
Informatics in Education, 2012, Vol. 11, No. 2, 271–282 271
© 2012 Vilnius University

Problems in Choosing Tools and Methods
for Teaching Programming

Daiva VITKUTĖ-ADŽGAUSKIENĖ, Antanas VIDŽIŪNAS
Informatics Faculty, Vytautas Magnus University
Vileikos st. 8, LT-44404 Kaunas, Lithuania
e-mail: d.vitkute@if.vdu.lt, a.vidziunas@if.vdu.lt

Received: November 2011

Abstract. The paper analyses the problems in selecting and integrating tools for delivering basic
programming knowledge at the university level. Discussion and analysis of teaching the program-
ming disciplines, the main principles of study programme design, requirements for teaching tools,
methods and corresponding languages is presented, based on literature overview and author‘s expe-
rience. A pressure from labor market, students and other sources to emphasize practical skills over
deeper, long-term programming concepts is described. A model of teaching introductory program-
ming disciplines at a higher logical level, using C#, is presented as a summary of the accomplished
analysis, and also taking into account the recommendations of the ACM (Association for Com-
puting Machinery) association for typical teaching programs. Also, design principles for building
introductory programming courses, aligned with such teaching approach, are presented. This model
has already been trialed at Vytautas Magnus University.

Keywords: teaching programming, learning environment, training-oriented languages, student
needs.

1. Introduction

Currently, paradoxical situation is typical of many developed countries, including Lithua-
nia. Despite the fact, that the role of information technology (IT) is growing rapidly in var-
ious activity areas, including household activities, and the demand for IT specialists with
relatively high salaries is increasing, while the number of students in IT study programs
is steadily decreasing. When investigating this problem, different authors (Stephenson,
2011; Meyer, 2012) state, that the main reason for downward trend in popularity of IT
and computer science (CS) in universities is curriculum complexity and abstractness, its
insufficient links with practical needs and extremely rapid IT evolution.

It should also be noted that the downward trend in popularity is typical not of all IT
application areas. Some areas, for example, those dealing with modern software engi-
neering and IT application areas, even show signs of growing in popularity (Computer
Software Engineers and Computer Programmers, 2011). Therefore, better alignment of
IT study curriculum with student expectations and labor market needs is relevant. Study
programs should be regularly reviewed and updated in order to reflect rapid changes in
information technology and its implementation strategy for particular country.



272 D. Vitkutė-Adžgauskienė, A. Vidžiūnas

In organization of IT studies, Lithuanian universities, like the majority of universi-
ties all over the world, are guided by the ACM Curriculum (Curricula recommendations,
2012), where ten out of fourteen basic ACM CS Curriculum (2008) knowledge areas are
related to different programming and software engineering problems. Therefore, prob-
lems and methods of programming disciplines in IT curriculum require special attention.

Important factor, determining the efficiency of programming studies, is the adequacy
of teaching tools, including programming languages, supplementary library collections,
software development environments, software templates, textbooks and other means.
Universities are using different teaching methods (Van Roy and Haridi, 2004; Kölling
and Meyer, 2012), built and formulated on the basis of different programming languages,
paradigms and strategies. However, most of them are still looking for best solutions. As
this is a significant problem, it is important to widen discussions on how it can be solved
using means offered by new programming technologies. Research works related to this
problem are usually limited to the analysis of requirements for learning environments
used in introductory programming studies (Felleisen and Findler, 2001; Bennedsan and
Caspersen, 2008), while insufficient attention is paid to the analysis of teaching tools for
specialized programming disciplines, issues of their integration, labor market and student
interests.

2. Requirements for Teaching of Programming Fundamentals

Studies of programming fundamentals are aimed at introducing students to basic pro-
gramming issues and at providing primary practical skills. Until the last decade majority
of universities were constructing their programming teaching strategy according the rec-
ommendations of ACM Computing Curriculum (2001). This curriculum is based on the
mathematical methodology of teaching the programming disciplines (Dijkstra, 1997), go-
ing as far as 1976, and suggesting that programming should be considered as a branch of
mathematics.

ACM recommendations can be implemented using several different methods (Van
Roy et al., 2012). For example, teaching methods based on imperative and functional
paradigms have rather old traditions. Study programs, built around this approach, give
students a good theoretical understanding of programming principles, but often may lack
knowledge on software engineering concepts that are necessary for IT professionals.
Therefore universities, profiling their programs in software engineering and other applied
areas of IT studies, prefer methods, better interacting with real world need and reflecting
concurrency patterns observed in this world.

