Informatics in Education, 2013, Vol. 12, No. 1, 13-27 13
© 2013 Vilnius University

Adaptive Educational Software by Applying
Reinforcement Learning

Abdellah BENNANE

Centre de Formation des Inspecteurs de I’Enseignement (CFIE)

UMS, Rabat Morocco& Laboratoire des Systemes de Télécommunications et Ingénierie de la
Décision (LASTID), Université Ibn Tofail, Kénitra, Morocco

e-mail: bennanea@yahoo.fr

Received: December 2012

Abstract. The introduction of the intelligence in teaching software is the object of this paper. In
software elaboration process, one uses some learning techniques in order to adapt the teaching
software to characteristics of student. Generally, one uses the artificial intelligence techniques like
reinforcement learning, Bayesian network in order to adapt the system to the environment inter-
nal and external conditions, and allow this system to interact efficiently with its potentials user.
The intention is to automate and manage the pedagogical process of tutoring system, in particular
the selection of the content and manner of pedagogic situations. Researchers create a pedagogic
learning agent that simplifies the manual logic and supports progress and the management of the
teaching process (tutor-learner) through natural interactions.

Keywords: adaptive system, tutoring system, agent, environment, natural interaction, reinforcement
learning, pedagogical process.

1. Problematic

The classical conception of intelligent tutoring systems is composed of four elements, the
domain model (knowledge), the student model, pedagogic module, and communication
module (Wenger, 1987).

The pedagogic module is the manager of the pedagogic action undertaken in a tutor-
ing system. The choice of situations which the system introduces to the learners is the
function of the pedagogic module. Traditionally, pedagogic module is collection of rules
elaborated by author or designer of the system. These rules are defined and developed
manually by being based on the experience of author or designer of tutoring system. This
“manual” logic is more subjective than objective, because it is linked to the author and its
pedagogic experiences.

The tendency of research in this field is to replace with statistical approaches the
traditional approaches based on rules established manually. It is necessary to develop
probabilistic approaches and flexible models, which allow the machine to learn (Aimeur,
2004) by itself from received data. The correlation of the learning performance is based
on the engine of the statistical deduction which collects information about the user be-
haviors for every course of individualized study and creating a distribution of likelihood

14 A. Bennane

for the whole of training module (Sonwalkar, 2004). The research in machine learning
was interested, for a big part, to develop the algorithms which can label new data, rather
systems which learn naturally in interaction with people. I like to contribute to change
this focus and to develop a new type of systems that learn with the users across a natural
interaction (Picard ef al., 2004).

To solve the problem mentioned above, one asks, is it possible to replace the “manual
logic” with a “numerical logic”” which can exploit the student learning route? Can it as-
sure the adaptability of the teaching environment to learners and be done objectively? The
natural interaction between learner and teaching environment can automate the teaching
module. The aim is to prove this hypothesis. Several machine learning techniques were
used to solve this type of problem. The automation allows to spare effort and time and
to surmount the numerous problems of the adaptability of tutoring systems. The peda-
gogic module can be dynamically generated, only based on the interaction of learners
with its teaching environment. The invested efforts were in two directions, on one hand,
the conception of a database which takes into account the significant characteristics of
the pedagogic act. Secondly, to explore and to try among the learning techniques, based
on numerical calculations, that is more appropriate in the field of study such as the rein-
forcement learning techniques.

2. Elaboration of Solution

The solution rests on two pillars. The first is pedagogic and concerns the way with which
author organize and structure the teaching environment in order to answer differences
which exist between learners. From this perspective, author find that differentiated ped-
agogy can be very useful. Second pillar is technical and concerns the use of a learning
agent which will occupy the function of tutor (pedagogue) in the system. To this end, the
author will use the reinforcement learning model that has demonstrated its effectiveness
as a learning controller.

The goal of adaptive educational systems is to create an instructionally sound and flex-
ible environment that supports learning for students with a range of abilities, disabilities,
interests, backgrounds, and other characteristics (Shute, 2011).

3. Differentiated Pedagogy: Individualization and Variety of Methods

We linked the modular approach and differentiated pedagogy (Przesmycki, 1991) to
structure and organize the teaching environment. The differentiated pedagogy renews
the conditions of training by opening a maximum of access for learners.

