
Informatics in Education, 2012, Vol. 11, No. 2, 191–212 191
© 2012 Vilnius University

A Stochastic Approach for Automatic and
Dynamic Modeling of Students’ Learning Styles
in Adaptive Educational Systems

Fabiano Azevedo DORÇA1, Luciano Vieira LIMA2,
Márcia Aparecida FERNANDES1, Carlos Roberto LOPES1

1Faculty of Computer Science, Federal University of Uberlândia (UFU)
Campus Santa Mônica – Bloco 1B – Sala 1B148
Av. João Naves de Ávila, 2.121 – Bairro Santa Mônica, CEP 38400-902 – Uberlândia/MG, Brazil

2Faculty of Electrical Engineering, UFU
e-mail: {fabiano, marcia, crlopes@facom.ufu.br}, vieira@ufu.br

Received: January 2012

Abstract. Considering learning and how to improve students’ performances, an adaptive educa-
tional system must know how an individual learns best. In this context, this work presents an in-
novative approach for student modeling through probabilistic learning styles combination. Experi-
ments have shown that our approach is able to automatically detect and precisely adjust students’
learning styles, based on the non-deterministic and non-stationary aspects of learning styles. Be-
cause of the probabilistic and dynamic aspects enclosed in automatic detection of learning styles,
our approach gradually and constantly adjusts the student model, taking into account students’
performances, obtaining a fine-tuned student model. Promising results were obtained from experi-
ments, and some of them are discussed in this paper.
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1. Introduction

Learning Styles (LS) and their effects on learning processes are carefully exposed by
Coffield et al. (2009). Their related instructional strategies have been massively studied
in the new learning space introduced by the Internet, where many researchers point out
that students learn in different ways and linking LS to appropriate learning resources
is an important stimulus for the learning process. Some researches reveal that students’
performance is improved if the learning environment provides adaptivity concerning LS
(Haider et al., 2010; Graf et al., 2008; Kinshuk et al., 2009; Alfonseca et al., 2006; Graf
et al., 2009; Felder and Silverman, 1988; Graf et al., 2010). Based on these arguments,
several research works dealing with incorporating LS in Adaptive Educational Systems
(AES) have been conducted. According to Kinshuk et al. (2009), the field of LS is com-
plex and many questions are still open, including a clear definition of LS. Investigations
have been conducted on relating LS characteristics to learning objects characteristics.
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In order to provide adaptivity, students’ LS have to be known firstly. However, traditional
approaches for acquiring students’ LS in AES are inefficient.

Price (2004) analyzes the uncertainty aspect of the Index of Learning Styles Ques-
tionnaire (ILS) by identifying inconsistencies between its results and students’ behavior.

Roberts (Roberts and Erdos, 1993), as well as Price, analyzes this kind of instrument
and the problems related to it. Castillo et al. asserts that the information about the stu-
dents’ LS acquired by psychometric instruments encloses some degree of uncertainty
(Castillo et al., 2005).

Therefore, investigations are conducted towards improving the process of LS detec-
tion. According to Kinshuk et al. (2009), it can be done by enhancing LS questionnaires
through diminishing the influence of factors that hinder an accurate estimation and by
using an automatic approach for identifying LS based on students’ behavior in an on-line
course.

Automatic approaches for diagnosing LS are free from the problem of inaccurate self-
conceptions of students (Graf and Lin, 2007). Therefore, many approaches for automatic
detection of students’ LS have been proposed. However, in general, they present problems
which make them either inefficient or difficult to be implemented, implanted and used, as
pointed out in Section 2.

According to Graf and Lin (2007), one of the problems with automatic approaches is
to get enough reliable information to build a robust student model (SM). We believe that
stochastic modeling techniques can cope with this problem, specifically Markov Chains.
In this context, we propose a stochastic approach based on Markov Chains for auto-
matic and dynamic modeling of students’ LS in AES, which detects and precisely adjusts
students’ LS based on non-stationary and non-deterministic aspects of LS, which may
change during the learning process (non-stationary) in an unexpected and unpredictable
way (non-deterministic) (Graf and Kinshuk, 2009; Graf et al., 2010). Consequently, our
approach enables AES to incrementally learn about students’ LS and update them if they
are changed over time. A learning style questionnaire, like ILS questionnaire, may be
applied in order to initialize the SM, but it is not compulsory.

Our approach is based on the Felder and Silverman Learning Styles Model (FSLSM)
(Felder and Silverman, 1988). Section 3 exposes some important reasons why the FSLSM
has been chosen. According to Graf and Kinshuk (2009, 2010a), the FSLSM uses the
concept of dimensions, and therefore describes LS precisely. A very important charac-
teristic of FSLSM to our work is that it uses scales instead of defined types. In this way,
the strength of each LS is finely measured (Felder and Silverman, 1988). Therefore, our
approach aims to gradually tune students’ LS stored in SM during the learning process.
Another important aspect of FSLSM is that it considers LS as tendencies and therefore,
it takes into account the fact that students may act differently according to specific sit-
uations, in a non-deterministic way, as pointed out by Kinshuk et al. (2009), Graf and
Kinshuk (2009). Thus, we consider students’ LS as probabilities in the four-dimensional
FSLSM model, as depicted in Section 4. As a result, our approach gradually, constantly
and stochastically adjusts the SM using a set of rules that detect which LS should be
updated considering the students’ performances at a specific moment. As a consequence,
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the SM effectively converges towards the students’ LS, as shown in Section 5. Finally,
Section 6 presents conclusions and future works.

