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Abstract. Many countries have focused on the improvement of education system performance. 
Small number of studies consider system of a country as unit of assessment where indicators 
represent all levels of education system. In the paper, we propose the methodology for the per-
formance analysis of education systems as a whole hybridizing Data Envelopment Analysis and 
Principal Component Analysis. Its applicability is illustrated by the analysis of the data collected 
for 29 European countries. In the analysis we used publicly available data from EUROSTAT and 
OECD which European Commission uses for the performance monitoring of education in Euro-
pean Union. No prior assumptions were made or expert judgements included. We demonstrated 
good performance of the method on limited data set. The proposed methodology of hybrid Data 
Envelopment Analysis and Principal Component Analysis allows researchers analyse education 
systems quantitatively. The recommendations for improvements and assessment of real world 
education systems should be based on the analysis of a sufficiently large data set comprehensively 
representing the considered education systems.

Keywords: data envelopment analysis, principal component analysis, education systems, perfor-
mance.

1. Introduction

Performance assessment of education systems plays a vital role worldwide. The Euro-
pean Commission monitors the performance of education systems in Member States 
according the strategic framework “Education and Training 20201” (ET2020). However, 
the importance of performance of education systems are still underestimated. The evalu-
ation of schools is a widely researched topic, but limited number of papers analyse the 
education sector as a whole (not only school level analysis). Also there are not so many 

1	 For more information:  
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52009XG0528(01)
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papers whose focus on multi-country comparisons (Witte and López-Torres, 2017). This 
topic is especially urgent because of structural reforms of education systems in the new 
EU countries. Enlargement of the EU and accession of new member states in 2004–2013 
was the beginning of the development of education systems in the new EU countries 
along the similar lines like in the Western countries. Post-communist countries in Eu-
rope after the structural reforms do not composed one type of education system and 
moved in different directions (Beblavy et al., 2011, Želvys et al., 2017). Taking into 
account that, there is no one way to improve the education systems in all EU countries, 
it is important to estimate the performance of each country and to provide guidelines 
that particular country should follow to improve her performance of education system. 
As pointed out (Silva and Camanho, 2017) measuring performance in absolute terms is 
often less valuable than making comparisons with other countries, and provide examples 
of good education practices that under-performance countries should follow to improve 
their performance of education systems. Data Envelopment Analysis (DEA) have been 
proved as appropriate for the analysis of different sectors of the education systems. It is 
natural to investigate the applicability of DEA methodology to the analysis of an educa-
tion system of a country as a whole.

DEA proposed by Charnes, Rhodes and Cooper (Charnes et al., 1979) is a widely 
used technique to analyse relative performance of systems in a large variety of fields. 
The original DEA model allows total exibility of the weights, i.e. each decision mak-
ing unit (DMU) maximizes its efficiency score, given the inputs consumed and the 
outputs attained. The exibility of the weights’ selection is strength and weakness of a 
DEA, as it allows some indicators to be assigned a zero weight. Due to full exibility, 
many DMUs will be able to achieve the maximum DEA efficiency score (Liu et al., 
2006). DEA loses discriminatory power when the number of indicators increase com-
pared with the number of the DMUs. Also the large dimension of the data set and 
correlations among indicators reduce the discrimination power of DEA and introduces 
bias (Nunamaker, 1985, Dyson et al., 2001). The first attempt to restrict the exibility 
of the weights and improve the discriminatory power of the DEA model was made by 
Thompson et al. (Thompson et al., 1990). They improved the discrimination between 
the DMUs’ efficiency scores by defining ranges of acceptable weights. Assurance re-
gions and Cone-ratio constraints are often used to restrict the weights and improve the 
discrimination power of the DEA. These techniques requires prior information, which 
is often difficult to attain (Adler and Golany, 2001). For the increase of discriminatory 
power of DEA, Torgersen et al. proposed slack-adjusted efficiency measure for the 
ranking of efficient units (Torgersen et al., 1996). The two-stage method did not use 
any prior information.

Other way dealing with discrimination issue, the dimension reduction of indicators 
before running DEA. Principal components analysis (PCA) could be employed where 
original number of indicators would be replaced by smaller number of principal compo-
nents with a minimal loss of information (Adler and Golany, 2001). The idea to combine 
PCA and DEA was developed independently by Ueda and Hoshiai (Ueda and Hoshiai, 
1997) and Adler and Golany (Adler and Golany, 2001, Adler and Golany, 2002). They 
showed that PCA can improve discriminatory power in DEA, which often fails when 
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there are too many of indicators in relation to the number of DMUs, and give more reli-
able efficiency measurement in small samples.

The use of PCA-DEA approach for performance assessment can be found in different 
fields (aviation (Adler and Golany, 2001); manufacturing (Azadeh et al., 2007, Põldaru 
et al., 2014); logistics (Andrejić et al., 2013, Chen et al., 2016, Jiang and Fu, 2009); ecol-
ogy (Liang et al., 2009, Nieswand et al., 2009); agriculture (Dong et al., 2016); finance 
(Jothimani et  al., 2017); health (Annapoorni and Prakash, 2017)). To our knowledge 
there is one paper (Adler and Golany, 2002) where hybrid PCA and DEA approach was 
applied for education data (assessed performance of seven university departments).

