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Abstract. This paper discusses some difficulties in teaching introductory courses to programming,
paying particular attention to their mathematical nature. We consider some aspects, which have
not been commented in detail in textbooks and often neglected by course outlines and schedules.
Some of these are constructing complex conditions, exceeding array bound, calculating infinite
series in conjunction with recursion, etc. We believe that those topics and accompanying notes
along with appropriate teaching methodology could be and should be incorporated into introductory
programming courses.
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Introduction

Professional software development is a complex process that can be driven by various
models, such as waterfall, incremental, RAD, evolutionary, agile, lean, etc. In the light of
the software engineering and the software development life cycle (SDLC), the common
development stages, such as system analysis, design, detailed design and algorithmization
by pseudo-code, coding, testing, and maintenance, can be adapted for the purposes of the
introductory programming courses as two basic stages: modelling and implementation.
We can broadly define, that the programming is primarily a creative process that can be
separated into two main stages:

• building a virtual model of the future program and
• implementing the model as an algorithm and coding it by using the means of the

programming languages.

Building the program model is the first stage of the development process and its goal
is to express the overall idea of solving a particular task. Programming is the second
stage, which specifies the model in details by creating an algorithm, followed by coding.
The process of transition from the first to the second stage can be considered as similar
to transition from abstract thinking to articulating thoughts by speech or in writing. That
transition causes the major difficulties in programming, at the same time it may surface
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some errors and omissions of the model itself, which eventually leads to its partial or
major amendment. Borovin et al. (1987) state that “Connection between understanding
and writing appears to be as problematic for programming, as it is for any other form of
a written exposition”.

We believe that one of the main issues that an Introduction to Programming course
has to address is development of a proper way of thinking, which can help building cor-
rect models and then facilitate their transition to programs. The style of programming is
a style of thinking, manifested in the ability to describe the algorithm by a particular pro-
gramming language (Borovin et al., 1987). Unfortunately, not everyone involved in the
teaching process perceives the programming style as a kind of style of thinking. Often, it
is perceived as a technology of programming.

Our previous works have justified the need for developing a good programming style
in the introductory programming courses. This allows students to write programs that are
easy to write and then read by the others. A stylish program easily reveals its key elements
that lead to the solution. Many textbooks used in the programming courses provide rec-
ommendations for code arrangement, choice of object names, etc., but they rarely discuss
algorithm accuracy and efficiency. We are trying to fill that gap by discussing some com-
mon pitfalls in teaching Introduction to Programming. Of course, teaching in any area or
topic cannot be perfect and inevitably makes mistakes. This is part of the natural process
of acquiring knowledge and skills. Our goal is to understand the most common chal-
lenges and problems the students experience during training. That understanding would
allow avoiding or at least reducing those problems.

Making errors in programming is a major issue that both teachers and students try
to handle and avoid. The first errors that novices face are the syntactic ones. Capturing
those errors is not a big issue as the compiler messages help to locate and correct them.
A bigger challenge, however, is when programs pass successfully the compilation stage,
but afterwards they output wrong results due to logical/semantic errors. Here we offer
a range of advices that try to circumvent and avoid logical errors, all illustrated with
examples that point the “underwater stones”. We also offer some tips on how to improve
the algorithm efficiency in terms of computing time and resources used. On the other
hand, our advices can be viewed as an initial step in forming a good programming style.

We should state here that we don’t underestimate the syntactic errors as they may
double the number of the semantic ones and can significantly slow down the teaching
and learning process.

The set of examples we provide and discuss here aim to demonstrate our view that
a good math background is essential for developing a good programming style and pro-
vides a lot of advantages for those who have it. Part of our examples is related to mathe-
matical logic and recursive relationships.