2. Related Works

A diversity of approaches for automatic detection of LS has been proposed, as it can be
seen in Graf and Liu (2008), Graf and Kinshuk (2010b), Castillo et al. (2005). In general,
these approaches use deterministic inference systems for detecting students’ behavioural
patterns. These systems infer the LS based on students’ actions. One of the problems
with these systems is the uncertainty, difficulty and complexity of developing and imple-
menting rules that are able to infer LS effectively through students’ actions and to treat
students’ behaviour as evidences and not as possibilities. Besides, in some systems like
AHA! (De Bra et al., 2006), these rules must be defined by the tutor, making the system
more difficult to be used.

More complex approaches can be seen in Kelly and Tangney (2005), García et al.
(2007), Carmona et al. (2008), Cabada et al. (2009), Zatarain-Cabada et al. (2009),
Zatarain et al. (2010), Carmona et al. (2007). These approaches use learning machine
techniques, such as Bayesian and Neural Networks. Some of the problems with these
approaches are both high complexity and computational cost, which are thought to be
serious concerns when considering a high number of students using the AES simulta-
neously. Besides, in general, these approaches are highly coupled, either to the system
or to the whole teaching process, making them harder to be re-used in other systems. In
some of these approaches, once acquired, the students’ LS remain the same throughout
the entire learning process (Castillo et al., 2005).

Another well-known problem with these approaches is the complication generated
by concept drift and concept shift (Castillo et al., 2005). It is well-explained by Castillo
et al. (2005) that, as a rule, supervised learning assumes the stability of the target concept.
Therefore, in many real-world problems, when data is collected over an extended period
of time, the learning task can be complicated by changes in the target concept. This
problem is known as concept drift. Concept drift scenarios require incremental learning
algorithms, which are able to adjust quickly to drifting concepts. Depending on the rate of
the changes, we can distinguish concept drift (gradual changes) from concept shift (abrupt
changes; Castillo et al., 2005). In the context of our work, they occur either because
the acquired LS need to be adjusted or because the students’ LS are changed for some
unknown reason. As it is well known, during the interactions with the system, students
can change their preferences for other kinds of learning resources which no longer match
with their previously determined LS (Castillo et al., 2005; Graf and Kinshuk, 2009; Graf
et al., 2010). As stated by Graf et al. (2009), LS, as described by FSLSM, are considered
to be ”flexibly stable”, which means that they are relatively stable but can change over
time, for example, if learners train their weak learning preferences.

In this scenario, adaptive decision models, which are able to better adapt to students’
LS, are desirable. In this context, we believe that our approach brings advantages due to
the following specific features:
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• it considers that not only LS but also many factors exert some influence on students’
performance, making it harder to infer students’ LS based only on fixed behavioural
pattern rules, because students’ behaviour and performance may be influenced by
other factors besides LS. Some of these factors are pointed out by Haider et al.
(2010), Graf et al. (2008), Kinshuk et al. (2009), Alfonseca et al. (2006), Graf
et al. (2009), Messick (1976);

• it considers that the influence of each LS on students’ behavior is unknown (Botsios
et al., 2008);

• it considers that LS can change over time in an unpredictable way. These changes
may be associated with other factors, such as knowledge domain, as analyzed by
Jones et al. (2003);

• it considers that it is impossible to know the precision of the results obtained
from self-assessment questionnaires (which may have inconsistencies; Price, 2004;
Roberts and Erdos, 1993; Castillo et al., 2005);

• it eliminates the necessity to discover students’ behavioural patterns, considering
that it is hard or impossible to obtain such patterns, considering that students with
the same learning styles preferences may, sometimes, act differently, taking into
account the concept of tendencies, which means that even a learner with, e.g., a
strong active LS can act sometimes in a reflective way (Graf and Kinshuk, 2009);

• it is uncoupled from any Learning Management System (LMS), being independent
from any specific students’ actions in a specific system, as it always occurs in
traditional approaches (García et al., 2007; Graf and Liu, 2008);

• it takes into account the dynamic nature of LS, which may change when the knowl-
edge domain changes (Kelly and Tangney, 2005) or naturally evolve over time
(Messick, 1976);

• it eliminates the necessity of using complex machine learning techniques, which
are difficult to implement and may bring problems such as the complications re-
lated to concept drift and concept shift, as exposed by Castilho et al. (2005);

• it eliminates the necessity of using drift-detection methods and dealing with con-
cept drift and concept shift, which are automatically handled by the approach de-
scribed in this paper.

Our approach is based on the Felder and Silverman Learning Styles Model (FSLSM).
The next section presents important aspects of FSLSM to our work.

3. Learning Styles

LS are defined as the characteristics, strengths and preferences in the way people re-
ceive and process information (Felder and Silverman, 1988). It refers to the fact that each
student has its own particular method or set of strategies when learning. A LS model clas-
sifies students according to the way they learn. A lot of LS models have been proposed,
such as Kolb et al. (1984), Honey and Mumford (1992), Entwistle (1981), Pask (1976),
Felder and Silverman (1988; FSLSM). Each one of these models describes different as-
pects in which students prefer to learn.
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Graf and Kinshuk (2009) point out that the FSLSM is one of the most frequently
used in AES (Brusilovsky, 2001). Besides, Kuljis and Liu (2005) claim that FSLSM is
the most appropriate model for the implementation of AES. According to Kinshuk et al.
(2009), FSLSM combines the main models, such as Kolb et al. (1984), Pask (1976) and
the Myers-Briggs indicator (Myers, 1957).

According to Graf and Kinshuk (2009, 2010a), the FSLSM uses the concept of di-
mensions, and therefore describes LS more thoroughly. As proposed by Felder and Sil-
verman (1988), each learner has a dominant preference in each of the four dimensions:
processing (active/reflective); perception (sensitive/intuitive); input (visual/verbal); un-
derstanding (sequential/global). Each preference tells us about how a student learns best
and the related pedagogical strategies for effective learning. According to FSLSM, each
learner has a preference within the scope of each one of the four dimensions described
above, which is measured on a scale from +11 to -11. This feature makes it possible to
describe the strength of the learners’ preferences (Kinshuk et al., 2009).