In this sense, a pedagogic sequence is a succession of learning situations. And a situ-
ation is no more and no less an encounter of circumstances. A situation poses a problem
when it puts subject in front of a task to be fulfilled, all procedures which it does not con-
trol (Hoc, 1996). An apprenticeship is a task that poses a cognitive challenge to learner.

Adaptive Educational Software by Applying Reinforcement Learning 15

Then, the development of teaching situation is based on two important parameters, in-
dividualization and variety (Bennane, 2001). Individualized teaching is a pedagogy that
recognizes the student as an individual with its own representations of the teaching act. In-
dividualized teaching or learning is adapting to both efficiency levels, the rhythm of work,
reactions to failure and success, etc. While a variety of teaching situations is a pedagogy
which offers a range of approaches and strategies. This approach can help to solve the
problem of school failure where the level of learners in the evaluation process is missing
or ignored. In general, teachers and trainers when they prepare a teaching module, they
focused their effort around the medium learner. Then differentiation between learners
and individualization are omitted. The design calls for an extra effort from teachers and
trainers so that they will take into account the individual characteristics — like study level
— when they prepare their teaching module. For this reason, a teaching situation will be
a package of sub situations. How?

In general, the learners of a class form a heterogeneous public. In each class, author
find five groups (subclass): good, relatively good, medium, weak, and very weak. From
class decomposition and level learners, author deduce the value 5. We propose this value
(5) in order to move forward, knowing that the choice of this value depends on the domain
teaching and the level of public heterogeneity.

Every situation will contain five sub-situations by taking into account two dimensions.
The first one concerns the heterogeneity of learners who can be regrouped in five levels.
The second dimension concerns different learning strategies that will be used.

In developing a learning module, it is advisable (1) to solicit permanently the learner
activity; (2) to treat situations first simple (3) to lead the learner progressively to master
the lesson goals by offering situations more and more of increasing complexity. By fol-
lowing an approach that respects the progressiveness, the gradual difficulty, and variety
of pedagogic methods, a teaching module will have all chances to lead to the acquisition
by learner the solid competences and directly operational.

EXAMPLE 1. Figure 1 is a pedagogic sequence of ten situations, with each situation

having five sub-situation levels. One asks, what is the number of course possibilities
(NCP) in this network (sequence)? NCP is the following: 5! = 9,765,625. This number

Complexity

Fig. 1. Sequence: difficulty and complexity.

16 A. Bennane

is very important. With support of this network that is opened to all possibilities, and not
frozen, adaptation can come true. The agent learning designed and implemented offers
its services to adapt the learning environment to learners and not contrary.

4. Reinforcement Learning
4.1. Introduction

The reinforcement learning (RL) is the study of how animals and artificial systems can
learn to optimize their behavior to rewards and punishments. It was developed the RL
algorithms that are closely related to the methods of dynamic programming, which is
a general approach to optimal control (Sutton et al., 1998). It was observed phenomena
RL in psychological studies of animal behavior, in neurobiological investigations, etc.
(Dayan et al., 2001). One way in which animals learn complex behavior is by learning
to get rewards and avoid punishments. For this type of learning, RL theory is a model of
a formal calculus (Fig. 2).

The paradigm of reinforcement learning standard, an agent is connected to an envi-
ronment by perception and action. A learning agent (an animal, a robot, etc.) observes
on several occasions the state of the environment and then selects and executes an action.
The execution of action changes the state of the “world” and the agent acquires an im-
mediate numerical reward. The positive earnings are called “rewards” and negative are
called “punishment”.

The reinforcement learning consists of a set of concepts and algorithms. RL is not
defined by a certain class of algorithms but by the problem which it tries to solve, that is
the optimum control.

RL is traditionally defined as part of a Markov decision processes (MDP). Bellman
founded the theory of MDPs (Bellman, 1957a, 1957b) by the unification of previous
work on the sequential analysis, functions statistical decision (Wald, 1950), and models
of dynamic games for two persons (Shapley, 1953). An MDP is a quadruplet (S, A, P, R)
such as S is a set of states, A is a set of actions, and P and R are the distribution of
probabilities and rewards respectively.