Finally, our personal teaching experience and that of other colleagues (Skupiene,
2006) shows that it is much easier to make students to develop good programming skills
if they have no prior programming experience, rather than working with those who have
already “bad” skills and “wrong” programming style, developed in their previous experi-
ence.
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The paper is organized as follows: Section 1 discusses the problems that teachers ex-
perience in the Introduction to Programming courses. Section 2 discusses the importance
of developing algorithmic thinking. Examples of characteristics of the machine arithmetic
are shown in Section 3. Section 4 discusses proper construction and use of compound
terms. Section 5 discusses the need to avoid recalculation of expressions. Calculation of
infinite sums in preparation for the topic, “Recursion” is addressed in Section 6. Finally,
Section 7 discusses problems with scope of variables.

All examples are written in C/C++.

Exposition

1. Problems in Teaching Programming

Traditionally, teaching in programming relies primarily on ready algorithms from text-
books. This approach, however, does not stimulate development of creative thinking in
students. Good understanding the matter and extracting useful information and knowl-
edge from text is not easy. Problems with reading and understanding have been clearly
identified in surveys and studies carried out among Bulgarian students. According to
the Programme for International Student Assessment (PISA) 2006, nearly a half of all
15-years students are reported to experience some difficulties in analyzing and critically
estimating information for the purposes of applying what have been learned in practice.
Those students have difficulties in solving geometric and text-formulated math tasks,
which require abstract and logical thinking and creativity. There are no ready-made algo-
rithms for those tasks, as well as for the programming tasks. Additional factors, such as
poor general knowledge and skills, lack of abstract thinking, and insufficient basic prac-
tical knowledge, may contribute to the difficulties that students experience in creating
a mathematical and algorithmic model, and thus writing a correct program.

The objectives of the course “Introduction to programming” is to teach algorithmic
structures (sequence, selection, iteration, module; Radošević et al., 2009), along with the
utilization of a formal programming language. This task is complex, yet very important
(Van Diepen, 2005; Govender, 2006). The difficulties that students experience are related
to the duality in the way the programming languages are perceived: first as an instrumen-
tal tool for formal description of algorithms, secondly as a subject of study. The task of
the tutors is to teach students in two directions – algorithmization and programming. Stu-
dents experience difficulties in acquiring both. Introduction to Programming is a difficult
subject in computer science disciplines, and even after more than two years of training
uptake rate is low (Kurland et al., 1989). Part of the students make effort just to pass the
exam, but at the same time they acquire bad skills such as copying codes from colleagues
or learning them off by heart.

This makes many teachers to explore new, non-standard approaches to teach cer-
tain topics. For example: problem-oriented training group (Kinnunen et al., 2005), pro-
grammable mobile robots (Pásztor, et al., 2010), software tools to support learning pro-
gramming skills (Radošević et al., 2009; Kiesmüller and Brinda, 2009), focusing on the
graph (Djordjevic, 2007), objects at the beginning (Sajaniemi et al., 2006), etc.
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Teaching “’Introduction to Programming” at Bulgarian universities presumes that stu-
dents have little or no background in programming. Only a few students in classes have
some experience in creating algorithms from secondary schools. In second level edu-
cation, however, teaching is focused to understanding, memorizing, and applying ready
algorithms or pieces of code. These students, in general, don’t have real and deep un-
derstanding of the algorithm meaning and details. Therefore, in order to create computer
programs, alongside the programming language, students must learn the principles of
programming.

For instance, first year students from the programme “Informatics” at Shumen Uni-
versity have different background from secondary school. Some of them get a taste for
software design, others not. Some have a good math background, others state that they
wish to study computer science and programming, but no math.

2. Development of Thinking

According to Dijkstra (1982), “Excellent mastery of his native tongue is my first selection
criterion for a prospective programmer; good taste in mathematics is the second important
criterion”.

A programming process requires first finding a solution of the problem in conceptual
and abstract terms and then presenting the solution to the machine as a rigorous algorithm
which does not allow whatsoever ambiguities and interpretations in terms of form, syn-
tax, and grammar (Papert, 1980; Szlávi and Zsakó, 2006). Programmers should be able
to express algorithms clearly in both natural and formal languages. Mastery in express-
ing solutions using natural language is important because first, this is the language of
description of the task itself and the language of possible modifications of the problem.
Secondly, because the formalization follows notion of the solution articulated in “natural”
terms and concepts. And finally, because software engineering often uses pseudo-code for
algorithm description, which is a mid-way between the natural and formal languages. In
other words, getting the task, the programmer must create and define the theory needed to
justify the algorithm. While working (s)he is forced to invent their own formal apparatus.
This helps students to develop their natural language skills, because they must learn to
express themselves clearly if they want the computer – unintelligent machine to do what
they want (Hromoković, 2006).