These tendencies were recognized in ACM Computing Curriculum (2008) where ex-
panded knowledge structure for the fundamentals of programming was presented (Curric-
ula recommendations, 2012) with only half of the study program dedicated to algorithm
description and analysis of related control and data structures, while the second half is
dedicated to different issues of software engineering. At the same time, universities were
encouraged to develop original study programs, answering to the special university or/and
region needs.



Problems in Choosing Tools and Methods for Teaching Programming 273

Different approaches for programming disciplines also require different teaching
methods, programming languages, specialized utility libraries, software development en-
vironment and other tools. Majority of authors, investigating these problems, recognize
that object-oriented languages are best suited for teaching software engineering, however
their use for introductory teaching of programming is questionable because of relatively
high initial requirements for the knowledge of theoretical background. Discussions on
this point are still going on.

3. Principles of Choosing Languages for Teaching

Universities with study programs, oriented towards theoretical backgrounds of CS, prefer
programming languages that are specialized for teaching and correspond to the main aca-
demic requirements: high level, clean concepts, readable syntax, safety, no redundancy,
orientation towards a single programming paradigm and easy transition to other lan-
guages. Probably, the most successful project of such a language is the Pascal language,
created in 1970, which together with its object-oriented modification Object Pascal has
been an exceptionally popular tool for teaching the fundamentals of programming in Eu-
ropean and U.S. universities for two decades. In Lithuania it has also been widely used at
the beginning of the last decade. Eiffel programming methodology and language (Meyer,
1997), which was demonstrated in public at 1986 and still is popular in many universities,
also had very significant influence to teaching principles of object-oriented programming
and software engineering concepts. New software development and programming meth-
ods that were introduced in Eiffel later were implemented in other popular languages:
Java, C++, C# (Meyer, 2012).

Another trend in the development of programming languages, are languages that can
be easily mastered and used for practical purposes without special training. The Basic
programming language is the predecessor of such languages, and was later followed by
ABC, Visual Basic (VB) and Python. However these languages are not suitable for teach-
ing programming fundamentals for CS and IT students due to the lack of strict require-
ments for the program structure, though they are popular in non-IT curriculums.

One more group of training-oriented languages is aimed at demonstrating the advan-
tages of different programming paradigms and their application possibilities: Smalltalk
(object-oriented programming), Lisp (functional programming), Prolog (logic program-
ming) and others. Since application of different programming environments for different
paradigms creates organizational problems, integrated tools for paradigm training are be-
ing offered. An example of such a solution is shown in Fig. 1 (Reinfelds, 2002; Van Roy
and Haridi 2004), where programs are executed in a virtual machine, managed by the

Fig. 1. Structure of a specialized programming concept learning environment.



274 D. Vitkutė-Adžgauskienė, A. Vidžiūnas

base language, and all the practical programming languages are defined as extensions
of this base language, obtained by adding corresponding syntactical structures. In such
a case, a functional or a logical language is suggested as the base language, having more
precise theoretical reasoning for different paradigms and, also, simpler syntax. This kind
of teaching method together with mathematical specification means for the solution of
different tasks, is beneficial of theoretical computer science and mathematics curriculum
studies.

It is interesting to note, that a similar concept of program execution in a virtual ma-
chine, is implemented and widely used for practical programming in Java and dotNet
technologies. The only difference is in the purpose of the base language. In this case it is
a low-level language, ensuring program versatility and their independence of the physical
properties of computer equipment. In this case, the virtual machine not only executes in-
structions written in a practical programming language, but, also, allows the use of utility
libraries of the virtual machine. Such a structure is very promising not only with respect
to programming technology organization, but, also, with respect to programming training
purposes for students specialized in IT.

When considering programming languages, that are used for teaching software en-
gineering concepts, the following features are defined as important: should have lan-
guage integration and multi-paradigm tools, static typing, multiple inheritance, method
and operator overloading, generic classes, multithreading, access control and build-in se-
curity methods (Stephenson, 2011). Orientation of utility libraries towards OS or virtual
machine environment indicate possibility to use language in multi-language and multi-
platform projects. Also, it is important to have friendly software development environ-
ment and mechanism for freeing memory of unused objects (garbage collection), thus
simplifying the student tasks.

Features of popular programming languages for evaluating their correspondence to
both requirements of introductory programming and software engineering are presented
in Table 1 (Voegele, 2012). When selecting a programming language for teaching, it is
also necessary to consider university traditions, labor market needs, interests of students
and other factors.