At time ¢, an agent receive situation/state s;, and chooses an action a;; the world
changes to situation/state s, 1; and agent perceives situation s;;; and gets reward 74 1.

Ercrronraent *

& Policy

Lgent

A4

Fig. 2. Environment — agent.

Adaptive Educational Software by Applying Reinforcement Learning 17

Learning is a mapping from situations to actions in order to maximize a reinforcement
signal (scalar reward).
The general reinforcement learning algorithm may be:
1. Initialize learner’s internal state;
2. Do for a long time:
e Observe current state (s);
e Choose action (a) using the policy;
e Execute action (a);
e Let (r) be immediate reward, (s’) new state;
e Update internal state based on (s, a, 1,).

3. Output a policy based on (Hayes, 2008).
4.2. Methods of Resolutions

In Reinforcement learning, there are three methods of solving the learning problem,
model-based method, model-free method and unified method (planning and learning
method).

The model-based method: allows finding the environment model P and R, using dy-
namic programming techniques. Let given a database with m observations (s¢, a;, S¢41,
ry) € S X Ax R x S generated on some experiences. This method is functioning on two
steps:
1. Extraction of probabilities distribution and reinforcement function. The values es-
timation of these distributions are based on the occurrences of the (s;, a¢, S¢11, 1¢)
in the database:

o P(s¢11|s¢, ap) is the probability that taking action a; in state s; will result in
a transition to state s, 1.

o 7(s¢, at, si11) is the expected reward when transitioning from s; to s;1 by
action ay.

2. Usage of the dynamic programming techniques in the end to determine the opti-
mal policy. This goal is achieved indirectly by computing the Q-values, using the
Bellman optimality equation:

Q* (s, a) = >, PL.(RS, + . maxy Q*(s',d"))V(s,a) € S x A; and ya dis-
count factor, 0 < v < 1.

The model-free method: allows avoiding the explicit calculus of the environment model.
The Monte Carlo and Temporal difference techniques are using. The Q-Learning for ex-
ample generate a suite of functions: Q1, Q2, Q3,.. It is an approximation of Q-value,
online and without model. It’s allows to construct an optimal policy directly.

Planning and learning method (Unified method): is a unified view of methods that
require a model of the environment, such as dynamic programming, and methods that can
be used without a model, such as temporal-difference methods. We think of the former as
planning methods and of the latter as learning methods. Within a planning agent, there

18 A. Bennane

Planning Updat -
Agent [¢ AMMIE Tpasts Simulated
Experience
Direct Update T
(st 3 841, 1) Real Experience Search control
_ T.rarning Moadel
Environment S o Model

Fig. 3. The general Dyna architecture.

are at least two roles for real experience: it can be used to improve the model and it can
be used to directly improve the value function and policy using the direct reinforcement
learning methods (Sutton et al., 1998; see Fig. 3).

The heart of planning and learning methods is the estimation of value functions by
backup operations. The difference is that whereas planning use simulated experience gen-
erated by model, learning methods use real experience generated by the environment.

Both direct and indirect methods have advantages and disadvantages. Indirect meth-
ods often make fuller use of a limited amount of experience and thus achieve a better pol-
icy with fewer environmental interactions. On the other hand, direct methods are much
simpler and are not concerned by the design of the model but expensive in experiences
number (Sutton, 1998).

4.3. Interaction Scenario

The choices of RL are due to the nature of the model. It is adapted to human learning as
has been done since the work of pioneers such as Watson, Pavlov, Skinner, Bellman, etc.

The choice starts from the following idea: in the teaching environment, one finds
two agents. The first one is external to the system. It is a student who needs to learn a
teaching module. This natural agent need a tutor who can select situations adapted to the
student level. Then the second agent is internal and represents the tutor (the pedagogic
agent). The pedagogic agent can’t fulfill this function unless it has the ability to learn.
The RL theory and model can provide the pedagogic agent to learn through trial and
error (experience). In other words, the pedagogic agent learning can be achieved only
through student learning (Fig. 4).