The ability of correct formulation of problems is based on clear logic, systematic
design of programs, and cannot be method of “guesswork” using debugger (Dijkstra,
1995; Wirth, 2002). What kind of thinking is necessary for structural programming?

“As a matter of fact, the challenges of designing high-quality programs and of design-
ing high-quality proofs are very similar that I am no longer able to distinguish between
the two: I see no meaningful deference between programming methodology and math-
ematical methodology in general. The long and the short of it is that the computer’s
ubiquity has made the ability to apply mathematical method more important that ever.”
Such an interesting analogy between programming and mathematics is made by Dijkstra
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(1995). The main emphasis is on accuracy and effectiveness of the program, which re-
quires mathematical skills and preliminary work before the programmer sits in front of
the computer.

A program structure is mostly result of correct formulation of the sequence of actions
and ability to ignore minor details. A good program structure indicates that it’s creator has
performed structured and logical thinking and has ability to differentiate between signifi-
cant and insignificant aspects of the problem in question, at the same time understanding
its stepwise formulation.

Govender (2006) determined three main technical aspects that students must learn:
data, instructions, and syntax. The data relates to two concepts – variables and data
types. The instructions are related to understanding how control structures and subrou-
tines should be constructed. Syntax denotes a set of rules that define what is allowed and
what not in the programming languages. Syntax rules define how to build programs using
constructs, such as loops, branches and subroutines.

3. Features of Machine Arithmetics

Due to differences between the machine arithmetics and the traditional one, students may
experience some difficulties in creating algorithms and writing code. In some cases the
problems become evident at the stage of writing code, but in other cases the problems
pop up during the compilation and runtime.

In a situation where students have been introduced to the algorithmic construction se-
quence, internal representation of real numbers in computer memory, they already know
that floating-point numbers have precision. The students, however, often neglect this fact,
as they believe that computers are error-free, quick, and correct. Teaching allows address-
ing this issue and showing what problems may emerge. This could be demonstrated by
one of the first example programs.

√
Avoid arithmetic operations with numbers, which have a large difference between

their orders of magnitude
After introduction to basic structure sequence, basics of a programming language, ba-
sic data types, arithmetic operations, built-in functions, and assignment statement, the
following example can be considered:

EXAMPLE 1. Calculate value of 10n + 1 − 10n, given n (integer) is input.

Our experience shows that students’ first impression is that the task is quite easy to be
solved and even a bit boring. In fact, they don’t realize the importance of the example and
the challenges that may emerge. In connection with that and in order to avoid potential
problems, we recommend that at this stage the teacher should consider some aspects of
the machine arithmetics.

Tests show that in version A if n <= 19 output is 1, otherwise 0. In version B,
expression 10n − 10n+1 is calculated and output is 1 no matter what n is.
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Version A
int n; float e;
cout�”Enter n =?”; cin � n;
e = exp(n ∗ log(10));
cout�”Result:”� e + 1 − e �”\n”;

Version B
int n; float e;
cout�”Enter n =?”; cin � n;
e = exp(n ∗ log(10));
cout�”Result: ”� e − e+1 � ”\n”;

The example above illustrates that in computer arithmetics, arrangement of operands
does matter, in contrast to certain math rules and laws, which state that the arrangement of
operands does not matter. Another conclusion can be made here – the operation addition
should be applied to numbers with equal or at least similar order of magnitude, otherwise
calculations loose precision.

√
Avoid using mixed up data types

EXAMPLE 2.
int r, a, d, n;

double p;

cin � a � r;

cin � d;

p = 6 ∗ r ∗ a/2 − 3.14 ∗ d ∗ d/4;

cout� p �endl;

Variable p assigns value of the expression 6 ∗ r ∗ a/2, which is an integer. This may
cause at least two problems: the value exceeds boundaries of the data type integer, which
would end up with a wrong output; division is integer, therefore the result is integer too.