For the selection of an appropriate DEA method, we perform a preprocessing of the 
available data. Since the number of indicators selected is relatively large with respect to 
the number of countries analysed, involvement of PCA seems rational. The analysis of 
the Pareto frontier of the data set encouraged the application of convexity assumptions 
based methods. Since the analysis is oriented to aid structural reforms, the proportional 
improvement of indicators is not a concern. Thus PCA and the Additive Model based 
DEA were hybridised and investigated.

The objective of the study is to analyse performance of education systems by means 
of hybrid PCA and DEA approach. We quantitatively analyse performance of educa-
tion systems in 29 European countries. For the analysis we use publicly available data 
for year 2013, 2014 and 2015. No prior information or expert judgement were used in 
the analysis.

The rest of the paper is organised as follows: we present the data analysed first, next 
we describe methodology of PCA-DEA, then we provide numerical example and discus-
sion with conclusions finalise the paper.

2. Available Data

As described above, European Commission has The Education and Training Monitor 
initiative for monitoring and fostering performance of education systems in EU. Seven 
key indicators are selected for the monitoring and benchmarks reached by 2020 are set 
(ET20202). In the analysis we use 6 out of 7 key indicators, as learning mobility indica-
tor still waits for appropriate compilation of cross-national data (Flisi et al., 2014). We 
added two additional indicators for the reflection of a wider range of learning activities 
(the higher-achievement in reading, maths, science and the minimum necessary qualifi-
cations to actively participate in social and economic life). In the further text  detones 
the th indicator for th country. The titles of variables and detailed description are the 
following:

●● ·1 : Early leavers from education and training (the percentage of the population 
aged 18–24 with at most lower secondary education and who were not in further 
education or training during the last four weeks preceding the survey);

2	https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52009XG0528(01)
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●● ·2 : Tertiary education attainment (the share of the population aged 30–34 years 
who have successfully completed tertiary-level education);
●● ·3 : Early childhood education and care (the share of the population aged 4 to the 
age when the compulsory education starts who are participating in early educa-
tion);
●● ·4 : Employment rate of recent graduates (the share of employed graduates (20–34 
years) having left education and training 1–3 years before the reference year);
●● ·5 : Adult participation in lifelong learning (participation rate of adults (25–64 
years) in education and training in last 4 weeks);
●● ·6 : Low achievement in reading, maths and science (the percentage of the PISA 
(The Programme for International Student Assessment) average score in reading, 
mathematics and science below Level 2);
●● ·7 : Top achievement in reading, maths and science (the percentage of the PISA 
average score in reading, mathematics and science at Level 5 or 6);
●● ·8 : Upper secondary or tertiary education attainment (the percentage of people 
at aged 25–64 who have successfully completed at least upper secondary educa-
tion).

All variables were extracted from EUROSTAT and OECD (The Organisation for 
Economic Co-operation and Development) databases for 29 European countries over 
2013–2015 year. European Commission monitors performance of 28 European countries 
(EU-28), we used 26 out of 28 countries, because Cyprus and Malta have insufficiently 
data set, also we added three European countries (Iceland, Norway and Switzerland), 
that are not in European Union. Missing data were replaced with the most recent year 
available. The indicators were adjusted as the profit type the larger the better, so that 
higher values of all indicators correspond to better performance. The values of indicators 
·1 and ·6 were converted using the complement to 100 percent. The data used in the 
study is provided in Appendix Tables 7, 8 and 9.

Education performance can be analysed as the degree to which an education sys-
tem achieve desired goals and effects. In the context of education systems in Euro-
pean countries, goals and effects might be represented in terms of education systems 
achievement according to the framework ET2020, an education system that contributes 
to greater levels of these achievement is considered more effective than another educa-
tion system. 

From Table 1 we see that on average all variables except ·6 and ·7 indicate better 
performance of European countries in 2015 compare to 2013. An average the target 
of ·1 is already reached in 2014 however at country level there are some countries 
those have not reached the target. The performance of education systems should be 
improved with respect to ·2–·6 variables in almost all countries. The correlation 
analysis for selected variables revealed that some of variables are medium to high 
correlated (see Appendix Table 10) which indicates that PCA application is plausible. 
Next we describe hybrid PCA and DEA approach which was employed to quantify 
the performance of each country in the analysis. The selected indicators will serve as 
output indicators only in DEA.
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Table 1
Descriptive statistics of analysed indicators for 29 European countries with ET2020 targets

 ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

ET2020 targets 90.0 40.0   95.0 82.0 15.0 85.0 - -

2013 Mean 89.6 38.8   91.3 74.1 12.5 80.2   8.8 79.1
Std.   5.0   9.3     7.9 12.2   9.0   7.1   3.4 12.0
Dev.
Median 90.3 42.3   94.1 75.8 10.0 80.8   8.9 81.8
Max 96.1 52.6 100.0 89.8 31.4 91.8 15.3 93.4
Min 76.4 22.5   71.4 39.6   2.0 60.0   1.9 39.8