4.4. Dynamic Generation of Pedagogic Multi-Agents

Teaching and learning can be anywhere, synchronous or asynchronous. Our goal is that
the characteristics of learners such as level of study among others must be taken into ac-
count by tutoring system via specialized agents in order to produce pedagogic adaptive
courses. In this optic, the tutoring systems must have, on one hand, an agent that sup-
ports the student model. On the other hand, the dynamic generation process of pedagogic

Adaptive Educational Software by Applying Reinforcement Learning 19

C ormmmanication Ervirorumernt AgertPeda Studentmodel

Dutabase bad np
S tudent Situation sdecticm Tntsben

%\ s. - N
" | Adtion selection

F 3

Loareiag of sub s aaticn . 1
2 Sub-sahaation »—
;m.dytimtwmmiim
Study time

¥ Reward comprtation,
Reward

(stwation, action, neatsteth revend)
>

-

Database Updaded

:

Fig. 4. Interaction scenario.

apprenant 1 apprenant 2 apprenant n

agent 1 agent 2 agent n

Fig. 5. Student and dynamic generation of agents.

agents starts each time that a student is connected to the system, and a new agent is cre-
ated automatically. Student will be assisted by an agent who individualizes their learning
courses taking into account their particular features (Fig. 5).

For distributed tutoring systems, the dynamic generation of pedagogical agents may
become the key elements attending the adaptability of the system to potential users (Ben-
nane, 2010).

20 A. Bennane

4.5. RL and Multi-Agent Systems (MAS)

Agent-based systems technology has generated lots of excitement in recent years because
of its promise as a new paradigm for conceptualizing, designing, and implementing soft-
ware systems. This promise is particularly attractive to creating software that operates
in environments that are distributed and open, such as the internet. Currently, the great
majority of agent-based systems consist of a single agent (Sycara, 1998).

Research in MAS is concerned with the study, behaviour and construction of a col-
lection of possibly pre-existing autonomous agents that interact with each other and their
environments.

A stochastic game is a tuple (A4, .S, {U;}ica, p,{7i}ica) where:

A=1,... nisasetof agents;

S is a finite state space;

Ui is the finite set of agent’s actions, U = z;c aU;;

p: S x U x S — [0, 1] is the state transition probability distribution;
ri2 S x U x § — R is the agent’s reward function.

State transition and rewards depend on the joint action. Then the consequence of
learning is that optimal policy depends on policies of other agents.

According to tasks, one may be classifying the MAS tasks on three: (1) cooperative
tasks where 71 = r9 = = 7,; (2) competitive tasks where 71 = —ry (zero — sum
games); (3) mixed tasks is a general case (general — sum games).

The RL approach in MAS may be three. The first one applies single agent reinforce-
ment learning by ignoring the presence of other agents. It considers other agents indi-
rectly, troughs the reward signal. The second approach guarantee convergence indepen-
dently of other agents, but it is aware of learning agents. The third, an agent is adapted
to other agents in order to strive for optimality (Babuska, 2006). Better results can be
obtained if the agents attempt to model each agent. In this case, each agent maintains
an action value function Q(7)(s, a) for all states and joint action pairs. A joint action (a)
is continually under process in the state (s) and a new state (s’) is observed, thus each
agent (i) updates its ()(7)(s,a). The first and second approaches are the simplest case
that the agents learn independently of each other. Each agent treats other agents as part
of environment, and does not attempt them or predict their actions (Vlassis, 2003).

This is a model of stochastic games, also called Markov Games (Tuyls. 2005). In this
approach, it is certain that the influence of an agent on all other agents can be modelled so
that the Markov property still stands. This, combined with a unique solution, such as the
notion of bootstrap Stackelberg equilibrium, is generally performed in the RL techniques
(K6nonen, 2004).

In reinforcement learning, the behaviour of a single agent is specified by a policy. In
games stochastic, policies are separate from each agent and the goal of each agent is to
find an equilibrium policy, i.e., a policy that has the best response in comparison with
“Adversaries” policies.

The RL independent agents try to optimize their behaviour without any form of com-
munication with other agents. They use only the feedback received from the environment.

Adaptive Educational Software by Applying Reinforcement Learning 21

These independent agents can use the traditional RL algorithms developed in the station-
ary case for asingle agent. Note that the feedback from the environment is generally de-
pendent on a combination of actions taken by multiple agents, not only by a single agent.
In this case, the Markov property no longer holds, and the problem becomes dependent
and non-stationary.