Most often, such errors occur when dividing integer operands. Students can easily
understand that the result will be cut if stored in an integer variable, but it isn’t obvious
for them why that result may loose accuracy when stored in a variable of type double or
float. That misunderstanding is caused by the discrepancy between their math background
and the rules that the computer implementation of arithmetic operations imposes.

In order to familiarize students with the iteration and loop statements, we can use the
two examples below. Note that the students should keep in mind that values of real con-
stants, variables, and/or functions are approximate, not exact, due to their fixed precision.
The examples below illustrate that comparison for equality between two real expressions
is generally speaking wrong. In contrast, that comparison between two integers is cor-
rect, as the operands are exact values. Anyway, the question ’what should we do if the
task requires comparison between real values’ still remains unanswered.

√
Avoid comparison for equality of real values

EXAMPLE 3. Write a program that outputs in a table form values of sin(x) in [1,2] with
step of increment 0.1.
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Version A
float x = 1;
do
{cout� x �” ”� sin(x) �endl;
x+ = 0.1;
}

while (x <= 2);

Version B
float x = 1;
cout� x �” ”� sin(x) �endl;
do

{ x+ = 0.1;
cout� x �” ”� sin(x) �endl;

} while (x < 2);

Version A of the example above seems to be more “natural”, but the program does
not calculate the last value of sin(x) in x = 2. Version B illustrates how comparison for
equality can be avoided – it outputs sin(x) every time value of x is incremented.

√
Be careful when divide integers as the result is also an integer

EXAMPLE 4.
int n; double s = 0;

cin� n;

for (int i = 1; i <= n; i + +)

s = s + 1/i;

cout� s �endl;

This example illustrates how a syntactically correct algorithm may cause wrong cal-
culations, which can be detected at runtime only. The result is always 1 regardless of n,
which is due to using integer division.

In order to avoid wrong results when calculations require real operands:

√
Initialize all variables (see underlined code in Example 12)√
Use brackets in order to avoid ambiguities in calculation (see double underlined

code in Example 12).

4. Compound Conditions

Considering control structures, teachers can pay particular attention to the topic correct
construction of conditions (Boolean expressions) and their proper use in control struc-
tures. The simplest forms of conditions are relations. Compound conditions can be con-
structed by combining relations with logical operations. The following examples illustrate
the importance of correctly constructed compound conditions and their usage.

√
Use left-hand comparison

Popular programming languages, such as C, C++, C#, Java, PHP, Perl, etc., use single
symbol (=) to denote their assignment statement and double (= =) for comparison oper-
ation. These languages also allow using the assignment statement within control struc-
tures, such as if, while, etc. That may cause confusion in students, as misuse of single
and double symbols cause unexpected errors, which are impossible to be detected by
the compiler and the only way to be captured is at runtime (Spolsky, 2005). In order to
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avoid these problems, students can be encouraged to use constants and expressions as left
operands of the comparison operator. For short, we call that operation left-hand compar-
ison. That advice, however, does not have counterpart in the math – students have been
taught that it doesn’t matter if a comparison operand is left-hand or right-hand. To some
extend, learners may feel confused of that.

EXAMPLE 5. Use if (’!’==ch|| ’.’==ch || ’?’==ch), instead of
if (ch==’!’||ch==’.’||ch==’?’).
In math position of operands does not matter, but in programming left-hand compari-

son would help in finding errors.

Compound conditions also can be used to help to avoid nesting of two or more pro-
gramming structures.

EXAMPLE 6. Write a program that inputs year and outputs whether it is bissextile.

Note: An year is bissextile if

1. The last two digits are 0 and the first two are multiple of 4.
2. For all other years if they are multiple of 4.

Version A
void main()
{int g;
cin� g;
if (g%400 == 0) cout�”yes \n”;
else if (g%4 == 0)

if (g%100) cout�”yes \n”;
else cout�”no \n”;

else cout�” no \n”;
}

Version B
void main()
{int g;
cin� g;
if (g%400 == 0| |g%4 == 0

&& g%100)
cout�” yes \n”;

else cout�” no \n”;
}

Version A uses nested condition statements, in contrast to Version B, which uses com-
pound conditions.