2014 Mean 90.2 40.5   91.7 75.1 12.4 78.5   8.3 79.8
Std.   4.7   8.8     7.0 11.6   9.3   7.1   3.1 11.4
Dev.
Median 91.0 42.3   94.4 77.4   9.6 80.2   8.8 82.7
Max 97.3 53.3 100.0 89.0 31.9 89.8 13.2 93.3
Min 78.1 23.9   72.4 44.0 1.5 59.5   2.0 43.3

2015 Mean 90.2 41.4   92.0 76.4 12.7 78.5   8.3 80.2
Std.   4.3   8.9     6.9 11.2   9.4   7.1   3.1 11.1
Dev.
Median 90.8 43.4   95.0 78.7   9.7 80.2   8.8 82.7
Max 97.2 57.6 100.0 92.1 32.1 89.8 13.2 93.5
Min 80.0 25.3   73.8 45.0 1.3 59.5   2.0 45.1

3. Analysis of Data by Means of PCA-DEA

Because of different historical obstacles, economical and political conditions, the 
achievements of different countries with respect of the considered criteria are quite dif-
ferent. The comparison of these achievements is a problem of multicriteria evaluation. 
In the present section we will analyse data about education systems by means of DEA. 
For the convenience of references, here the terminology of DEA will be used. Let , 
 = 1     29, denote the vectors the components of which   0,  = 1     8, 
are criteria representing the efficiency of -th DMU. These criteria represent the perfor-
mance of the education system of the corresponding country. The values of  for the 
considered years are given in Appendix Tables 7, 8 and 9. As explained in the previous 
section performance is an increasing function of all criteria. The crudest evaluation is the 
partition of the set ,  = 1     29, into subsets of dominating (Pareto optimal) and 
dominated vectors. We have applied a standard algorithm to find Pareto optimal vectors 
for the data analysed. The Pareto optimal vectors are defined by the shorthand of names 
of the corresponding countries in Table 2 for each year.

The obtained results show that only a third of DMUs are not Pareto-optimal. In the 
case when Pareto optimal points belong to the convex hull of the data set, the application 
of a standard DEA technique, e.g. CCR (Cooper et al., 2006), defines the unit efficiency 
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of all Pareto optimal DMUs. In our case, this happens as shown by the results of a nu-
merical experiment. The results of the experiment, although itself not very interesting, 
encourages the application of methods based on convexity assumptions. Therefore, the 
convex hull based frontier can be preferred against the free disposal hull frontier. For the 
discussion on potential disadvantages of the weighted sum aggregation of criteria in the 
case of non-convex feasible objective region we refer to (Pardalos et al., 2017).

For the discrimination of the Pareto optimal DMUs additional assumptions should be 
made with respect to the involved criteria. Several DEA methods have been proposed 
where the different treatment of criteria is implied implicitly by formulating restrictions for 
weights in the DEA models. This idea is implemented in the assurance region (Thompson 
et al., 1986) and cone-ratio methods (Charnes et al., 1990). However, in the considered 
problem we do not have rational argument to substantiate a magnitude of restrictions.

An alternative option is to aggregate criteria potentially reducing the scatter of data in 
the criteria space. Principal component analysis is widely used for reducing dimensional-
ity of data in various applications. The hybridization of PCA with DEA has been proposed 
quite recently (Ueda and Hoshiai, 1997), and yet thoroughly investigated and applied 
(Adler and Golany, 2002, Adler and Berechman, 2001, Adler and Golany, 2001, Adler and 
Yazhemsky, 2010, Azadeh et al., 2007, Põldaru et al., 2014, Chen et al., 2016, Annapoorni 
and Prakash, 2017, Jothimani et al., 2017). This hybrid method seems attractive since a 
priori does not require any assumptions about relations between the considered criteria.

We have applied an algorithm of PCA to the data in the three considered years. Since 
the first four components explain about 90% of variance (see Table 3) they are consid-
ered as representing the data sufficiently well. As we see in Fig. 1 according to the first 
and the second principal coordinates all Pareto optimal countries (marked as diamond) 
except Croatia come into one group.

Table 3
Variance explained by principal components

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

2013 46.31 26.00 10.42 7.12 6.15 2.14 1.37 0.48
2014 48.30 25.25   8.73 7.21 5.81 2.85 1.43 0.42
2015 46.16 24.34 11.66 7.26 6.06 2.79 1.30 0.43

