradually introducing the students into the
world of Java object-oriented programming. The presented path of topics (Fig. 1)
seems to completely and successfully fit teachers and students expectations over
the last several years.
Since several years ago, we decided to involve undergraduate students in proj- ●
ect’s regular annual workshops. They are usually required to prepare presentations
which highlight difficulties they are facing and the expectations they have when
learning particular Java subjects. Such presentations always provoke intensive dis-
cussions between teachers and students and give adequate and essential feedback
for improving some parts of the existing teaching materials.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca174

Having in mind all these advantages, teachers are highly motivated to continue to use,
update, upgrade and constantly innovate the available presentations and obtain, year after
year, a higher quality of the common pool of teaching materials.

Correspondingly, students’ satisfaction is manifold:
They consider the pool of e-forms of teaching materials valuable and useful. Most ●
of them are satisfied that the teaching materials are written in English as this way
they get accustomed to appropriate English terminology which is necessary for
their future job and career.
In the questionnaire used for collecting students’ feedback (for Data Structures ●
course, Ss. Cyril and Methodius University, Skopje), the course material was high-
ly rated. Just as an illustration, almost 70% of the students were highly satisfied
with the lecture presentations. Furthermore, nearly 80% of the students stated that
the English language used in the presentations was not at all an obstacle. Finally,
nearly 70% of the students were strongly confident about the acquired knowledge
and were ready to apply it.
As for most of other courses, for programming courses, 80% of the project univer- ●
sities use Moodle LMS and make teaching materials easily available for students,
in the same way as at other universities (Kulji and Lines, 2005). So the students are
satisfied that they can access the teaching materials from anywhere.
Some of them are enthusiastic and proud about using internationally prepared ●
teaching materials. They feel that this makes them a part of European Higher
Education Area (EHEA) and that they can use high-quality teaching materials
that give them the opportunity to continue education at some other European
University.

Unfortunately, we noticed one possibly negative consequence. The existence of high-
quality teaching materials available through Moodle decrease students’ motivation. As a
consequence they more frequently decide not to attend regular face-to-face classes. They
believe that they can easily learn topics from such high-quality sources at a time that it is
more convenient to them.

Teachers of other advanced courses in the curriculum gladly select and use some of
the advanced Java topics. As the pool of materials encompasses a lot of Java topics, the
proposed relationships and interdependences between them (Fig. 1 and Fig. 2) are useful
and helpful in selecting appropriate ones. Depending on a particular course, teachers can
suggest to extra motivated and skilled students to use some topics for self-studying and
gaining more knowledge and skills.

6. Conclusion

During several years of existence of the subproject CTM_JOOP - “Common teaching ma-
terials on object-oriented programming using Java” under the DAAD project, the teachers
of programming courses using (or which are based on) Java from Balkan countries have
had a great opportunity and faced a challenge to produce a high-quality common pool of
teaching materials. The existence of such materials offers numerous advantages for teach-

Java across Different Curricula, Courses and Countries Using a Common Pool 175

ers as well as for students. The prepared pool of teaching materials as well as its proposed
organization is very important for all universities members of the project because:

It covers a wide variety of Java topics including basic concepts but also a lot of ●
advanced features.
It can be used for different courses starting from introductory up to advanced (see ●
Table 6).
Different particular topics can be used in different institutions smoothly, ●
It offers great opportunities for teachers to select the most appropriate among sev- ●
eral presentations (and their parts) of the same topic, according to their style of
teaching and students’ affinities.
Teachers have an opportunity, within annual workshops, to make fruitful discus- ●
sions; to exchange teaching experiences and assess their teaching approaches; and
as a consequence to raise their level of teaching and improve their teaching quality
and competences.

The initial motivation for CTM_JOOP was to try to discuss and exchange experiences
and later to try to resolve the issue of diversity of teaching approaches within introductory
programming courses among consortium universities: choosing between the imperative
or the object-first approach and selection of an appropriate programming language. Since
at all the universities the introductory programming courses and object-oriented program-
ming style were taught during the first two years of study, we assumed that students of
both years at each university have had more or less similar abilities to cope with the object
orientation. Apart from that, aims of all courses were almost the same: to teach students
object-oriented programming using Java. So there were a lot of similarities between the
Introduction to Programming course in Berlin (very demanding, object-first approach,
first year) and the Object-Oriented Programming courses in Serbia and Romania (me-
dium level, third semester). Accordingly, it was not too demanding to adjust teaching
materials and make straightforward changes and adjustments. In order to improve the
existing teaching materials available for Java programming courses we concentrated first
of all on applying the adequate methodological approach. It resulted in the production of
different teaching materials for the same Java topics (Ivanović et al., 2010; OOJava).