Composing compound conditions should take into account the fact that conjunction
(logical AND) estimates its operands from left to right by reaching the first false value,
whereas disjunction (logical OR) does the same, but by reaching the first true value. By
rearranging operands so that the simpler and easier to calculate ones appear to be leftmost,
we achieve efficiency of the algorithm. In the case of disjunction, if the operand with
most likely true value is leftmost, that would probably complete the calculations in an
early stage; in the case of conjunction, the leftmost operand should be the one with most
likely false value. Those considerations are very important when compound conditions
are estimated many times, for example being part of loops.

In summary, students should pay particular attention to the following:



Some Pitfalls in Introductory Programming Courses 249

√
Order of estimation of conjunction and disjunction operands

Sometimes, arrangement of operands affects only algorithm efficiency and can by ne-
glected, but in other cases wrong arrangement can lead to errors. The following example
illustrates that.

EXAMPLE 7. Write a program that inputs a sequence of real numbers until entering a
number which natural logarithm is negative. The program should output how many num-
bers have been entered.

void main()
{ float x;
int br = 0;
do
{ cin� x;

br + +;
}

while (x > 0 && log(x) > 0); //(1)
cout� br − 1 �endl;

}

The compound condition of the do-while loop has to be arranged in that way, oth-
erwise the program will output error as it attempts to calculate logarithm of a negative
value. Similarly to what math rules say, an estimation of a function should be preceded
by a check if argument values belong to the function domain.

When teachers familiarize students with the data structure array, they can pay partic-
ular attention to the following pitfall:

√
Check array bounds

Incorrect arrangement of compound conditions can lead to ’exceeding array bound’ error
or if not captured by the compiler can lead to even worse results and wrong calculations.

EXAMPLE 8. Write a program that inputs currency rate of the US dollar against euro for
every day of a month and outputs the first day which counts falling rate.

void main()
{int k, i; float a[31];
. . . . . . . . . . . . . . .
i = 0;
do i + +;
while (i < 31 && (k = a[i − 1] <= a[i]) );
if (k) cout�” no fall in the rate ”� endl;
else cout�” first day with fall in the rate ”� i + 1 �endl;

}

If the two operands of the underlined compound condition above are swapped, given
that a month has 31 days and each day satisfies the condition, this would produce an
exceeding array bound error (languages as C and C++ do not control getting out of the
index bound which makes it possible for programs to output wrong results).

Next observation: if array elements are arguments of functions and their values are
out of the function domain (as shown in Example 7), the program can output error. And
finally, it is evident that the first operand is easier to calculate.
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√
Using Boolean data type

Using the Boolean data type is an interesting and important topic for consideration. The
following example shows implementation of a branched algorithm, which does no use
conditional statements.

EXAMPLE 9. Calculate the following function y(x) =

⎧⎨
⎩

x + 2, x < 0,

x2 + 2, 0 � x < 1,

3x, x � 1.

Version A
void main()
{float x, y;
cout�” Enter x ”; cin� x;
if(x < 0)y = x + 2;
else if(x >= 1) y = 3 ∗ x;

else y = x ∗ x + 2;
cout�” y(”� x �”)=”� y �endl;

}

Version B
void main()
{float x, y;
cout�” Enter x ”; cin� x; y =

(x + 2) ∗ (x < 0) + (x ∗ x + 2) ∗ ((x >=
0)&&(x < 1)) + 3 ∗ x ∗ (x >= 1);
cout�” y(”� x �”)=”� y �endl;
}

Version B illustrates a solution using the Boolean data type and without involvement
of conditional statements.