4. Labor Market Requirements

Adequacy of programming languages, used for teaching, to labor market requirements
can be assessed by analyzing web publications covering different programming language
topics and issues for programmers. Such assessment is regularly published in TIOBE pro-
gramming community website (TIOBE programming community index, 2012). Values of
TIOBE index of ten most popular programming languages, presented in Table 2, indicate
that about 58% of web publications are dedicated to C family languages and Java.

High popularity for programming in C can be explained by growing demand for var-
ious programmable digital devices and system programming needs, where this language
is the most suitable. However, C is not recommended for introductory training purposes,



Problems in Choosing Tools and Methods for Teaching Programming 275

Table 1

Summary of programming language features

Property Eiffel Obj.
Pascal

Java C# C++ Python Perl VB

Paradigm Object Hybrid Object Multipa-
radigm

Hybrid Hybrid Hybrid Hybrid

Typing Static Static Static Static Static Dynamic Dynamic Static

Generics Yes No Yes Yes Libraries No No No

Inheritance Multiple Multiple Single,
multiple
interfaces

Single,
multiple
inter-
faces

Multiple Multiple Multiple None

Method

overloading No Yes Yes Yes Yes No No No

Operator

overloading Yes No No Yes Yes Yes Yes No

Garbage

collection Yes Program-
mable

Yes Yes Program-
mable

Yes Yes Yes

Class

methods No Yes Yes Yes Yes No No No

Orientation

of libraries OS OS Virtual
machine

Virtual
machine

OS OS OS OS

Access

control Selective
export

Public,
pro-
tected,
private

Public,
pro-
tected,
private

Public,
pro-
tected,
private,
internal

Public,
protected,
private,
“friends”

Name
mangling

None Public,
private

Multi-
threading

Yes No Yes Yes Libraries Yes No No

Pointer

arithmetic No Yes No Yes Yes No No No

Language

integration C, C++,
Java

Assemb-
ler

C, C++ All
.NET
lan-
guages

C, Assem-
bler

C, C++,
Java

C, C++ C

Built-in

security No No Yes Yes No No Yes No



276 D. Vitkutė-Adžgauskienė, A. Vidžiūnas

Table 2

TIOBE Index of programming languages for March 2012

Languages Java C C# C++ Objective C PHP VB JavaScript Python Delphi/

Ob. Pascal

Rating (%) 17.1 17.1 8.2 8.0 7.7 5.6 4.4 3.4 3.3 2.7

as the risk of designing insecure programs is very high, the error control system is rather
complex, and, also, many alternative structures, scattered across narrowly specialized
utility library collections, are used. But some experience of using this language for IT
specialist is necessary, because C is the main tool for language integration (Table 1).
Such knowledge could be acquired in special software engineering courses.

The above mentioned shortcomings of C programming language are not present in
Java and C# languages, tailored for the design of complex application systems. However,
their use for introductory teaching of programming is often being criticized because of
relatively high initial knowledge of the basic principles that is required. Universities try
to solve this problem in different ways.

Analysis of IT study program descriptions of the Lithuanian universities, available on
the Web, showed that they mainly follow the trend of classical programming teaching
methodology. Therefore, attention in introductory programming disciplines is concen-
trated at the analysis of simple data structures and algorithms using procedural program-
ming tools in Turbo Pascal, C and C++ languages. Relevant software engineering issues
are addressed only in later stages, using applied software packages and Java or dotNet
technologies. Today this approach becomes more and more irrational, does not corre-
spond to the labor market needs, and is being criticized by various authors (Felleisen and
Findler, 2001).

The increasing number of recommendations is aimed at shifting the focus from teach-
ing programming paradigms concentrating on main software engineering concepts in in-
troductory programming disciplines (Van Roy et al., 2012). The “outside-in” approach
based on “inverted curriculum” ideas (Meyer, 2012), would be an example of a revolu-
tionary approach of this kind. It relies on the assumption that the most effective way to
learn software engineering is based on the analysis and experiments related to already
existing qualitative software.

5. Requirements for Learning Environments for Special Programming Disciplines

When accomplishing the analysis of requirements for learning environments suitable for
the studies of special programming disciplines, it is appropriate to single out the following
requirement groups with similar goals: software engineering, system programming and
applied programming. It is easiest to define the requirements for the system programming
group, as practically all commonly used operating systems are written in C language,
which was even specifically designed to facilitate the development of such systems. Since



Problems in Choosing Tools and Methods for Teaching Programming 277

systemic programming topics are usually included in the first two years of university
study programs, is often recommended, that one of the C family languages should be
included in learning environments for the fundamentals of programming.