All presentations prepared for different Java topics have been used for several ●
years in educational processes at CTM_JOOP institutions (Table 6). The following
experiences gathered during this period concurred with our expectations that the
materials will be well prepared and that they would be improved constantly over
the following years. Different teachers worked on their particular topics according
to their affinities or areas of their educational-scientific expertise.
Through periodical meetings and workshops teachers have discussed: different ●
teaching techniques (Vesin et al., 2013), views, and opinions; students’ mental-
ity, social and cultural background in different countries; students’ pre-knowledge,
motivation and expectations. According to the results of these discussions, creators
of the materials gained a more complex insight into the topics, and therefore a bet-
ter quality of the materials has been achieved.
To have a pool of course materials poses a challenge to teach the course in differ- ●
ent variants over the years. As an example, it turned out that the concept applet is

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca176

not so fundamental in the Introduction to Programming course. At the same time,
applets are rather challenging for beginners. As a consequence, we left the concept
out and included other more important topics, e.g. the concept of generics.
There are topics with a history of mutual improvements influenced by several part- ●
ners. For example, Topic T11 – Mouse in Maze, has been developed in a sequence
of iterations and ended up in a rather mature and stable version. Partners from
Germany and Serbia contributed by ideas and new slides.

Thus, this long-lasting project and the mutual collaboration have led to tighter con-
nections between teachers from different universities/countries. Exchange of experiences
and use of common teaching materials has strengthened relationships and motivated
teachers to continue their efforts and activities in order to constantly innovate, improve,
and expand the existing Java pool of teaching materials.

At the moment, the pool of Java teaching materials prepared is available only for
members of CTM_JOOP. The fruitful effects and results of the project and successful
long-lasting use of the developed teaching materials motivate us to think about a way to
make these materials visible and accessible for non-project members’ colleagues/univer-
sities as well.

Acknowledgent.

Authors are partially supported by DAAD, through project “Software Engineering: Com-
puter Science Education and Research Cooperation”.

The work is partially supported by Ministry of Education, Science and Technological
Development of the Republic of Serbia, through project no. III47003: “Infrastructure for
Technology Enhanced Learning in Serbia”.

References

Advanced networking – introduction to seminar. Advanced Topics on Computer Networking. (2011).
http://user.informatik.uni-goettingen.de/~teleprak/SS2005/Introduction_Prak-
tikumSS05.ppt

Benaya, T., Zur, E. (2005). Advanced Programming in Java. In: Workshop – Teaching Methodology, Proceed-
ings of ITICSE. Monte de Caparica, Portugal, 348.

Benaya, T., Zur, L. (2007). Understanding threads in an advanced Java course. In: Proceedings of ITiCSE.
Dundee, Scotland, United Kingdom, 323.

Bishop, J.M. (1997). A philosophy of teaching Java as a first teaching language. In: Proceedings of SACLA, 9.
http://www.cs.up.ac.za/cs/jbishop/Homepage/Pubs/Tech-reports/SACLA97.pdf

Böszörményi, L. (1998). Why Java is not my favorite first-course language. Software – Concepts & Tools, 19(3),
141–145.

Bothe, K., Schützler, K., Budimac, Z., Ivanović, M., Putnik, Z., Stoyanov, S., Stoyanova-Doyceva, A., Zdravk-
ova, K., Jakimovski, B., Bojić, D., Jurca, I., Kalpić, D., Çiço, B. (2009). Experience with shared teaching
materials for software engineering across countries. In: Proceedings of Informatics Education Europe IV.
Freiburg, Germany, 57–62.

Bruce, K. (2004). Controversy on how to teach CS1: a discussion on the SIGCSE-members mailing list. In
inroads – The SIGCSE Bulletin, December.