5. Avoid Multiple Recalculations

“Loops” is a basic topic in programming. Although, the nature of loops is to perform
multiple executions of its body statements and expressions, repetition of exactly the same
calculations in any form is senseless, wasting of computing resources, and should be
avoided, where possible. We can refer to the math and state that this is valid even there –
recalculation is useless. The following examples illustrate the problem with recalculations
and how can be avoided.

EXAMPLE 10. Find the total of a sequence of shots to a target. The target circles have ra-
diuses 1,2,...,10 and shot coordinates (x, y) are available. Terminate when the shot missed
the target.

Version A
do
{cout�”Enter coordinates :”;
i++;cin� x � y;
if (x ∗ x + y ∗ y <= 1) s+ = 10;
else if (x ∗ x + y ∗ y <= 4) s+ = 9;

else if (x ∗ x + y ∗ y <= 9)
s+ = 8;

else if (x ∗ x + y ∗ y <= 16)
s+ = 7;
/* write if statement for others
cases */

else if (x ∗ x + y ∗ y <= 100)
s + +;
}
while (x ∗ x + y ∗ y <= 100);

Version B
do
{cout�”Enter coordinates :”;
i + +; cin� x � y;
double z = x ∗ x + y ∗ y;
if (z <= 1) s+ = 10;
else if (z <= 4) s+ = 9;

else if (z <= 9) s+ = 8;
else if (z <= 16) s+ = 7;

/* write if statement for others
cases */
else if (z <= 100) s + +;
}
while (z <= 100);
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By using an auxiliary variable z in version B, recalculation of x ∗ x + y ∗ y 10 times
is avoided, in contrast to version A. This also shortens the code.

EXAMPLE 11. Check if integer n is prime.

Version A
i = 1;
do {i + +;} while (i < n/2 + 1 && n

% i);
if (i >= n/2 + 1)
cout�”yes”�endl;
else cout�”no”�endl;

Version B
k = n/2 + 1; i = 1;
do {i++;} while (i < k && n % i);
if (i >= k) cout�”yes”�endl;
else cout�”no”�endl;

Version B illustrates how using an auxiliary variable k saves recalculation of n/2 + 1
k times. This does not change the algorithm correctness; it just makes it faster and shorter.

6. Calculation of Infinite Series by Recursive Relations

Providing students with examples of approximate calculation of series is useful and justi-
fied, as many functions used in natural sciences today, can be represented and calculated
with any accuracy by infinite series. The following example illustrates one of them:

EXAMPLE 12. Write a program that input x and ε (0 < ε < 1) and calculates the
function

cos x = 1 − x2

2!
+

x4

4!
− · · · + (−1)n x2n

(2n)!
+ · · · with precision ε.

This example is also a good illustration for the topic “Loops with unspecified number
of iterations”. It offers a discussion on the following issues:

(a) What precision ε means in the context of infinite series with unspecified number of
terms.

(b) Alteration of the term sign.
(c) Our experience shows that understanding of this example is essential for under-

standing the concept of recursion at all.

At first glance, a possible approach to the solution could be calculating each term
sequentially and adding/subtracting it to the sum. No doubts, it would be better if each
step uses what has been calculated so far. That is use the value of each term in order to
calculate the new one. Thus, gradually and naturally, students can be introduced to the
idea of recursion and recursive relationships.

If we denote the common term of the series by

an = (−1)n x2n

(2n)!
, then a0 = 1, an+1 = −an.

x2

2n(2n − 1)
, n = 1, 2, . . .
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One of the challenging issues that arises composing loops is to figure out how to
initialize parameters of the loop. Those values require careful selection, as any mistake
can lead to wrong results in a generally correct program. Another issue that teachers have
to address is how to guarantee loop termination.

void main()
{
float a = 1, x, eps, s = 1; int i = 0;
cout�” Enter x: ”; cin� x;
do
{
cout�” Enter 0 < eps < 1 ”; cin� eps;

}
while (eps <= 0| |eps >= 1);
do
{ i + +; a = −a ∗ x ∗ x/(2 ∗ i ∗ (2 ∗ i − 1));

s+ = a;
}
while (fabs(a)>eps);
cout�”cos(”� x �”)=”� s �endl;

}

7. Scope of Objects

Teaching the topic ’scope of objects’ is sometimes challenging for both teachers and
students. Our experience shows that the concept of scope is confusing for students, par-
ticularly when object scope is defined in do-while blocks, in the headline of for-loops,
and in a function body. Teaching should facilitate students to grasp that the scope of ob-
jects span from the point of declaration/definition to the end of the block in which they
have been declared. The following example illustrates how a variable (x) defined in the
block of a while statement is unavailable in the while condition. At the same time, the
variable (i) defined in the head line of a for-loop can be used in the block of that loop.