Table 2
The countries’ performance vectors of which are non-dominated

2013 CZE
POL

DNK 
SVN 

DEU
SVK

EST
FIN

IRL 
GBR

FRA 
SWE

LVA 
ISL

LTU 
NOR

LUX 
CHE

NLD AUT

2014 BEL 
NLD

CZE 
AUT

DNK 
POL

DEU 
SVN

EST 
FIN

IRL 
SWE

FRA 
GBR

HRV 
ISL

LVA 
NOR

LTU 
CHE

LUX

2015 BEL 
HUN

CZE 
NLD

DNK 
AUT

DEU 
POL

EST 
SVN

IRL 
FIN

FRA 
SWE

HRV 
GBR

LVA 
ISL

LTU 
NOR

LUX 
CHE
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Further we apply DEA for the projection of the original data to the subspace de-
fined by four eigenvectors of the covariance matrix (computed by means of a PCA 
algorithm). For the details we refer to (Adler and Golany, 2001) where an excellent 
description of the algorithm is presented. The four dimensional projections of data are 
denoted by  

~
,  = 1     29. The attention should be paid to the unfavorable results 

of PCA where some elements of the transformed data sets are negative. Recall that the 
data with negative elements is not appropriate in the context of the original formulation 
of the DEA problems. However, alternative DEA models have been developed which 
are translation invariant (Banker et al., 1984, Ali and Seiford, 1990). We will use the so 
called Additive Model which maintains translation invariance in the analysis of entirely 
output data (Ali and Seiford, 1990). Let us note, that the Additive Model is also used in 
(Adler and Golany, 2001).

Since we consider entirely the output data, the Additive Model is defined as the fol-
lowing problem of linear programming

data sets are negative. Recall that the data with negative elements is not
apprpriate in the context of the original formulation of the DEA problems.
However, alternative DEA models have been developed which are translation
invariant [Banker et al., 1984, Ali and Seiford, 1990]. We will use the so called
Additive Model which maintains translation invariance in the analysis of entirely
output data [Ali and Seiford, 1990]. Let us note, that the Additive Model is also
used in [Adler and Golany, 2001].
Since we consider entirely the output data, the Additive Model is defined as

the following problem of linear programming

max
Λ, s+

zi = e s+, i = 1, . . . , 29, (1)

Ỹ Λ − s+ = Ỹi,

eΛ = 1,

Λ ≥ 0, s+ ≥ 0,

where Ỹ = (Ỹ1, Ỹ2, . . . , Ỹ29), e = (1, . . . , 1)
T .

The solution of (1) zi is equal to the L1 (city block) distance from the vector
Ỹi to the efficiency frontier, i.e. to the Pareto optimal segment of the convex
envelop of the data vectors. Thus, the equality zi = 0 is valid for the efficient
DMUs. Correspondingly, the non-zero distance is a measure of inefficiency. The
values of zi for all DMUs are summarized in Table 4 and together with slacks
for each of four constraints of the linear programming problem (1) are provided
in Appendix Tables 11, 12, 13.
The distance from Ỹi to the efficiency frontier can be used as a criterion for

ranking the inefficient DMUs. The non-zero slacks show the potential improve-
ment quantities along directions of principal components. However, these po-
tential efficiency improvements does not have proper interpretation. To obtain
estimates of potential efficiency improvements with respect of original criteria
the slacks can be expressed in terms of original data using loadings of principal
components. However, this problem has no unambiguous solution. For example,
the PCA coordinates of vectors in the original space are obtained by linear pro-
jecting where a ”shadow effect” can emerge. The mutual distances of of images
can be better preserved using non-linear projecting methods, e.g. Multidimen-
sional Scaling (MDS) [Borg and Groenen, 1997, Žilinskas and Žilinskas, 2006].
The attractive idea of hybridization of DEA and MDS, however is very new and
still not mature.
Therefore we have applied an alternative option to express desired improve-

ments for non-efficient DMUs. Let Λi denote the optimal vector of weights
corresponding to the solution of linear programming problem (1) with Ỹi as left
hand side of the constraints where zi > 0. Since the i-th DMU is inefficient its
improvement seems desirable. A reasonable target to achieve can be formulated
as

Yi =

29
j=1

λi j Yj , (2)

where λi j , j = 1, . . . , 29, are components of Λi.

8
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~
 = ( 

~
1 

~
2     

~
29),  = (1     1) .

The solution of (1)  is equal to the 1 (city block) distance from the vector 
~
 to 

the efficiency frontier, i.e. to the Pareto optimal segment of the convex envelop of the 
data vectors. Thus, the equality  = 0 is valid for the efficient DMUs. Correspondingly, 
the non-zero distance is a measure of inefficiency. The values of  for all DMUs are 

Fig. 1. The first and the second principal coordinates (2015 year).
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summarized in Table 4 and together with slacks for each of four constraints of the linear 
programming problem (1) are provided in Appendix Tables 11, 12, 13.

The distance from  
~
 to the efficiency frontier can be used as a criterion for ranking 

the inefficient DMUs. The non-zero slacks show the potential improvement quantities 
along directions of principal components. However, these potential efficiency improve-
ments does not have proper interpretation. To obtain estimates of potential efficiency 
improvements with respect of original criteria the slacks can be expressed in terms of 
original data using loadings of principal components. However, this problem has no un-
ambiguous solution. For example, the PCA coordinates of vectors in the original space 
are obtained by linear projecting where a “shadow effect” can emerge. The mutual 
distances of images can be better preserved using non-linear projecting methods, e.g. 
Multidimensional Scaling (MDS) (Borg and Groenen, 1997, Žilinskas and Žilinskas, 
2006). The attractive idea of hybridization of DEA and MDS, however is very new and 
still not mature.