When developing learning environments for software engineering disciplines, the de-
cisive role is dedicated to the means for the design of complex software systems, as well
as the means of their support and reengineering. They should be capable of illustrating the
requirements of all the software development stages, from building formal specifications
to the preparation of documentation. Description of programming languages in Table 1,
shows that the most popular in teaching languuages (Eiffel, Java and C#) are dedicated to
object-oriented technology. Other languages, that are combining procedural and object-
oriented paradigms, are rapidly losing their popularity (C++ and Object Pascal) or aren’t
used for teaching IT professionals (VB, Python).

The software engineering needs are best of all met by Java and C# languages, their
principal capabilities being very much the same. An important advantage of both two
languages is that they use only virtual machine resources adapted to the implemented
technology. It thus provides perfect conditions for maximizing the performance of the
learning environments, and, also, for designing multiplatform programs, capable of work-
ing under different operating systems. The popularity of these languages is increased by
the fact that they are well equipped with special libraries for various applied programming
needs (computer graphics, databases interfaces and other).

Java technology is better equipped with the freely distributed open source and multi-
platform means, however, the dotNet technology, represented by C#, also has many ad-
vantages, including implementation of many promising innovations. For example, it al-
lows indirect description of variable types, has an integrated LinQ query language for
collection management, allows regular expressions for word processing purposes.

One should also pay attention, that the dotNet technology, represented by C# lan-
guage, supports several other programming languages (VB.Net, C++/CLI, JScript.NE,
Python and others), which provides excellent conditions for software system building us-
ing different language modules. These tools help students to realize that programming is
not only writing and analysis of algorithms, but, also, design, testing and support of com-
plex systems, using rich sets of standard blocks and specialized design environments.

6. Evaluation of Student Needs

In order to better define strategy for the modernization of programming fundamentals’
studies and corresponding learning environments, student need analysis was accom-
plished at VMU in 2008–2011, covering student needs for basic specialty subject knowl-
edge. A survey was accomplished among second-year students, who already have com-
pleted introductory subjects, and have not yet forgotten their motivation for the choice
of studies. They were given two groups of questions: what they hoped to learn during
the study of initial subjects and where (in what activities) they hope to use the gained
knowledge.



278 D. Vitkutė-Adžgauskienė, A. Vidžiūnas

Fig. 2. IT student requests for the knowledge structure of basic specialty subjects.

Fig. 3. Plans of second-year students in realizing themselves in different fields of activity.

Survey results are presented in Figs. 2 and 3, showing the percentage of students
(118 out of 124 second-year students were interviewed) hoping to gain knowledge of
corresponding IT disciplines in the first years of studies, and also the percentage of those
willing to implement this knowledge in specific fields.

The first four columns in Fig. 2 show students’ attitude to introductory subjects rec-
ommended in ACM model programs: basics of algorithm design, algorithms analysis,
basics of computer architecture and programming technologies. All the students recog-
nize the importance of programming technology studies, but also wish to acquire the



Problems in Choosing Tools and Methods for Teaching Programming 279

basics of other subjects that are intended for detailed studies in the subsequent years.
Even 83% of students would prefer early acquaintance with distributed system architec-
ture and Internet technology, 55% – with software systems engineering, and about 40% –
with multimedia products and graphic user interface development tools. Students’ desire
to advance the study of special subjects and acquire skills in their practical application
depends on several factors: use of IT experience acquired outside the university, personal
preferences, the need to make better use of personally owned computer hardware and
software and use of the gained knowledge in search for employment or additional fund-
ing sources for studies. Currently, about 10% of ITS second-year students at VMU are
already employed, and in the next years this number increases to 30%–40%. Half of them
manage to find jobs related to the speciality of their studies.

Interesting results were obtained from the survey on the plans for applying the ac-
quired knowledge (Fig. 3). All interviewed students understand the importance of detailed
studies of programming technologies, but only 24% would like to work in this area. The
majority of students (73%) expect to work in database design and information system
administration field, and 59% – in computer equipment sales field. Students’ career plans
are affected by the curricula structure, IT needs in the market, university teaching and
research labs activities, and overall scientific orientation of the university. For example,
rather small popularity of computer-controlled system field is most probably due to the
fact that Vytautas Magnus University is focused on the humanities and social science
studies, while information systems management, e-business and Internet areas are popu-
lar due to the fact that there is large focus on these areas in VMU study programs, and,
also, there is large demand for such professionals in Lithuania. Attention should also be
paid to the popularity of multimedia, attracting young people because of the external per-
formance of its products, variety of technology used and diversity of practical application
perspectives.