EXAMPLE 13.
int cost;
do
{
int x = 2;
cost = cost +x;
x = x − 1;
}
while(x > 0); // compile error here
for(int i = 0; i < 3; i + +)

{ int x = x + i; }

Improper local declarations within a function can cause even greater problems. The
error in the example below is caused by overlapping scopes of the non-local and local
variables. While the previous example outputs compilation error, the following one pro-
duces wrong result.
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EXAMPLE 14.
int sum_digits(int n)
{int sum = 0;
for (int n; n > 0; n/ = 10) //1
sum + = n%10;

return sum;
}
int main()

{cout� sum_digits(654)�endl;}

Line // 1 in Dev C++ and Code Blocked does not cause error for a double declaration.
It gives wrong result.

Name of a function parameter and name of a local variable should not match.

Conclusion

We believe that having a decent math background is a key success factor for creating cor-
rect and efficient algorithms. In many cases programming means building mathematical
models. This paper discusses how math can influence teaching practices, methodologies,
and issues that have to be considered in an introductory programming course. We have
illustrated those discussions with examples that are ready-to-use or partly included in
teaching materials.

By learning components of good programming techniques and style, students build
skills that would allow them to feel more confident solving complex problems from the
field of the natural sciences and real life.

Teaching that builds those skills, however, is not seamless. It depends on many fac-
tors, such as teaching facilities that encourage students to work individually, access to
good textbooks, quality and methodological experience of the teaching staff, and last
but not least – the programming language used for that course along with the software
development environment.

Selection of good examples is a key factor for successful teaching of abstract and
theoretical concepts. Here we provide such a selection that facilitates the topics taught
in the first twenty hours of a typical introductory course to programming. The tips and
comments that accompany the examples help to avoid the first pitfalls in the programming
practice. Most of the examples are language-independent (Examples 1, 2, 3, 6, 7, 8, 9, 10,
11, and 12) and can be used with other programming languages. Some of the tips are quite
rigorous and cannot be interpreted freely. Students can stick to them and quickly learn the
matter. These are in Examples 4, 5, 7, 8, 10, 11, 13, and 14. Other tips, however, require
decision on whether or not and how to implement certain rules. These are in Examples 1,
2, 3, 6, 9, and 12.

The teaching practices and topics discussed here are relevant to initial stages of teach-
ing introduction to programming only. Other pitfalls in programming can be considered
with more advanced topics, such as functions, classes, structures, recursion, etc., but these
are not subject of consideration in this paper.
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Keletas sudėtingesni ↪u ↪ivadinio programavimo kurso tem ↪u

Teodosi TEODOSIEV, Anatoli NACHEV

Straipsnyje aptariami kai kurie sunkumai, su kuriais susiduriama mokant ↪ivadini ↪u programav-
imo kurs ↪u. Ypatingas dėmesys skiriamas matematinio pobūdžio sunkumams: omenyje turimi tam
tikri aspektai, kurie nėra išsamiai paaiškinti vadovėliuose ir dažnai pamirštami kurs ↪u planuose bei
aprašuose. Keletas pavyzdži ↪u: sudėting ↪u s ↪alygos sakini ↪u konstravimas, masyvo rib ↪u viršijimas, be-
galini ↪u eiluči ↪u skaičiavimas naudojantis rekursija ir kt. Autoriai mano, kad šios temos ir atitinkamos
pastabos, skirtos mokymo metodikai, gali ir turėt ↪u būti ↪itraukiamos ↪i ↪ivadinius programavimo kur-
sus.