As described by Graf et al. (2009), LS are considered to be flexible stable, which
means that they are relatively stable but they can change over time. For instance, when
learners train their weak LS. Furthermore, FSLSM is based on the concept of tendencies,
which means that even learners with, e.g., a strong active LS can act sometimes in a
reflective way (Graf and Kinshuk, 2009).

A very important characteristic of FSLSM for our work is that it uses scales to classify
students instead of using defined types. In this way, the strength of each LS is finely
measured (Felder and Silverman, 1988). Another important aspect of FSLSM is that it
considers LS as tendencies and students may act differently in specific situations, that is,
in a non-deterministic way, as pointed out by Kinshuk et al. (2009). Therefore, we can
consider students’ LS as probabilities in the four-dimensional FSLSM model, as depicted
in the next section.

4. Automatic Diagnoses of Learning Styles

In this section, we will present in detail our stochastic approach for automatic and dy-
namic modeling of students’ LS. Our approach uses information from the evaluation of
students’ performances for updating the SM frequently while students are using the sys-
tem for learning. Therefore, LS preferences are dynamically and constantly revised and
corrected when learning difficulties are detected, which leads to a fine-tuned SM with
high accuracy. Our approach combines automatic and dynamic student modeling aspects,
according to definitions presented by Graf and Kinshuk (2009).

We consider students’ preferences as probabilities in the four-dimensional FSLSM
model. Due to the probabilistic nature of LS in the FSLSM, our approach is based on
probabilistic LS combinations (Franzoni and Assar, 2009). A LS combination (LSC) is a
4-tuple composed by one preference from each FSLSM dimension, as stated by Defini-
tion 4.1.

Therefore, there are 16 possible LSC, which are elements of the set LSCs, as stated
by Definition 4.2.
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DEFINITION 4.1. Learning Styles Combination (LSC) LSC = (a, b, c, d) where: a is
either “A” or “R”; b is either “S” or “I”; c is either “Vi” or “Ve”; d is either “Seq” or “G”,
such that: “A” represents the Active LS; “R” represents the Reflective LS; “S” represents
the Sensitive LS; “I” represents the Intuitive LS; “Vi” represents the Visual LS; “Ve”
represents the Verbal LS; “Seq” represents the Sequential LS and “G” represents the
Global LS.

DEFINITION 4.2. Learning Styles Combinations (LSCs)
LSCs = {(A,S,Vi,Seq), (A,S,Vi,G), (R,S,Vi,Seq), (R,S,Vi,G), (A,S,Ve,Seq), (A,S,Ve,G),

(R,S,Ve,Seq), (R,S,Ve,G), (A,I,Vi,Seq), (A,I,Vi,G), (R,I,Vi,Seq), (R,I,Vi,G),
(A,I,Ve,Seq), (A,I,Ve,G), (R,I,Ve,Seq), (R,I,Ve,G)}

Specifically, we propose that in each learning session, students must interact with
learning objects (LO; IEEE, 2010) that satisfy a specific LSC, relating LS characteristics
to LO characteristics. The LSC to be considered during a learning session is stochasti-
cally generated according to students’ LS preferences stored in SM. Which means that, in
our approach, a LSC is a specific combination of four random variables (Papoulis et al.,
2002). Therefore, in our approach, the SM describes the probability of four random vari-
ables: a; b; c; d considering Definition 4.1.

Hence, students’ probable LS are stored in the SM as values in the interval [0,1].
Those values represent probabilities of preference in each FSLSM dimension. Therefore,
students’ LS are stored as probability distributions considering each FSLSM dimension.
Considering this kind of model, students’ LS are stored in SM according to Definition 4.3.

DEFINITION 4.3. Learning Styles (LS)
LS = {(PrA = x; PrR = 1 − x), (PrS = y; Pr1 = 1 − y),

PrV i = z; PrV e = 1 − z); (PrSeq = w; PrG = 1 − w)}, where
PrA is the probability of the student’s preference for the Active LS;
PrR is the probability of the student’s preference for the Reflective LS;
PrS is the probability of the student’s preference for the Sensitive LS;
PrI is the probability of the student’s preference for the Initive LS;
PrV i is the probability of the student’s preference for the Visual LS;
PrV e is the probability of the student’s preference for the Verbal LS;
PrSeq is the probability of the student’s preference for the Sequential S;
PrG is the probability of the student’s preference for the Global LS.

Consequently, we have: PrA+ PrR = 1; PrS+ PrI = 1; PrV i+ PrV e = 1; PrSeq+
PrG = 1. Initially, if the system doesn’t have any assumption about students’ LS, the
SM is set with balanced preferences, as presented in Table 1, which means that the prob-
abilities of preference for each LS in a dimension are equal (there are no preferences),
considering that, initially, the SM doesn’t have any information about how the student
probably learns best.

If a psychometric instrument – like the ILS (Van Zwanenberg et al., 2000) – is used to
initialize the SM, the system calculates the proportion of favorable answers to each LS.
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Table 1

Learning styles initially stored in the student model

Learning Styles

Processing Perception Input Understanding

Act.(A) Ref.(R) Sen.(S) Int.(I) Vis.(Vi) Ver.(Ve) Seq. Glo.(G)

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 2

Learning styles initially stored in the student model

Learning Styles

Processing Perception Input Understanding

Act.(A) Ref.(R) Sen.(S) Int.(I) Vis.(Vi) Ver.(Ve) Seq. Glo.(G)

0.28 0.72 0.09 0.91 0.45 0.55 0.82 0.18

This calculation is done by (1), which divides by 11 the number of favorable answers
to a LS (Ai), considering that the ILS has 11 questions for each FSLSM dimension,
totaling 44 questions. In (1), i represents a LS in a FSLSM dimension, and Ai represents
the number of favorable answers to a LS. Pri is the probability of preference for a LS by
the student in a FSLSM dimension, according to Definition 4.3.