All students interviewed identified at least three intended fields professional activity.
This shows that they have a good feeling of IT market dynamics, do not expect to work
in a narrow field for the whole lifetime, and are willing to participate in the design of the
design of the study program curricula capable of forming their skills and abilities in the
best possible way.

7. Goals and Means for Integration of Tools Used for Teaching Programming

Until recent years, Department of Informatics of Vytautas Magnus University was using
traditional paradigm-based programming teaching methodology with several program-
ming languages already in the initial phase of studies. Abstract and weakly related to
the practical needs introductory programming subjects were the key reasons for low-rate
student achievements. Currently, the situation is being changed by integration of teaching
tools used for introductory programming and software engineering disciplines, where a
higher logical level language is used for many purposes. This is consistent with model
ACM program recommendations from 2008 to assign at least half of the introductory pro-
gramming classes for software engineering issues. It is also estimated that a majority of



280 D. Vitkutė-Adžgauskienė, A. Vidžiūnas

freshmen, although lacking programming experience, are already familiar with elemen-
tary concepts of programming from their secondary school studies. Thus, it is reasonable
to allocate the university studies of programming basics to the topics that are suitable to
get initial experience of building simple object programs with clearly expressed practical
orientation. For example:

• overview of programming paradigms, software engineering, virtual machine and
dotNet technology concepts;

• language lexics, basic data types and internal classes;
• using of integrated software development environment (IDE);
• structure of object-oriented programs and their interface with data sources and

users;
• generic collections and their practical applications;
• exceptions and their handling.

After providing the initial knowledge about the software design and principles of
processing generic data collections, the second sequential study subject in programming,
which is traditionally called “Data types and structures”, should be dedicated to detailed
analysis of how to create and modify abstract structures (classes) introduced in the first
study subject, using object-oriented tools. Such studies may include the following topics:

• user classes and means of their adaptation to applied programming needs;
• inheritance and class families;
• design and using generic classes, interfaces and delegates;
• event driven programs and multithreading;
• queries and their practical application;
• development and deploying of dotNet assemblies.

Detailed studies of algorithm design and analysis, that are obligatory to IT students,
are focused in disciplines dedicated for discrete structures and algorithm theory. Such a
study organization approach allows the development of coherent theoretical and practical
student knowledge needed for further software engineering and applied programming
studies in the same learning environment.

The discussed the structure of the introductory programming subjects was also tested
for retraining courses organized by Vytautas Magnus University and received positive
audience evaluations.

8. Conclusions

Traditional paradigm-based programming teaching methodology using several program-
ming languages is applied at the majority of Lithuanian universities. Since this compli-
cates the absorption process for these subjects, negatively affects the student study-rate
achievements, and also reduces the popularity of IT studies in general, the problem of
modernizing the initial programming studies is very relevant. This problem is also char-
acteristic of many other universities in the world. Different ways of solving this problem
are suggested, mainly based on shifting the focus from teaching programming paradigms



Problems in Choosing Tools and Methods for Teaching Programming 281

towards concentrating on main software engineering concepts at introductory program-
ming disciplines. The problem of integration of tools used for programming disciplines
is also relevant. The analysis of different programming languages used for teaching, pre-
sented in the paper, shows that Java and C# languages are the most suitable for described
approach. Authors, using their experience at Vytautas Magnus University, presented an
approach of organizing initial programming studies based on C# language advantages.
The discussed approach is also in-line with students’ wishes for the structure of specialty
subject study program structure, these wishes being identified by carrying out a corre-
sponding survey.