In multi-agent environments, if the behaviour of other agents converges, i.e., the se-
lection distribution becomes stationary at the limit, the Q-learning updated to converge to
optimal function Q* with probability one.

In many applications where real RL techniques are used in MAS, RL techniques for
a single agent are applied directly. Although some assumptions that underlie these learn-
ing models are violated, methods work surprisingly and in many cases (Kononen, 2004).

5. Student Model

How an agent can select sub situations adapted to student level? In order to answer to this
question, we must first to present the student model function (Vanlehn, 1988). A student
model is a qualitative representation of student knowledge for a domain, a particular
subject or a competence which can take into account, fully or partially, specific aspects of
student behavior (Sison et al., 1998). In other words, it describes the objects and processes
in spatial, temporal or causal relationship (Clancey, 1986). In this sense, the student model
may be having two functions. First, it’s a memory storing all transactions passing from an
object to another and it is organized using the quadruplet (situation, action, next situation,
reward) at least. The second function is a set of methods using dynamic resources to
manage the student model. The pedagogic module selects the teaching course of student
based on student behaviors. Whereas the pedagogic agent needs some data and methods
in order to answer to goal task requirements. Its goal is to determine an optimal function
Q™ (Sutton et al., 1998) that will be the criterion of sub situation selection. It is the engine
of the tutoring system adaptability. It use student model database in order to compute the
optimal policy. In our case, first determine environment model, then compute optimal
function value.

6. Looking for an Optimal Policy
6.1. Model-Based Method

In order to determine the optimal function Q* which represent the selection criterion of
student adaptive course, we have adopted the model based method because:

e With few environment interactions, one can deduce the optimal policy (Sutton
etal., 1998);

e State space dimension is modest;

e The exploration and exploitation phases will be separated. This separation allows
easily compare the two phases according to the criteria given as “transition proba-

AT

bilities distribution”, “reduction of time in the student learning process” etc.

22 A. Bennane

The values of optimal function (Q* are computed as follows:

e collect m interactions (¢, a¢, S¢t1, 7¢);
e compute probabilities distribution values;
e compute reward function values;
e compute an optimal function values.
The environment model is determined, and then optimal values are updates using Q-
Learning

6.2. Probabilities Distribution and Reward Function

According to the organization of a teaching sequence as we have defined, the successors
of a given situation (s) are:

e (s) itself if the action is accomplish by failure;

e (s’) if the action is achieved by success.

The reward function is defined from S x A x S to R and noted fr. We underline the
values Rai", Ra$‘, Ras", Ras®, Ra3", Ras®, Raj", Ra3‘, Ras", Rag® used as indicative
in Fig. 6 are unknowns.

The choice of the reward function is not evident because, in several cases, the pro-
posed reward function allows not satisfying the given hypothesis (Beck et al., 2000) in
order to determine the optimal policy.

The probabilities distribution is defined from S x A x S to [0, 1] and it is noted P.
We underline that values «, x, d, 3, and ¢ used as indicative in Fig. 6 are unknowns.

The values of two functions frr and P are unknowns? Its will be learned by experi-
ence in order to determine the environment model.

The values of the probabilities distribution come as follow:

_ HzeLS/si(x)=s,a1(z)=a,si11(x)=5"ets'#£s}|
b P(37a7 S/) - |{x LS/S{(wxE)Lé/ztt((l;ﬁ)):iitt-zalr()x:)a}sl}e| —= S1 S 7£ 8/,
xre st(x)=s,ar(x)=a,s; xTr)=s . _
e P(s,a,s) = |{xeLS/st(z)t:s,at(:c)iZ}| sis =s,

b P(S7a/7 8/) +p<87a7 8) =]'

, Raf“

1- o, Ray*
Bl

A Rag™
=X - Rag* A

&
o s g ®
»

5, Raz* 8, Raz™

B, Ra™

1- [3, Ray* &

as

¢, Ras™
1 >¢, Ra;“

Fig. 6. State diagram from a non terminal state (s) to another (s’).