Budimac, Z., Putnik, Z., Ivanović, M., Bothe, K., Schützler, K. (2011). On the assessment and self-assessment
in a students teamwork based course on software engineering. Computer Applications in Engineering Edu-

Java across Different Curricula, Courses and Countries Using a Common Pool 177

cation, 19(1), 1–9.
Chen, X., Kurtonina, N., Taylor, S. (2004). First programming languages revisited. In: Proceedings of College

Teaching & Learning Conference, Florida, 1–8.
Collins, D. (2002). Java Second – the suitability of Java as a first programming language. In: Proceedings of The

Sixth Annual Java & the Internet in the Computing Curriculum Conference, 7.
Cooper, M., Dann, W., Pausch, R. (2003). Teaching objects-first in introductory computer science. In: Proceed-

ings of the 34th SIGCSE Technical Symposium on Computer Science Education, Nevada, USA, 191–195.
Duke, R., Salzman, E., Burmeister, J., Poon, J., Murray, L. (2000). Teaching programming to beginners choos-

ing the language is just the first step. In: Proceedings of ACE, Melbourne, Australia, 79–86.
Eck, D.J. (2011). Introduction to Programming Using Java. Sixth Edition, Version 6.0.

http://math.hws.edu/javanotes/
Gálvez, J., Guzmán, E., Conejo, R. (2009). A blended e-learning experience in a course of object oriented pro-

gramming fundamentals. Knowledge Based Systems, 22(4), 279–286.
Gendreau, T.B. (2004). Teaching network programming with Java. In: Proceedings of Midwest Instruction and

Computing Symposium, University of Minnesota.
http://www.micsymposium.org/mics_2004/Gendreau.pdf

Hosch, F. (1996). Java as a first language: an evaluation. ACM SIGCSE Bulletin, 28(3), 45–50.
Ivanović, M., Pitner, T. (2011). Technology-enhanced learning for java programming – duo cum faciunt idem,

non est idem. ACM Inroads, 2(1), 55–63.
Ivanović, M., Budimac, Z., Mišev, A., Bothe, K., Jurca, I. (2010). Teaching Java through different courses –

multi-country experiences. In: Proceedings of Conference on Computer Systems and Technologies – Comp-
SysTech, ACM International Conference Proceeding Series 471. Sofia, Bulgaria, 413–418.

Jian, S., Wenyong, W., Zebing, W. (2009). A teaching path for Java object oriented programming. International
Forum on Information Technology and Applications, 3, 465–468.

King, K.N. (1997). The case for Java as a first language. In: Proceedings of the 35th Annual ACM Southeast
Conference, 124–131.

Kölling, M. (2010). The greenfoot programming environment. ACM Transactions on Computing Education,
10(4), article 14.

Kuljiš, J., Lines, L. (2005). Supporting the development of effective e-learning resources: a student-centered ap-
proach. In: Proceedings of 27th International Conference on Information Technology Interfaces, 283–288.

Laakso, M.J., Kaila, A., Rajala, T., Salakoski, T. (2008). Define and visualize your first programming language.
In: Proceedings of Eighth IEEE International Conference on Advanced Learning Technologies, 324– 26.

Madden, M.G., Chambers, D. (2002). Evaluation of student attitudes to learning the Java language. In: Proceed-
ings of Principles and Practice of Programming in Java, 125–130.

Moritz, S.H., Blank, G.D. (2005). A design-first curriculum for teaching Java in a CS1 course. ACM SIGCSE
Bulletin, 37(2), 89–93.

OOJava – Subproject CTM_JOOP – “OOP with Java” within DAAD project “Software Engineering: Com-
puter Science Education and Research Cooperation”.
http://perun.pmf.uns.ac.rs/java/archive.html

Pedroni, M., Meyer, B. (2010). Object-oriented modeling of object-oriented concepts a case study in structur-
ing an educational domain. In: Hromkovič, J., Královič, R., Vahrenhold, J. (Eds.), LNCS 5941. Springer-
Verlag, 155–169.

Swain, M., Anderson, J.A., Korrapati, R., Swain, N.K. (2002). Database programming using Java. In: Proceed-
ings of SoutheastCon Conference, 220–225.

Thomas, K. (2003). Teaching databases at southampton university. In: Proceedings of Teaching, Learning and
Assessment in Databases. Coventry, 123–126.

Thramboulidis, C. (2005). Teaching advanced computing concepts in Java: a constructivism-based approach.
Journal of Informatics Education and Research, 7(3), 1–12.