Pri =
Ai

11
. (1)

An example would be if a student answers 3 questions favorable to the Active LS and
8 questions favorable to the Reflective LS, we have:

PrA =
3
11

= 0.28; PrR =
s

11
= 0.72.

Therefore, we store 0.28 for the Active LS and 0.72 for the Reflective LS in the SM,
which indicates the probability of preference for each one of those LS by the student. In
our probabilistic approach, that means that there is a probability of preference PrA = 28%
for the Active LS and a probability of preference PrR = 72% for the Reflective LS by the
student. Continuing the example, lets consider that the other answers resulted in:

PrS =
1
11

= 0.09; PrI =
10
11

= 0.91; PrV i =
5
11

= 0.45;

PrV e =
6
11

= 0.55; PrSeq =
9
11

= 0.82; PrG =
2
11

= 0.18.

Therefore, Table 2 presents the initial LS stored in the SM.
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Therefore, considering Table 2, the student probably is Reflective, Intuitive, Verbal
and Sequential. In this context, one advantage of this approach is to stochastically con-
sider all LSC according to the student’s probable LS that may be inconsistent with the
student’s real LS, as pointed out in 2. As shown in Section 5, this characteristic allows for
the effective discovery and the fine-tuning of the student’s LS preferences. The LS stored
in the SM are constantly updated throughout the course, as explained later in this section.
Therefore, Table 3 presents a possible evolution of the SM presented in Table 2.

The SM presented in Table 3 represents a student with 35% probability of preference
for the active LS and 65% probability of preference for the reflective LS; 17% probability
of preference for the sensitive LS and 83% probability of preference for the intuitive LS;
89% probability of preference for the visual LS and 11% probability of preference for
the verbal LS; 84% probability of preference for the sequential LS and 16% probability
of preference for the global LS. Therefore, considering Table 3, the student probably
is Reflective, Intuitive, Visual and Sequential. Comparing Table 3 with Table 2, we can
notice that initially, the student was supposedly Verbal, and now the student is supposedly
Visual. Therefore, it is important to reinforce that it is a probability and not a certainty.

Then, in this approach, students’ LS diagnosis is a stochastic process, conceived by
four concurrent Markov Chains (Meyn et al., 2009), depicted in Fig. 1 (considering the
SM presented in Table 3), where each state represents a LS in a FSLSM dimension.
In Fig. 1a, State 1 represents the active LS and State 2 represents the reflective LS. In
Fig. 1b, State 1 represents the sensitive LS and State 2 represents the intuitive LS. In
Fig. 1c, State 1 represents the visual LS and State 2 represents the verbal LS. In Fig. 1d,
State 1 represents the sequential LS and State 2 represents the global LS.

As stated before, during each learning session of a course, students must interact with
LO that satisfy a specific LSC, relating LS characteristics to learning objects character-
istics. This LSC is stochastically created according to four concurrent Markov Chains,
depicted in Fig 1, considering the student’s probable LS (stored in the SM) as transition
probabilities.

Therefore, the probabilities of occurrence of a state (a LS as part of a LSC) is de-
scribed by Fig. 1, where the transition probabilities are directly obtained from the SM
(see Table 3), without any additional computational cost.

In this way, one LS from each FSLSM dimension is selected – according to the occur-
rence of a state in each Markov Chain, given by Fig. 1 – to generate a LSC, which will dic-
tate to the AES how adaptivity must be provided, relating to LS, during a learning session.

Table 3

Possible evolution of learning styles stored in the student model

Learning Styles

Processing Perception Input Understanding

Act.(A) Ref.(R) Sen.(S) Int.(I) Vis.(Vi) Ver.(Ve) Seq. Glo.(G)

0.35 0.65 0.17 0.83 0.89 0.11 0.84 0.16
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Fig. 1. A LSC is stochastically created according to a stochastic process modeled by four concurrent Markov
Chains.

For example, if the LSC considered in the current learning session is LSC = (A,S,Vi,Seq),
the characteristics of the learning objects provided to a student must be related to the
LS characteristics enclosed in the stochastically generated LSC, generated according to
the SM.

Additionally, for the next learning session, we have a 35% probability of the Active
LS appearing in the LSC against a 65% probability of the Reflective LS, because at
this moment the student is supposedly Reflective, according to the SM. Analogously,
we have a 17% probability of the Sensitive LS appearing in the LSC against a 83%
probability of the Intuitive LS, because at this moment the student is supposedly Intuitive,
according to the SM. However, we have to consider that these probabilities are constantly
updated, because the SM is constantly being updated, as will be described. It is important
to reinforce that these probabilities are directly obtained from the SM.

When a student shows a learning problem during a learning session (unsatisfactory
performance), the LS stored in the SM, which appear in current LSC, are decremented,
considering a probable inconsistency in these preferences. Students’ preferences, which
do not appear in current LSC, are incremented (reinforced), making them stronger, con-
sidering that the learning difficulties appeared because they were not present in the se-
lected LSC. These updates are executed by the following rules (where A and B represents
LS in a FSLSM dimension;di indicates one of the four FSLSM dimensions; R indicates
the reinforcement to be applied to the LS in the SM):

• SM[di]A – probability of preference for the LS A stored in the SM, in dimension
i, with i = 1..4.