Adaptive Educational Software by Applying Reinforcement Learning 23

The values of the reward function come as follow:

(o)
N~ oc{x€LS/s¢(x)=s,a (w):a,st+1(z):s’} . . .
fr(s,a,s) = oIS s = e e =T Where r¢(0) is an immediate

reward associated to the observation o, at time ¢. fr (s, a, s’) is the average of immediate
rewards received along the experience (Jodogne, 2007).

6.3. Algorithm Computing Optimal Function

Thereafter, we present the algorithm that allows computing the environment model (P, R)
and the values of optimal function Q*.

Notation

C(s, a, s'): the number of transition from state (s) to state (s’) while acting action (a);

C'(s, a): the number of time the agent act action (a) at state (s);

r(s,a, s'): the sum of rewards received by agent after acting action (a) at state (s) in
order to transit to next state (s’);

0 is an infinitely small, and ~ is a parameter comprise between 0 and 1;

= 0.0000000001;

v =0.9.

Algorithm
1. Collect M interactions (S;, ¢, Tt+1, St+1);
2. Compute C'(s,a, s');
3. Compute C'(s, a);
4. Compute (s, a, s');
5.P(s,a,s') = C(s,a,s)/C(s,a);
6. R(s,a,s') =r(s,a,s')/C(s,a,s);
7. Initialise Q*(s,a) t0 0, V(s,a) € S x A
8. Repeat
9. Delta= 0
10. For s = 1[S| do
11. Fora = 1|A| do
12, Q" = Q*(s,a);

13. Q*(s,a) =), P(s,a,s).[R(s,a,s) + 7. maxy Q*(s',a))];
14. Delta = max (Delta, abs (Q* — Q*(s, a));

15. Next a

16. Nexts

17. Until (Delta < 6)

The update optimal function is done by Q-learning. We can only act on parameters
such asa, we note that v parameter was set when calculating the optimal function:

Q(s,a) = Q(s,a) + a.(R(s, a) +v.Maxa Q(s', a') = Q(s, a)).

24 A. Bennane

7. Validation of Solution
7.1. Methodology

We developed pedagogic software in order to verify the feasibility of our theory. The
database of the pedagogic software is developed and produced by a set of teachers. It
is endowed with a pedagogic agent that manages the pedagogic process between the
learners and the teaching environment. In order to measure the agent learning evolution,
we used three assessment criteria.

— The first is the situations success probability in order to measure its evolution from
a situation to another. From the learning system database, we calculate the success
frequencies for every situation in order to calculate the probabilities distribution.
This distribution allows us to see, on the one hand, the tendency of its curve, on
the other hand, the improvement level of situation success probability. We practice
this approach for two phases (exploration and exploitation) in the goal to compare
their results.

— The second criterion is the study time to invest during the pedagogic sequence
learning in order to measure the reduction rate of study time. Practically, we cal-
culate the study time for every learning course and we compare the results of two
phases and we deduct the reduction rate of study time.

— The third criterion is the relative gain that permits to measure the performance
of the learners before and after the study of the pedagogic software in order to
determine the impact of software on the learners (Bennane, 2003).

The goal is to learn an optimal sequence of actions that will displace the system from
an arbitrary state to a goal state. The quality measure of actions choice of the pedagogic
agent is the object of this work. If the student accomplishes situations with an interesting
success probability and the pedagogic sequence with an optimal time, then one can say
that the pedagogic agent assistance is achieved by success.

7.2. Outcome

We tried to verify three things, the study time reduction, and the improvement level of
the situations success probability and finally the impact of pedagogical software on the
learners.

To achieve this goal, we chose a sample of 60 students who are distributed into two
groups. The first tried the pedagogic software in the exploration phase and the second
tried the same software in the phase of the exploitation.

The learners sample size depends on reinforcement learning method used to calculate
optimal policy. One underlines that with few environment interactions, one can deduce
the optimal function where one uses model-based method.

At the exploitation phase, the pedagogic software is equipped explicitly by an opti-
mally function that is deduce at the end of exploration phase, and implicitly by an optimal
pedagogical strategy.