Therefore we have applied an alternative option to express desired improvements for 
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ranking the inefficient DMUs. The non-zero slacks show the potential improve-
ment quantities along directions of principal components. However, these po-
tential efficiency improvements does not have proper interpretation. To obtain
estimates of potential efficiency improvements with respect of original criteria
the slacks can be expressed in terms of original data using loadings of principal
components. However, this problem has no unambiguous solution. For example,
the PCA coordinates of vectors in the original space are obtained by linear pro-
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still not mature.
Therefore we have applied an alternative option to express desired improve-

ments for non-efficient DMUs. Let Λi denote the optimal vector of weights
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hand side of the constraints where zi > 0. Since the i-th DMU is inefficient its
improvement seems desirable. A reasonable target to achieve can be formulated
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29
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Ỹ Λ − s+ = Ỹi,
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Table 4
The distances to the efficiency frontier

Country 2013 2014 2015 Country 2013 2014 2015

PRT   0.0   0.0   0.0 FRA 10.7 14.5 13.7
ESP   0.0   0.0   0.0 LUX   3.8   9.4 14.0
GRC   0.0   0.0   0.0 BEL 17.0 17.7 15.6
ISL   0.0   0.0   0.0 POL 29.8 24.2 19.4
NOR   0.0   0.0   0.0 LVA 26.0 28.4 25.7
IRL   0.0   0.0   0.0 AUT 42.3 26.8 28.7
DNK   0.0   0.0   0.0 DEU 26.7 35.4 29.9
CHE   0.0   0.0   0.0 ITA 49.7 40.7 34.3
SWE   4.6   0.0   0.0 HUN 45.0 46.9 45.1
FIN   2.8   0.0   0.0 CZE 54.5 50.0 46.5
EST 11.8 10.6   0.0 HRV 77.5 50.0 53.9
NLD   0.0   9.0   2.4 SVK 73.5 69.0 69.2
GBR   7.4   9.3   4.6 BGR 72.4 68.8 72.4
SVN 31.6 15.4 11.6 ROU 82.8 79.1 79.8
LTU   0.0   0.0 13.1



Analysis of Education Systems Performance in European Countries by ... 253

4. Numerical Example
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 defines -th DMU as a peer for -th DMU. 
For Table 4, Bulgaria is one of the countries with the largest distance to the efficiency 
frontier ( = 724 of the year 2015). The peers (defined by the non-zero weights) are 
Denmark (weight is equal to 0.8896) and Ireland (weight is equal to 0.1104). The targets 
for Bulgaria are presented in Table 5.

Only one indicator (·8) is already reached in 2015, so the performance of education 
system in Bulgaria should be improved with respect to ·1–·7 indicators. The largest 
potential for the improvement of the education system in Bulgaria can be reached by 
improving indicators ·5 and ·7. These indicators are much worse than in peers Denmark 
and Ireland.

Similarly for Latvia, peers are Denmark (weight is equal to 0.2864) and Ireland 
(weight is equal to 0.7137). The targets for Bulgaria are presented in Table 6.

Three indicators (·3, ·4 and ·8) out of eight are already reached in 2015 and the 
largest potential for improvement education system in Latvia can be reached by improv-
ing the same indicators (·5 and ·7) like in Bulgaria.

5. Discussion and Conclusions

In the analysis of sectors of education systems the most frequently radial DEA mod-
els and CCR modifications are applied. Radial efficiency measure and proportional 
improvement of efficiency are natural for the units with fixed structure operating in 
identical conditions. Education systems of different countries do not correspond to 

Table 5
Observed data and formulated targets for Bulgaria (BGR)

 ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

Observed (2015) 86.6 32.1 89.2 73.6   2.0 59.5 3.6 81.9
Target 92.3 48.1 97.9 79.9 28.6 85.3 8.5 80.3

Table 6
Observed data and formulated targets for Latvia (LVA)

·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

Observed (2015) 90.1 41.3 95.0 78.7   5.7 81.2 4.4 90.1
Target 92.9 51.0 94.4 76.6 13.6 86.1 9.0 80.0
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such a characterisation. Improvement of education systems means mainly improve-
ment in it’s structure: a reform means not only increasing values of indicators but 
also changing ratios between their values. Therefore BCC type model seems the most 
appropriate for education systems analysis. Our experiments show the applicability 
of PCA with Additivity Model base DEA. The proposed methodology of PCA-DEA 
allows researchers analyse education systems quantitatively. We demonstrated good 
performance of the proposed methodology on limited data set of ET2020 indicators. 
The assessment of the performance and recommendations for the improvements of 
education systems could be based on the analysis conducted using sufficiently large 
data set which would comprehensively represent the considered education system of 
the country as a whole.
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Appendix