• SM[di]B – probability of preference for the LS B stored in the SM, in dimension
i, with i = 1..4.

• LSC[di] – LS in LSC related to the dimension i, with i = 1..4.
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Rule 1

IF (SM[di]A � SM[di]B) ∧ (LSC[di] = “A”) THEN

. . . SM[di]A = SM[di]A − R

. . . SM[di]B = SM[di]B + R

Rule 2

IF (SM[di]B � SM[di]A) ∧ (LSC[di] = “B”) THEN

. . . SM[di]A = SM[di]A + R

. . . SM[di]B = SM[di]B − R

Rule 3

IF (SM[di]A � SM[di]B) ∧ (LSC[di] = “B”) THEN

. . . SM[di]A = SM[di]A + R

. . . SM[di]B = SM[di]B − R

Rule 4

IF (SM[di]B � SM[di]A) ∧ (LSC[di] = “A”) THEN

. . . SM[di]A = SM[di]A − R

. . . SM[di]B = SM[di]B + R

Rule 1 and Rule 2 decrease the distance between the LS (DLS) inside a dimension,
while Rule 3 and Rule 4 increase the DLS inside a dimension, as shown in Fig. 2, in
which A and B, in y-axis, represents a student’s probable LS, according to Definition 4.3,
during the learning process. The x-axis represents the learning sessions of the learning
process.

It is important to notice that when a learning problem is detected, all LS in the SM are
updated by one of those rules. The reinforcement R, given by (2), is calculated consider-
ing the DLS inside a specific dimension in the SM, and the student’s performance value
(PFM) obtained on the learning session. DLS is calculated by (3). The reinforcement R is
calculated for each FSLSM dimension, considering its specific DLS. The PFM is in the
interval [0,100] and the DLS is in the interval [0,1].

R =
K

PFM × DLS
, (2)

DLS =
∣
∣SM[di]A − SM[di]B

∣
∣. (3)

Fig. 2. Updating of LS during the learning process.



A Stochastic Approach for Modeling of Students’ Learning Styles 201

Therefore, while PFM is decreased, R is increased. And while DLS is increased, Ris
decreased, where K is a constant. By observing the formula (2), we can see that if K has a
high value, R becomes high, which produces abrupt changes in SM. This is not desirable,
due to the uncertainty and non- deterministic aspect enclosed on the LS modeling process
(e.g., when the probable LS in SM are already consistent with the student’s real LS).

Furthermore, not only LS but also many factors exert influence on students’ perfor-
mances, making it harder to infer students’ LS abruptly. On the other hand, if K has a
low value, R becomes very low, which produces insignificant changes in the SM, taking
a long time to remove inconsistencies from SM, resulting in an inefficient process. Thus,
properly setting the value of K is a very important point in this approach. We are using
K = 10, which was set empirically, through experiments. When PFM or DLS becomes
very low, R automatically becomes very high. In practice, it produces a very fast change
of values in SM, whenever DLS close to 0. This is necessary because when the ratio is
50% to 50% in the LS of the SM, the student’s preference is still undercover, and the
faster we discover it the faster the system can deliver content tailored to the student’s real
needs. This can be observed in all graphs of the experiments expounded in next section,
and it is a desirable feature in our approach. The same fact occurs when PFM is very low.
When it happens, the student may be facing high difficulty, due to poor personalization
of the course, caused by inconsistencies in the SM. In this case, faster changes in SM
are desirable, in order to correct the SM the sooner as possible. But, as stated before,
not only LS but also many factors exert influence on students’ performances, making it
harder to infer students’ LS abruptly. Therefore, the limit of R is 0.05 (5%), which was
set empirically, through experiments.

It is well-known that a variety of factors should be taken into account for students’
performance evaluation and learning problems detection, as pointed out in Dorça et al.
(2009), Lopes et al. (2008). It’s a complex problem and a lot of approaches have been pro-
posed to solve it. For testing our approach without this complexity, we considered a sim-
ulated learning process, which is a stochastic process that infers students’ performances,
taking into account some aspects related to the impact of LS on learning processes, as de-
picted in Haider et al. (2010), Graf et al. (2008), Kinshuk et al. (2009), Alfonseca et al.
(2006), Graf et al. (2009).

The main aspect of this simulated process is that when a student’s real LS preference
appears in the current LSC, learning becomes easier and the probability of success is in-
creased. As pointed out by Graf et al. (2008), strong preferences produce stronger nega-
tive effects on students’ performances when they are not satisfied by the teaching process,
and this fact is considered by our students’ performance simulation process (SPSP). The
impact of LS strengths on students’ performances is analyzed by Kinshuk et al. (2009).
Results show that learners with strong preferences for a specific learning style have more
difficulties in learning than learners with mild LS preferences. According to Kinshuk
et al. (2009), this finding shows that learners with strong LS preferences can especially
benefit from adaptivity.

These considerations are taken into account by the SPSP, which was developed to
allow the experimentation of our approach. A probabilistic model was designed to imple-
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ment the non-deterministic aspect enclosed in students’ performances, due to the large
amount of facts that exert influence on them. This model is briefly explained hereafter.

Basically, the SPSP considers an increase of difficulty when a student’s real LS
(SRLS) doesn’t appear in the LSC considered for providing adaptivity during a learn-
ing session.

Therefore, the SPSP knows the students’ real LS, and does not know the student’s
probable LS (SPLS) stored in the SM. Therefore, the SM is not taken into account by
SPSP to calculate the student’s probability of failure, because, in reality, only SRLS exert
influence on performance. Besides, SRLS may be different from SPLS (when the SM is
initially inconsistent or becomes inconsistent during the learning process, as discussed
before).