Adaptive Educational Software by Applying Reinforcement Learning 25

Table 1
Time study

Time Study Tmin Tmax Taverage 4

Exploration 883 2500 1331.45 352.27

Exploitation 7689 1130.38 941.71 97.92

Synthesis 1293% | 72%
Table 2

Success probability

Success probability Pmin Pmax Paverage Synthesis

Exploration 0.508 0.556 0.538
Exploitation 0.508 0968 0.826 173.6 %
Synthesis 1535%

Table 3

Relative gain

Notes Min Max Average GR
PRT 06/20 10/20 07.87/20

PST 14/20 18/20 15.93/20
Synthesis 1102 % 67%

We note that during this exploitation phase, we assessed the level of students before
and after learning the pedagogical software to determine the relative gain. The aim is to
verify the learning impact of the pedagogical software on learners (Table 1).

Between the two phases, we recorded 29.3% as reduction of study time and 72% as
reduction of standard deviation (Table 2).

For success probabilities distribution criteria, we recorded a very clean improvement
of 53.5% between the two phases, knowing that the average of the probabilities passed
from 0.538 (in the exploration) to 0.826 (in the exploitation). In the exploitation, the
curve tendency is generally upwards knowing that the success probability passed from
0.508 (1st situation) to 0.882 (last situation). This variation represents a rise (increase) of
73.6% (Table 3).

For the third criteria, the global average of the relative gain is 67%. We underline that
the difference between the averages of the PRT (pretest) and the PST (post-test) is 8,06.
This difference reflects a global improvement of student’s level of 102%. These are good
results that give a clear idea on very positive level of the pedagogic software impact on
the set of its users.

26 A. Bennane
8. Conclusion

We have developed architecture of a tutoring system that has four agents, in addition to
the dynamic creation agent at the request of any connection. We stress the pedagogical
potentials of some rising ideas such as (1) the model student is centralized and can store
all interactions that they are exploited by other agents such as the teaching agent and (2)
the dynamic creation of new agents with every new connection in order to individualize
and personalize the user interaction - system.

The recorded statistics represent good results. It is due to the intervention of the ped-
agogic agent while choosing the actions adapted to student level. The results of our ex-
periences showed that the automation of the pedagogic management tasks of the tutoring
system is feasible and insured. The automation permits to minimize the effort and to spare
the time and to surmount the multiple problems of the tutoring systems adaptability. Our
approach would exceed the approaches based on manual logic for writing rules of the
teaching module. Then, the teaching module is generated dynamically based solely on
the interaction of students with teaching environment.

The efforts invested in this project were in two directions, on the one hand, the con-
ception of a knowledge base that holds in account the meaningful properties of pedagogic
act, on the other hand, to look for and to try among the learning techniques based on the
numeric calculations, those that are appropriated more to the study domain as the rein-
forcement learning techniques, etc. Authors underline that, we used an objective approach
in the goal to generate an adaptive pedagogic sequence dynamically. The goal is based
solely on natural interactions between the tutoring system and its potential users.

References

Aimeur, E. (2004). L’intelligence artificielle: quel avenir? L’ Autre Forum, le journal des professeurs et des
professeurs de I’'université de Montréal, 8(2), Février, Canada.
http://sgpum.umontreal.ca.

Babuska, R., Busoniu, L. (2006). Reinforcement Learning for Multi-Agent Systems.
http://www.dcsc.tudelft.nl/ ~rbabuska/transp/cabs_handout.pdf.

Beck, J., Beverly, PW, Beal, C.R (2000). Advison: a machine learning architecture for intelligent tutor con-
struction. AAAI2000.

Bellman, R. (1957a). Dynamic Programming. Princeton University Press.

Bellman, R. (1957b). A Markovian decision process. Journal of Mathematics and Mechanics, 6, 679-684.

Bennane, A. (2010). Tutoring and multi-agent systems: modeling from experiences. Informatics in Education,
9(2), 171-184.http: //www.mii.lt/informatics_in_education/.

Bennane, A., D’hondt, T. (2003). Tutoring and adaptability: case study. In: MLMTA’03, 186-191, CSREA
Press, USA.

Bennane, A., Manderick, B., D’hondt, T (2001). Generation of training situations and adaptive systems. In:
ICCE2001, Korea. http://www.icce2001.org/pdf/p09/BE002 .pdf.