Table 7
Indicators for year 2013

Country ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

BEL 89.0 42.7   98.1 78.1   6.9 82.4 13.5 72.8
BGR 87.5 29.4   87.8 67.6   2.0 60.0   3.8 81.8
CZE 94.6 26.7   85.7 80.3 10.0 82.8   8.9 92.8
DNK 92.0 43.4   98.3 81.0 31.4 83.9   7.4 78.3
DEU 90.2 32.9   97.0 88.2   7.9 85.2 12.9 86.7
EST 90.3 42.5   90.4 75.8 12.6 91.8 11.9 90.6
IRL 91.6 52.6   98.1 72.4   7.6 87.5 10.9 76.7
GRC 89.9 34.9   76.9 39.6   3.2 72.1   3.8 67.2
ESP 76.4 42.3   97.1 55.9 11.4 80.8   6.1 55.5
FRA 90.3 44.0 100.0 74.7 17.8 80.0 11.2 75.0
HRV 95.5 25.6   71.4 53.8   3.1 78.0   5.3 81.3
ITA 83.2 22.5   98.7 48.3   6.2 79.0   7.6 58.2
LVA 90.2 40.7   94.1 77.6   6.8 83.6   5.5 89.4
LTU 93.7 51.3   86.5 74.7   5.9 78.9   5.5 93.4
LUX 93.9 52.5   99.4 77.1 14.6 77.1   9.4 80.5
HUN 88.1 32.3   94.5 73.4   3.2 78.1   6.9 82.5
NLD 90.7 43.2   99.5 83.9 17.9 86.0 13.6 75.8
AUT 92.5 27.1   93.9 89.5 14.1 82.0   9.2 83.0
POL 94.4 40.5   84.8 72.7   4.3 88.7 12.5 90.1
PRT 81.1 30.0   93.9 65.6   9.7 79.1   7.0 39.8
ROU 82.7 22.9   86.4 67.2   2.0 61.5   1.9 75.7
SVN 96.1 40.1   89.8 73.5 12.5 82.0   9.4 85.5
SVK 93.6 26.9   77.5 70.3   3.1 72.5   6.7 91.9
FIN 90.7 45.1   84.0 79.8 24.9 89.6 15.3 85.9
SWE 92.9 48.3   95.7 84.2 28.4 76.0   7.4 83.2
GBR 87.6 47.4   95.9 82.8 16.6 82.2 10.6 78.3
ISL 79.5 43.9   96.2 86.7 26.3 77.8   7.4 72.2
NOR 86.3 48.8   97.4 89.8 20.8 80.6   9.1 82.4
CHE 94.6 46.1   79.1 84.3 30.4 87.0 13.3 87.2
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Table 8
Indicators for year 2014

Country ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

BEL 90.2 43.8 98.1 77.4   7.4 80.2 11.4 73.6
BGR 87.1 30.9 89.3 65.4   2.1 59.5   3.6 81.1
CZE 94.5 28.2 86.4 81.3   9.6 78.5   8.5 93.2
DNK 92.2 44.9 98.1 82.3 31.9 85.2   8.4 79.6
DEU 90.5 31.4 97.4 88.4   8.0 83.2 11.7 86.9
EST 88.6 43.2 91.7 79.3 11.6 89.8 12.9 91.2
IRL 93.1 52.2 96.0 73.5   6.9 86.5   9.2 78.8
GRC 91.0 37.2 84.0 44.0   3.2 68.1   3.4 68.4
ESP 78.1 42.3 97.1 61.1 10.1 81.1   5.9 56.6
FRA 91.0 43.7 100.0 73.0 18.4 77.7 10.6 76.7
HRV 97.3 32.2 72.4 62.0   2.8 74.5   5.1 82.9
ITA 85.0 23.9 96.5 44.8   8.1 77.5   6.8 59.3
LVA 91.5 39.9 94.4 76.6   5.6 81.2   4.4 89.5
LTU 94.1 53.3 88.8 80.1   5.1 74.9   5.2 93.3
LUX 93.9 52.7 98.4 82.7 14.5 74.2   8.3 82.0
HUN 88.6 34.1 94.7 78.0   3.3 72.9   5.7 83.1
NLD 91.3 44.8 97.6 83.3 18.3 82.2 12.5 75.9
AUT 93.0 40.0 94.0 86.9 14.3 78.3   9.1 83.9
POL 94.6 42.1 87.1 75.2   4.0 84.0   9.2 90.5
PRT 82.6 31.3 93.5 66.7   9.6 80.5   8.8 43.3
ROU 81.9 25.0 86.4 65.9   1.5 60.9   2.0 72.8
SVN 95.6 41.0 89.4 70.0 12.1 84.6 11.0 85.7
SVK 93.3 26.9 77.4 72.7   3.1 69.8   5.0 91.0
FIN 90.5 45.3 83.6 77.0 25.1 88.0 13.2 86.5
SWE 93.3 49.9 95.9 84.5 29.2 79.7   9.6 83.7
GBR 88.2 47.7 98.2 82.3 16.3 80.9 10.2 79.2
ISL 80.9 46.4 96.2 89.0 26.3 76.3   6.9 73.6
NOR 88.3 52.1 97.2 86.1 20.1 83.1 10.3 82.7
CHE 94.6 49.2 80.6 87.3 31.7 81.9 12.3 88.0
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Table 9
Indicators for year 2015