In this way, the SPSP can infer the degree of difficulty to be faced by the student
during a learning session. Increasing the probability of failure also increases the level
of difficulty. Therefore, considering the learning process as a non-deterministic process,
which is influenced by many factors besides LS, the SPSP considers that the occurrence
of inadequately adapted content may contribute to students’ failure, but, cannot determine
it.

In this context, SPSP increases the probability of failure (Prfailure) by 15% for each
learning style in the stochastically generated LSC (Definition 4.1) that doesn’t represent
the student’s real LS. In this paper, this is called non-satisfied real preference (NSRP).
Additionally, SPSP increases by 20% the previously calculated Prfailure, if at least one
strong preference is not satisfied by the LSC during a learning session. This is called
non-satisfied real strong preference (NSRSP). Furthermore, it increases by 10% the pre-
viously calculated Prfailure if a moderate preference is not satisfied by the LSC during
a learning session. This is called non-satisfied real moderate preference (NSRMP). Mild
(or balanced) LS preferences don’t cause an increase in the Prfailure, as previously cal-
culated. If all real preferences appear in the stochastically generated LSC, and there is no
occurrence of NSRP, then the SPSP takes into account a probability of failure equal to
15% (not only LS but also many factors exert some influence on students’ performances).
This inference model is presented below.

Prfailure = NSRP × 0.15

IF( there is NSRSP ) THEN Prfailure = Prfailure × 1.2 (increase by 20%)

ELSE IF (there is NSRMP) THEN Prfailure =Prfailure × 1.1(increase by10%)

IF (Prfailure is equal to 0) THENPrfailure = 0.15

Then, SPSP generates a random number in the interval [0,1]. If this number is less than
or equal to Prfailure, SPSP infers the occurrence of a learning problem (unsatisfactory
performance, or failure). On the other hand, SPSP infers the occurrence of satisfactory
performance. When a learning problem is detected, the LS stored in the SM are updated
by the rules previously depicted in this section. While these updates are executed, the SM
becomes more consistent and, consequently, adaptivity becomes more accurate. There-
fore, the student’s performance is improved (learning problems are gradually mitigated).
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We are aware that the probabilities values used by the SPSP’s inference model should
be particular to each student. But, considering observations by authors as Haider et al.
(2010), Graf et al. (2008), Kinshuk et al. (2009), Alfonseca et al. (2006), Graf et al.
(2009), we believe that those values are reasonable for experimentation. Simulation is a
widespread and widely used technique for testing educational approaches and may bring
advantages, as stated by Abdullah and Cooley (2002), Vanlehn et al. (1994), Vizcaino
and du Boulay (2002), Virvou et al. (2003), Bravo and Ortigosa (2006), Mertz (1997),
Meyn et al. (1996). The next section presents some experiments and their results.

5. Evaluating the Proposed Approach

5.1. Methodology

The evaluation of our approach was done through a set of experiments using computa-
tional simulation of the learning process, as pointed out in Section 4. Each experiment
was repeated 20 times. Therefore, we could observe the process under different circum-
stances and identical conditions. It was possible to notice that the resulting sequences
during an experiment were different, but the final results were very similar. So, the non-
deterministic and convergence aspects intrinsic to the student modeling process were very
clear to us.

For each experiment we set a different initial student’s probable LS (SPLS), usually
inconsistent with the student’s real LS (SRLS) in the beginning of the learning process.
In addition, we set the SRLS, used by the SPSP to infer the student’s performance, as
explained in Section 4. The SPSP needs to know the SRLS and its strengths (strong,
moderate or balanced).

Four experiments are discussed in this section. One execution for each of the four
experiments, and their results, are also shown in this section. The execution of an exper-
iment finishes when the student achieves all learning goals. We considered 30 concepts
to be learned by students and 6 cumulative cognitive levels (or categories) to be achieved
in each concept, based on the Bloom’s Taxonomy for Knowledge (Bloom and Krath-
wohl, 1956). Therefore, the simulated learning process, in these experiments, should
have, at least, 180 learning sessions, or iterations, in order to achieve all learning goals
(30 × 6 = 180).

The learning process is constituted by learning sessions. Each learning session rep-
resents an iteration of the simulated learning process. When students have a good per-
formance during a learning session, their cognitive level in a concept evolves, until they
reach the maximum cognitive level to the concept. When students fail, their cognitive
level in the concept does not evolve. Therefore, the easier the learning process, the fewer
iterations necessary to achieve all learning goals. And, the better adapted the content is,
the easier the learning process is, as pointed out in Section 1.

For each experiment we show, graphically, how SPLS, stored in SM, are updated dur-
ing the learning process. In each graph, the x-axis shows the iterations of the learning
process, and the y-axis shows the SPLS values throughout the learning process (mul-
tiplied by 100). The main goal was to observe how SPLS are gradually updated and
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fine-tuned along the iterations of the learning process. In the following experiments, the
SRLS are fixed and the initial SPLS are different for each experiment. In the following
experiments, we considered students with the following SRLS:

SRLS = {reflective (strong), sensitive (strong), visual (moderate), global (balanced)}

5.2. Experiment 1

The SPLS were initialized as shown in Table 4. As it can be seen, the SPLS is initially in-
consistent with the SRLS and doesn’t express the student’s preferences correctly, specif-
ically in dimensions active/reflective and sensitive/intuitive. The main goal of our ap-
proach is to discover student’s LS, making the SM consistent with the SRLS.

Figure 3 presents an execution of this experiment and shows how the SPLS were
updated along the learning process. As it can be seen, during the learning process, the
SPLS became consistent with the SRLS.