References

Bennedsan, J., Saspersen, M. (2008). Reflections on the Teaching of Programming. Springer.
Computer Software Engineers and Computer Programmers [last viewed on May 5, 2011].

http://www.bls.gov/oco/ocos303.htm.
Curricula Recommendations [last viewed on March 28, 2012].

http://www.acm.org/education/curricula-recommendations.
Deitel, H., Deitel, P. (2000). C++, How to Programm, third edn. New York, Prentice Hall.
Dijkstra, E.W. (1997). A Discipline of Programming. Prentice Hall.
Felleisen, M., Findler, R.M. (2001). How to Design Programs: An Introduction to Computing and Program-

ming. MIT Press.
Reinfelds, J. (2002). Teaching of programming with a programmer’s theory of programming. In: Informatics

Curricula, Teaching Methods, and Best Practice (ICTEM 2002). Kluwer Academic Publishers.
Kölling M. (2012). The problem of teaching object-oriented programming [last viewed on March 24, 2012].

http://www.bluej.org/papers/1999-09-JOOP2-environments.pdf.
Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall.
Meyer, B. (2012). The Outside-In Method of Teaching Introductory Programming [last viewed on March 24,

2012]. http://se.ethz.ch/∼meyer/publications/teaching/teaching-psi.pdf.
Stephenson, P. (2011). Promising New Pedagogical Approaches for Teaching High School Computer Science

[Last viewed on May 5, 2011].
http://c2474712.cdn.cloudfiles.rackspacecloud.com/CuricPedFinal1.pdf.

TIOBE Programming Community Index [Last viewed on March 28, 2012].
http://www.tiobe.com.

Van Roy, P., Haridi, S. (2004). Concepts, Techniques and Models of Computer Programming. Mit Press.
Van Roy, P., Armstrong, J., Flat, M., Magnusson, B. (2012). The Role of Language Paradigms in Teaching

Programming [Last viewed on March 28, 2012].
http://www.info.ucl.ac.be/∼pvr/sigcse2003panel.pdf.

Voegele, J. (2012). Programming Language Comparison [Last viewed on March 28, 2012].
http://www.jvoegele.com/software/langcomp.html.



282 D. Vitkutė-Adžgauskienė, A. Vidžiūnas

D. Vitkutė-Adžgauskienė is the dean of the Faculty of Informatics at Vytautas Mag-
nus University, Kaunas, Lithuania. She studied applied mathematics at Kaunas Technol-
ogy university, got her PhD degree in informatics from Vytautas Magnus University and
EMBA from Baltic Management Institute. She has 20 years of teaching experience in in-
formatics, and has also worked for more than 10 years with a mobile operator in Lithuania
leading the development of advanced mobile services and solutions. She participated in
different international projects, including JEP-4298 (Tempus), RAPIDITY (Phare Multi-
Country Programme in Distance Education), ALIPRO (FP6), OpenScout (eContentplus)
and others. Her main research interests are: system simulation and control, innovations
in mobile solution development, computerized text mining and semantic analysis. Her
publication list includes over 30 papers and conference contributions.

A. Vidžiūnas, dr. is associated professor of the Faculty of Informatics at Vytautas Mag-
nus University, Kaunas, Lithuania. He studied electrical engineering and got his PhD
degree in informatics at Kaunas Technology University, has over 40 years experience of
teaching computer programming in Lithuanian universities. Also he is author and co-
author of over 20 books in IT and programming languages. His research interests are
programming technologies and programming teaching methods.

Programavimo mokymo metod ↪u ir priemoni ↪u parinkimo problemos

Daiva VITKUTĖ-ADŽGAUSKIENĖ, Antanas VIDŽIŪNAS

Straipsnyje nagrinėjamos pagrindini ↪u programavimo žini ↪u mokymui skirt ↪u priemoni ↪u parinki-
mo ir integravimo problemos. Aptariami ir analizuojami šiam tikslui skirt ↪u dalyk ↪u mokymo progra-
m ↪u universitetinėse studijose parengimo principai, reikalavimai mokymo metodams, priemonėms
ir naudojamoms programavimo kalboms. Problemos nagrinėjamos remiantis literatūros analize ir
asmenine autori ↪u pedagoginio darbo patirtimi, atsižvelgiant ↪i didėjančius student ↪u ir darbo rinkos
reikalavimus praktini ↪u programavimo ↪igūdži ↪u vystymui naudojant pažangias ir perspektyvias tech-
nologijas bei priemones. Aprašytas ↪ivadini ↪u programavimo dalyk ↪u mokymo aukštesniame loginia-
me lygmenyje naudojant C# kalbos priemones modelis, kuris parengtas remiantis atliktos analizės
rezultatais ir ACM (Association for Computing Machinery) asociacijos rekomendacijomis. Taip
pat aptarti tokio modelio realizavimui skirt ↪u programavimo dalyk ↪u mokymo program ↪u formavimo
principai, kurie sėkmingai išbandyti ir patikrinti Vytauto Didžiojo universitete.