Country ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

BEL 89.9 42.7 98.0 77.9   6.9 80.2 11.4 74.7
BGR 86.6 32.1 89.2 73.6   2.0 59.5   3.6 81.9
CZE 93.8 30.1 88.0 82.0   8.5 78.5   8.5 93.2
DNK 92.2 47.6 98.5 80.5 31.3 85.2   8.4 80.4
DEU 89.9 32.3 97.4 88.9   8.1 83.2 11.7 86.8
EST 88.8 45.3 91.6 79.2 12.4 89.8 12.9 91.1
IRL 93.1 52.3 92.7 75.0   6.5 86.5   9.2 79.8
GRC 92.1 40.4 79.6 45.0   3.3 68.1   3.4 70.4
ESP 80.0 40.9 97.7 62.2   9.9 81.1   5.9 57.4
FRA 90.8 45.0 100.0 70.9 18.6 77.7 10.6 77.5
HRV 97.2 30.9 73.8 62.4   3.1 74.5   5.1 83.3
ITA 85.3 25.3 96.2 48.3   7.3 77.5   6.8 59.9
LVA 90.1 41.3 95.0 78.7   5.7 81.2   4.4 90.1
LTU 94.5 57.6 90.8 81.1   5.8 74.9   5.2 93.5
LUX 90.7 52.3 96.6 83.5 18.0 74.2   8.3 76.0
HUN 88.4 34.3 95.3 80.0   7.1 72.9   5.7 83.2
NLD 91.8 46.3 97.6 86.6 18.9 82.2 12.5 76.4
AUT 92.7 38.7 95.0 86.7 14.4 78.3   9.1 84.6
POL 94.7 43.4 90.1 76.8   3.5 84.0   9.2 90.8
PRT 86.3 31.9 93.6 70.5   9.7 80.5   8.8 45.1
ROU 80.9 25.6 87.6 68.0   1.3 60.9   2.0 75.0
SVN 95.0 43.4 90.5 71.1 11.9 84.6 11.0 86.8
SVK 93.1 28.4 78.4 75.2   3.1 69.8   5.0 91.4
FIN 90.8 45.5 83.6 75.5 25.4 88.0 13.2 87.7
SWE 93.0 50.2 95.0 85.5 29.4 79.7   9.6 84.3
GBR 89.2 47.9 100.0 85.0 15.7 80.9 10.2 79.7
ISL 81.2 47.1 97.6 92.1 28.1 76.3   6.9 75.0
NOR 89.8 50.9 97.3 89.7 20.1 83.1 10.3 82.7
CHE 94.9 51.4 81.3 84.8 32.1 81.9 12.3 88.2
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Table 10
Spearman’s correlation of indicators

  ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8

2013 Y1   1
 Y2  0.116 1
 Y3 -0.348 0.391* 1
 Y4  0.146 0.462* 0.279 1
 Y5  0.098 0.626* 0.417* 0.726* 1
 Y6  0.252 0.287 0.129 0.391* 0.412* 1
 Y7   0.254 0.417* 0.327 0.531* 0.552* 0.759* 1
 Y8   0.648* 0.046 - 0.325 - 0.305 0.145 1
 0.481* 0.038
2014 Y1   1
 Y2   0.202 1
 Y3 -0.35 0.378* 1
 Y4   0.146 0.546* 0.334 1
 Y5   0.008 0.611* 0.447* 0.632* 1
 Y6   0.131 0.383* 0.194 0.299 0.508* 1
 Y7   0.12 0.437* 0.296 0.502* 0.647* 0.753* 1
 Y8   0.635* 0.09 - 0.359 - 0.231 0.185 1
 0.425* 0.032
2015 Y1   1
 Y2   0.252 1
 Y3   - 0.311 1
   0.455*
 Y4   0.081 0.508* 0.365 1
 Y5   0.009 0.600* 0.476* 0.574* 1
 Y6   0.186 0.426* 0.217 0.239 0.475* 1
 Y7   0.172 0.441* 0.291 0.420* 0.649* 0.753* 1
 Y8   0.609* 0.115 - 0.328 - 0.251 0.171 1
 0.454* 0.051

*Correlation is significant at the 0.05 level (2-tailed).
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Table 11
DEA results for 2013