Table 4

SM – Experiment 1

SPLS

Processing Perception Input Understanding

Act. Ref. Sen. Int. Vis. Ver. Seq. Glo.

0.72 0.28 0.18 0.82 0.64 0.36 0.45 0.55

Fig. 3. Results from Experiment 1.
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In Fig. 3, Figs. 3a, 3b, 3c and 3d show the updating of SPLS in dimensions Processing,
Perception, Input and Understanding respectively, during the simulated learning process.
All repetitions of this experiment produced a SM consistent with the SRLS through a
different path, due to the non-deterministic aspect of the student modeling process and
performance evaluation.

5.3. Experiment 2

In this experiment, we consider the case in which there is no initial information available
about SPLS, as reported by the SM shown in Table 5.

Figure 4 presents the results obtained from an execution of this experiment. In Fig. 4,
Figs. 4a, 4b, 4c and 4d show the updating of SPLS in dimensions Processing, Perception,
Input and Understanding respectively, during the simulated learning process.

Figure 4 shows that less iterations were necessary than in Experiment 1. This occurred
because inconsistencies in SM seem to be worse than the lack of initial information about

Table 5

SM – Experiment 2

SPLS

Processing Perception Input Understanding

Act. Ref. Sen. Int. Vis. Ver. Seq. Glo.

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Fig. 4. Results from Experiment 2.
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the SPLS. When the system doesn’t have any initial information available about SPLS,
it discovers the SRLS faster and provides accurate adaptivity earlier, making the learning
process easier.

Therefore, considering this approach, an AES doesn’t have to apply a self-assessment
questionnaire in order to initialize the SM. This feature allows eliminating possible ini-
tial inconsistencies in the SM, which may occur when using such questionnaires. All
repetitions of this experiment produced a consistent SM.

5.4. Experiment 3

This experiment presents the case in which we reuse consistent SPLS, obtained from
Experiment 2, in order to initialize the SM. The goal is to show how the SM is fine-tuned
during the learning process. Table 6 shows the initial SM used in this experiment.

Figure 5 shows the results obtained from an execution of this experiment. In Fig. 5,
Figs. 5a, 5b, 5c and 5d show the updating of SPLS in dimensions Processing, Perception,

Table 6

SM – Experiment 3

SPLS

Processing Perception Input Understanding

Act. Ref. Sen. Int. Vis. Ver. Seq. Glo.

0.39 0.61 0.55 0.44 0.66 0.34 0.38 0.62

Fig. 5. Results from Experiment 3.
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Input and Understanding respectively, during the simulated learning process. As it can
be seen, we had a considerable reduction of iterations, due to the initial consistency of
the SM, which means that having precise information about students’ LS and providing
support to it during the learning process, results in great positive effects on students’
performances, as pointed out in Section 1.

5.5. Experiment 4

This experiment considers the case in which all LS preferences, in the SM, are initially
inconsistent, as shown in Table 7.

A result is shown in Fig. 6, in which Figs. 6a, 6b, 6c and 6d show the updating of SPLS
in dimensions Processing, Perception, Input and Understanding respectively, during the
simulated learning process.

Table 7

SM – Experiment 4

SPLS

Processing Perception Input Understanding

Act. Ref. Sen. Int. Vis. Ver. Seq. Glo.

0.70 0.30 0.30 0.70 0.30 0.70 0.70 0.30

Fig. 6. Results from Experiment 4.
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Particularly, this repetition of the experiment didn’t completely correct the SPLS in
dimension Understanding, where the preference is balanced. But, the DLS was very min-
imized during the learning process in this dimension. This occurs because when students
have a balanced preference, they are competent in both LS inside the dimension, and
don’t have a clear preference for one of them Coffield et al. (2009), making it difficult to
discover their favorite LS.

Finally, we believe that the good results obtained from these experiments validate the
proposed approach, which can be easily implemented in an existing LMS, like Moodle
(2010), and tested with real students. The SPSP was a very important part of our work,
because it allowed us to test, adjust and improve our approach since the very beginning,
optimizing the development process.

These adjustments and improvements were mainly related to the rules depicted in
Section 4, which determine the updates in the SPLS; and to the calculation of the re-
inforcement applied by those rules. Both are crucial points of our work, which are still
being adjusted.

Therefore, without using simulation, it should be impossible to come up with this
approach within reasonable time, due to the large amount of time necessary to do ex-
periments with real students. A variety of experiments were performed – considering
different SRLS and SPLS – and some of them have been exposed in this section. Next
section points out some conclusions and future work.

6. Conclusions and Future Work

AES has been considered a promising approach to increase the efficiency in computer-
aided learning. A necessary characteristic in this approach is the precise, dynamic and
continuous identification of students’ LS in order to provide well-adapted learning expe-
riences. In this context, one challenge is the development of systems able to efficiently
acquire students’ LS preferences.

The information about students’ LS preferences, acquired by psychometric instru-
ments, encloses some degree of uncertainty (Price, 2004; Roberts and Erdos, 1993). Fur-
thermore, in most of the existing approaches, the assumptions about students’ LS, once
acquired, are no longer updated.

In this context, this work presents a new approach to automatically detect and pre-
cisely adjust students’ LS preferences, based on the non-deterministic and non-stationary
aspects of LS (Graf and Kinshuk, 2009). Because of the probabilistic and dynamic factors
enclosed on students’ LS modeling, our approach gradually and constantly modifies the
SM using a set of rules that detect which LS should be adjusted at a specific point of the
learning process, considering the student’s performance. In this way, the SM converges
to the SRLS, considering fine-tuned strengths, as showed in Section 5.