Vesin, B., Ivanović, M., Klašnja-Milićević, A., Budimac, Z. (2013). Ontology-based architecture with recom-
mendation strategy in Java tutoring system. Computer Science and Information Systems Journal, 10(1),
237–261.

WS (2012). Workshops of DAAD project “Software Engineering: Computer Science Education and Research
Cooperation”, http://www2.informatik.hu-berlin.de/swt/intkoop/daad/

Yang, C.D. (2003). Teaching wireless networking and security with Java 2 micro edition (J2ME™). In: Pro-
ceedings of 33rd ASEE/IEEE Frontiers in Education Conference. Boulder, CO, T2C–7.

M. Ivanović, Z. Budimac, A. Mishev, K. Bothe, I. Jurca178

M. Ivanović holds the position of full professor at the Faculty of Sciences, University
of Novi Sad, Serbia since 2002. She is the Head of Chair of Computer Science and a
member of University Council for Informatics. She is author or co-author of 13 textbooks
and of more than 240 research papers on multi-agent systems, e-learning and web-based
learning, software engineering education, intelligent techniques (CBR, data and web min-
ing), most of which are published in international journals and conferences. She is/was
a member of Program Committees of more than 100 international conferences and is the
Editor-in-Chief of Computer Science and Information Systems Journal. She has been
principal investigator and participant of more than 20 international projects.

Z. Budimac holds the position of full professor at the Faculty of Sciences, University of
Novi Sad, Serbia since 2004. Currently, he is the Head of the Computing Laboratory. His
fields of research interests include educational technologies, agents and distributed sys-
tems, case-based reasoning, and programming languages. He was principal investigator
of more than 20 projects. He is the author of 13 textbooks and more than 220 research pa-
pers, most of which are published in international journals and international conferences.
He is/was a Program Committee member of more than 80 international conferences and is
an Editorial Board Member of Computer Science and Information Systems Journal.

A. Mishev holds the position of assistant professor at the Faculty of Computer Science
and Engineering, UKIM, Skopje, FYR Macedonia. In the focus of his research are in-
frastructures for collaborative computing and research, primarily Grid and High Perfor-
mance Computing systems. He researched in the areas of computer architectures and
networks, software engineering, Internet technologies and e-learning. He participated in
the implementation of over 25 international projects targeting the development of IT in-
frastructure and IT education. He currently holds a position of Vice-dean for Educational
Affairs at the FCSE, UKIM. He is author of over 35 scientific papers published in inter-
national journals and proceedings of conferences. He is a member of several associations
in the field of information technology (IEEE, ICT-ACT).

K. Bothe holds the position of full professor of software engineering at the Institute of
Informatics at Humboldt University Berlin. His research interests cover: compiler con-
structions, software engineering, software testing methodology and tools, programming
languages, e-learning, and logic programming. Since 2000 he is the project leader of a
DAAD project “Software Engineering: Education and Research Cooperation” with 15
universities of 8 countries as part of the special DAAD program “Academic reconstruc-
tion of South Eastern Europe”. From 2004–2007 he was grantholder of an EU Tempus
project “Joint M.Sc. Curriculum in Software Engineering”.

I. Jurca is a professor (retired) of Software Engineering at the Department of Computers,
Faculty of Automation and Computers, “Politehnica” University of Timișoara, Romania.
His primary interests are in development of object-oriented distributed applications and
software performance evaluation. He is the author of 8 books (in Romanian) and more
than 40 papers published in journals and conference proceedings.

Java across Different Curricula, Courses and Countries Using a Common Pool 179

Bendro Java kalbos mokymo medžiagos banko naudojimas
įvairiose mokymo programose, kursuose ir šalyse
Mirjana IVANOVIĆ, Zoran BUDIMAC, Anastas MISHEV,
Klaus BOTHE, Ioan JURCA

Remiant DAAD prieš keletą metų pradėtas projektas, skirtas ištirti Java programavimo kalbos
mokymo aspektus. Pradinė projekto intencija – paskatinti projekto dalyvius paruošti mokomąją
medžiagą Java programavimo kalbai mokyti. Per pastaruosius dvejus metus buvo pasirinkta keletas
Java temų ir parengta atitinkama medžiaga. Visa medžiaga laisvai prieinama projekto veiklose
dalyvaujančioms šalims. Straipsnyje supažindinama su sukurtos medžiagos naudojimo įvairiose
šalyse ir universitetuose rezultatais bei įgyta patirtimi.