Country Distance to 
frontier

Slack 1 Slack 2 Slack 3 Slack 4

BEL 17.04   1.88   0.00 11.68   3.48
BGR 72.42 20.40 19.03 20.70 12.29
CZE 54.45   0.00 24.31 15.83 14.32
DNK   0.00   0.00   0.00   0.00   0.00
DEU 26.67   0.00 11.96 14.58   0.13
EST 11.83   0.00 11.68   0.00   0.15
IRL   0.00   0.00   0.00   0.00   0.00
GRC   0.00   0.00   0.00   0.00   0.00
ESP   0.00   0.00   0.00   0.00   0.00
FRA 10.68   0.00   0.00   5.01   5.67
HRV 77.48 27.57 27.95   1.93 20.03
ITA 49.67 31.11   0.00 10.44   8.12
LVA 25.95   0.00 14.52   8.76   2.67
LTU   0.00   0.00   0.00   0.00   0.00
LUX 3.83   0.00   1.48   0.75   1.60
HUN 44.95   9.19 12.98 16.96   5.82
NLD   0.00   0.00   0.00   0.00   0.00
AUT 42.29   0.00 11.05 20.09 11.16
POL 29.82   0.26 20.63   2.48   6.45
PRT   0.00   0.00   0.00   0.00   0.00
ROU 82.76 26.41 15.76 24.87 15.72
SVN 31.58   0.09 13.57   6.07 11.85
SVK 73.45 11.92 31.26 14.08 16.19
FIN   2.84   0.00   1.13   0.00   1.71
SWE   4.61   0.00   0.00   0.00   4.61
GBR   7.39   0.00   0.00   3.16   4.23
ISL   0.00   0.00   0.00   0.00   0.00
NOR   0.00   0.00   0.00   0.00   0.00
CHE   0.00   0.00   0.00   0.00   0.00
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Table 12
DEA results for year 2014

Country Distance to 
frontier

Slack 1 Slack 2 Slack 3 Slack 4

BEL 17.72 10.84   0.00   6.88   0.00
BGR 68.84 22.83 16.45 13.27 16.29
CZE 50.03   0.00 21.26   9.57 19.19
DNK   0.00   0.00   0.00   0.00   0.00
DEU 35.38   0.00 11.14 15.53   8.72
EST 10.59   0.00   9.86   0.00   0.73
IRL   0.00   0.00   0.00   0.00   0.00
GRC   0.00   0.00   0.00   0.00   0.00
ESP   0.00   0.00   0.00   0.00   0.00
FRA 14.46 14.39   0.00   0.06   0.00
HRV 49.96 26.68 20.26   0.00   3.02
ITA 40.66 40.66   0.00   0.00   0.00
LVA 28.44   0.65 13.05   7.91   6.83
LTU   0.00   0.00   0.00   0.00   0.00
LUX   9.36   0.00   2.90   4.66   1.80
HUN 46.94   7.94 11.74 16.00 11.26
NLD   9.00   3.17   0.00   5.83   0.00
AUT 26.81   0.00   7.95   8.87   9.98
POL 24.17   0.00 16.53 1.16   6.48
PRT   0.00   0.00   0.00   0.00   0.00
ROU 79.06 29.51 12.07 16.43 21.04
SVN 15.38   6.19   7.50   0.00   1.68
SVK 68.99 12.56 28.02   7.23 21.18
FIN   0.00   0.00   0.00   0.00   0.00
SWE   0.00   0.00   0.00   0.00   0.00
GBR   9.28   6.88   0.00   2.36   0.03
ISL   0.00   0.00   0.00   0.00   0.00
NOR   0.00   0.00   0.00   0.00   0.00
CHE   0.00   0.00   0.00   0.00   0.00
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Table 13
DEA results for year 2015

Country Distance to 
frontier

Slack 1 Slack 2 Slack 3 Slack 4

BEL 15.56   5.23   0.00 10.34 0.00
BGR 72.41 30.91 23.08 16.68 1.74
CZE 46.49   9.98 24.95 11.56 0.00
DNK   0.00   0.00   0.00   0.00 0.00
DEU 29.86   0.14 10.39 19.33 0.00
EST   0.00   0.00   0.00   0.00 0.00
IRL   0.00   0.00   0.00   0.00 0.00
GRC   0.00   0.00   0.00   0.00 0.00
ESP   0.00   0.00   0.00   0.00 0.00
FRA 13.72 11.05   0.09   2.58 0.00
HRV 53.91 31.91 22.00   0.00 0.00
ITA 34.31 33.98   0.00   0.32 0.00
LVA 25.72   3.19 12.85   9.68 0.00
LTU 13.13   0.00 13.13   0.00 0.00
LUX 13.96   4.75   1.92   7.29 0.00
HUN 45.13 14.93 13.96 16.24 0.00
NLD   2.41   0.00   0.00   2.41 0.00
AUT 28.65   3.88 11.74 13.04 0.00
POL 19.36   1.28 14.16   3.92 0.00
PRT   0.00   0.00   0.00   0.00 0.00
ROU 79.84 40.82 18.56 17.44 3.02
SVN 11.63   4.90   6.72   0.00 0.00
SVK 69.22 25.22 34.04   8.71 1.25
FIN   0.00   0.00   0.00   0.00 0.00
SWE   0.00   0.00   0.00   0.00 0.00
GBR   4.56   0.00   0.00   4.56 0.00
ISL   0.00   0.00   0.00   0.00 0.00
NOR   0.00   0.00   0.00   0.00 0.00
CHE   0.00   0.00   0.00   0.00 0.00