Finally, the proposed approach solves some important problems ignored by most of
the analyzed approaches, and brings advantages, due to specific points, as shown in Sec-
tion 2. The validation of our model was done through SPSP, which takes into account
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how LS preferences exert influence on students’ performances, as described by some re-
searchers, e.g., Haider et al. (2010), Graf et al. (2008), Kinshuk et al. (2009), Alfonseca
et al. (2006), Graf et al. (2009).

The evaluation of AES is a difficult task, as pointed out in Bravo and Ortigosa (2006).
Therefore, testing our approach through simulation was vital, due to the time and human
resources needed to test it with real students. Now that we have achieved good results
through simulation, we feel confident to implement our approach in an existing LMS,
like SIMEduc (Dorça et al., 2003) and Moodle (2010), and test it with real courses and
real students, as a future work. In order to achieve this goal, we are working on the
development of function able to efficiently map LO characteristics to students’ LS.
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Stochastinis metodas student ↪u mokymosi stili ↪u automatiniam ir
dinaminiam modeliavimui adaptyviose mokymo sistemose

Fabiano Azevedo DORÇA, Luciano Vieira LIMA, Márcia Aparecida FERNANDES,
Carlos Roberto LOPES

Siekiant pagerinti student ↪u mokymosi rezultatus, adaptyvi mokymo sistema turi turėti informa-
cij ↪a, kuriuo atveju asmuo mokosi geriausiai. Šiame straipsnyje pristatomas novatoriškas student ↪u
mokymosi modeliavimas taikant tikimybin↪i mokymosi stili ↪u derinim ↪a. Eksperimentai parodė, kad
šiuo metodu galima automatiškai aptikti ir tiksliai reguliuoti student ↪u mokymosi stilius, pagr↪istus
nedeterministiniais ir nestacionariais mokymosi stili ↪u aspektais. Kadangi tikimybiniai ir dinaminiai
aspektai yra ↪idėti ↪i automatin↪i mokymosi stili ↪u aptikim ↪a, autori ↪u pasiūlytas metodas palaipsniui ir
nuolat reguliuoja student ↪u mokymosi model↪i, remdamasis student ↪u pasiekimais, taip gaunamas
gerai suderintas student ↪u mokymosi modelis. Atlikus eksperimentus buvo gauti geri rezultatai, kai
kurie iš j ↪u aptariami šiame straipsnyje.
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Fig. 1. A LSC is stochastically created according to a stochastic process modeled by four concurrent Markov
Chains.

For example, if the LSC considered in the current learning session is LSC = (A,S,Vi,Seq),
the characteristics of the learning objects provided to a student must be related to the
LS characteristics enclosed in the stochastically generated LSC, generated according to
the SM.

Additionally, for the next learning session, we have a 35% probability of the Active
LS appearing in the LSC against a 65% probability of the Reflective LS, because at
this moment the student is supposedly Reflective, according to the SM. Analogously,
we have a 17% probability of the Sensitive LS appearing in the LSC against a 83%
probability of the Intuitive LS, because at this moment the student is supposedly Intuitive,
according to the SM. However, we have to consider that these probabilities are constantly
updated, because the SM is constantly being updated, as will be described. It is important
to reinforce that these probabilities are directly obtained from the SM.

When a student shows a learning problem during a learning session (unsatisfactory
performance), the LS stored in the SM, which appear in current LSC, are decremented,
considering a probable inconsistency in these preferences. Students’ preferences, which
do not appear in current LSC, are incremented (reinforced), making them stronger, con-
sidering that the learning difficulties appeared because they were not present in the se-
lected LSC. These updates are executed by the following rules (where A and B represents
LS in a FSLSM dimension;di indicates one of the four FSLSM dimensions; R indicates
the reinforcement to be applied to the LS in the SM):

• SM[di]A – probability of preference for the LS A stored in the SM, in dimension
i, with i = 1..4.

• SM[di]B – probability of preference for the LS B stored in the SM, in dimension
i, with i = 1..4.

• LSC[di] – LS in LSC related to the dimension i, with i = 1..4.
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Rule 1

IF (SM[di]A � SM[di]B) ∧ (LSC[di] = “A”) THEN

. . . SM[di]A = SM[di]A − R

. . . SM[di]B = SM[di]B + R

Rule 2

IF (SM[di]B � SM[di]A) ∧ (LSC[di] = “B”) THEN

. . . SM[di]A = SM[di]A + R

. . . SM[di]B = SM[di]B − R

Rule 3

IF (SM[di]A � SM[di]B) ∧ (LSC[di] = “B”) THEN

. . . SM[di]A = SM[di]A + R

. . . SM[di]B = SM[di]B − R

Rule 4

IF (SM[di]B � SM[di]A) ∧ (LSC[di] = “A”) THEN

. . . SM[di]A = SM[di]A − R

. . . SM[di]B = SM[di]B + R

Rule 1 and Rule 2 decrease the distance between the LS (DLS) inside a dimension,
while Rule 3 and Rule 4 increase the DLS inside a dimension, as shown in Fig. 2, in
which A and B, in y-axis, represents a student’s probable LS, according to Definition 4.3,
during the learning process. The x-axis represents the learning sessions of the learning
process.

It is important to notice that when a learning problem is detected, all LS in the SM are
updated by one of those rules. The reinforcement R, given by (2), is calculated consider-
ing the DLS inside a specific dimension in the SM, and the student’s performance value
(PFM) obtained on the learning session. DLS is calculated by (3). The reinforcement R is
calculated for each FSLSM dimension, considering its specific DLS. The PFM is in the
interval [0,100] and the DLS is in the interval [0,1].

R =
K

PFM × DLS
, (2)

DLS =
∣
∣SM[di]A − SM[di]B

∣
∣. (3)

Fig. 2. Updating of LS during the learning process.
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