Clancey, W. (1986). Qualitative student models. Annual Review of Computer Science, 1, 381-450.

Hayes, G. (2008). Reinforcement Learning, Lecture.
http://www.inf.ed.ac.uk/teaching/courses/rl/slides08/.

Hoc, J.M (1996). Supervision et controle de processus. La cognition en situation dynamique. Presse Universi-
taire de Grenoble.

Jodogne, S. (2007). Closed-loop learning of visual control policies. PhD thesis, University of Liege.
http://www.montefiore.ulg.ac.be/ ~jodogne/cours/reinforcement-4.pdf.

Adaptive Educational Software by Applying Reinforcement Learning 27

Kononen, V. (2004). Multiagent Reinforcement Learning in Markov Games: Asymmetric and Symmetric Ap-
proaches. PhD thesis, Helsinki University of Technology, Helsinki.
http://www.cis.hut.fi/kononen/.

Picard, R. W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy,
D., Strohecker, C. (2004). Affective learning — a manifesto. BT Technology Journal, 22(4).

Shapley, S (1953). Stochastic games. In: Proceedings of the National Academy of Sciences of the United States
of America, 39, 1095-1100.

Shute, V.J., Zapata-Rivera, D. (2011). Adaptive Educational Systems.
http://myweb. fsu.edu/vshute/pdf/adaptivity.pdf.

Sison, R., Shimura, M. (1998). Student modeling and machine learning. International Journal of Artificial
Intelligence in Education, 9, 128-158.

Sonwalkar, N. (2004). Adaptive Learning: A Dynamic Methodology for Effective Online Learning.
http://idlsystems.com/media/brochures/ALS.pdf.

Sutton, R., Barto, A.G (1998). Reinforcement Learning, An Introduction. A Bradford Book.

SycaraKatia, P. (1998). Multiagent Systems.
http://www.aaai.org/AITopics/assets/PDF/AIMagl9-02-2-article.pdf.

Tuyls, K. et al. (2006). Evolutionary game theory and multi-agent reinforcement learning. The Knowledge
Engineering Review, 20(01), 63-90.
http://www.cs.unimaas.nl/k.tuyls/publications/b2hd-TuylsKERO05.html.

VanLehn, K. (1988). Student modeling. In: Ploson and Richardson (Eds.), Foundations of Intelligent Tutoring
Systems. Lawrence Erlbaum Associates.

Vlassis, N. (2003). A Concise Introduction to Multiagent Systems and Distributed Al. http: //www.fdaw.
unimaas.nl/ education/4.1MAS/Literature/MAS%$20tutorual.pdf.

Wald, A. (1950). Statistical Decision Functions. John Wiley.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to
the Communication of Knowledge. Los Altos, CA, Morgan Kaufmann Publishers, Inc.

A. Bennane is professor at the Training Center of Teaching Inspectors (Centre de For-
mation des Inspecteurs de I’Enseignement). He is a professional in applied informatics
in education. His recent research is e-learning, teaching software and use of machine
learning techniques.

Adaptyvi edukaciné programiné iranga, naudojanti mokymosi
su pastiprinimu algoritma

Abdellah BENNANE

Sis straipsnis skirtas intelektikos taikymui mokymo programinei jrangai kurti. Sios programinés
jrangos plétojimo procese pasitelkiami apsimokantys dirbtinio intelekto metodai siekiant adaptuoti
mokymo programing iranga atsiZvelgus i besimokanciojo charakteristikas. Naudojantis dirbtinio in-
telekto metodais — mokymosi su pastiprinimu algoritmais, Bajeso tinklais ir kitais — sickiama adap-
tuoti sistema pagal vidines ir iSorines aplinkos salygas ir leisti sistemai interaktyviai saveikauti su
potencialiu jos naudotoju. Pagrindiné idéja — automatizuoti ir valdyti pedagogini vadovavimo sis-
temos procesa, tiksliau kalbant, parinkti mokymosi turini ir valdyti pedagogines situacijas. Tyréjai
kuria pedagoginius mokymosi agentus, kurie palengvina rankiniu biidu sudaroma mokymosi pro-
ceso eiga ir palaiko mokymo proceso valdyma, pagrista besimokanciojo saveika su sistema.

