
Informatics in Education, 2012, Vol. 11, No. 1, 29–44 29
© 2012 Vilnius University

Teaching Web Application Development:
A Case Study in a Computer Science Course

Marcos Didonet Del FABRO, Eduardo Cunha de ALMEIDA,
Fabiano SLUZARSKI
C3SL labs, Departamento de Informatica, Universidade Federal do Paraná
Rua Cel. Francisco Heráclito dos Santos, 100, 81531-990, Curitiba, PR, Brazil
e-mail: {marcos.ddf,eduardo,fs09}@inf.ufpr.br

Received: March 2012

Abstract. Teaching web development in Computer Science undergraduate courses is a difficult
task. Often, there is a gap between the students’ experiences and the reality in the industry. As
a consequence, the students are not always well-prepared once they get the degree. This gap is
due to several reasons, such as the complexity of the assignments, the working environment, the
frameworks used and the time-frame constraints. In this paper, we report on a case study on how we
taught web application development using extreme tutoring and in an apprenticeship manner. The
assumption was to take two real web applications as basis for practical teaching. We present the
different issues that we faced: the setup of the development framework, the heterogeneity of human
resources and the volatility of the environment. We describe how the process evolved positively. The
students became independent, and implemented two applications. We conclude with the lessons
learned.
Keywords: teaching software development, extreme tutoring, computer science undergraduate,
web frameworks.

1. Introduction

Teaching web application development in undergraduate Computer Science (CS) courses
is a difficult task. Often, there is a gap between the students’ experiences and the reality
in the industry. This is due to three major aspects: (1) the content of the courses, (2) the
infrastructure and (3) the environment at the University.

The content is typically divided into theoretical modules and practical assignments,
all within a tight time-frame, e.g., 60h at the Federal University of Paraná (UFPR). This
is enough time to present the foundations of web development, however, large assign-
ments may not be possible to present. In general, the assignments are chosen based on
relative simple applications (e.g., a Hello Worlds for web development), which turn out
to dissuade the students.

The physical infrastructure limits the number of students to the size of the laboratories.
In addition, some labs may be shared all-day long with other lectures. In top-quality (and
rich) CS courses, this is a minor issue. However, this is not always the case, specially
in developing countries. The logical infrastructure is related to the framework and the



30 M.D.D. Fabro et al.

technologies used. Today there is a large variety of development frameworks, application
servers, databases and process management tools. However, the curriculum can address
only a few of them. In addition, the lecturers do not always have the time to follow the
rapid evolution of all these technologies. This hardens the choice of the most appropriate
for teaching and for the utilization in the industry.

Finally, the environment of the academia is quite relaxed with respect to companies
in general: there is no product to ship, with quality control, interactions with the client, or
a supervisor that may influence (in a good or bad way) in the career and wage. All these
aspects have the negative consequence that the students are not always well-prepared
once they get the degree.

In this paper, we present a case study on teaching web application development at
the Department of Informatics of the UFPR. Our experiment had three core assumptions.
First, we needed to choose two web applications based on real requirements, because we
wanted to create a working and useful product as result. This should act as a motivator for
the students. Second, we opted for offering practical apprenticeships instead of “classical”
lectures. As such, we had less time constraints and more freedom about the content. Third,
the students should participate in all the decisions.

We describe in detail our experiment that has been conducted during 6 months. Ini-
tially, we describe how we taught using a tutoring approach, since we drafted students
from different levels. Our extreme tutoring approach couples programming/agile meth-
ods (Reifer, 2002) and the constraint-driven human resource scheduling method in soft-
ware development (Xiao et al., 2008). Second, we describe how we chose the develop-
ment methodology and how we setup the teaching and development environment. We
present as well the different project roles and how the teaching was organized. We de-
scribe how the process evolved on a positive way. The students acquired a good degree of
independence, to implement as a result two working applications. Finally, we conclude
with the overall lessons learned.

This paper is organized as follows. Section 2 presents the web applications chosen.
Section 3 describe how we conducted the human resources allocation and divided the
project roles. Section 4 shows how we choose the development architecture. Section 5
describe the main features of the resulting systems. Section 6 wrap up our experience by
presenting the lessons learned and Section 7 concludes.

2. The Web Applications

We searched for two real requirements within the UFPR departments. At the end of our
experience we should have two working applications satisfying our clients’ needs. We
(the tutors) had experience on industrial application development, but we needed to adapt
the development process to this different environment. However, we wanted to do only
minimal adaptations.

There are different patterns of web applications, such as E-Commerce (e.g., Ama-
zon), web searchers (e.g., Google), Wikis (e.g., Wikipedia), social media (e.g., Facebook)



Teaching Web Application Development: a Case Study in a Computer Science Course 31

or enterprise-like applications, based on create/read/update/delete (CRUD) functionali-
ties (Martin, 1983). These patterns are relative to the user interaction. In our case, the
goal was to teach MVC-based web development using CRUD applications. We describe
the applications chosen below.

2.1. Application 1 – Chemical Products Stock Management

Application one aims to control the stock of chemical products. It was requested by the
Chemistry Department, because the existing application was using legacy technologies
and there was nobody able to maintain it.

The application contains two sets of components: maintenance and listing. The main-
tenance components implement CRUD operations. The listing components provide dif-
ferent kinds of listings over the existing data. The data model is formed by chemical
products and by categories of users that own the products. Only the owners of a product
can use it, or the user can cede them to other users.

The implementation request was made in mid-October 2010 and it should be im-
plemented in four months. We negotiated with the Chemical department a four months
scholarship for it.

2.2. Application 2 – Management of the CS Graduate Course

Application two aims to manage the graduate course of the Computer Science depart-
ment, because all the management was done using paper forms. For instance, to obtain
the transcript of a graduate student, it was necessary to search for all his data in different
paper-files (the course has about 150 students).

The application is divided in three set of components: (1) CRUD applications, (2)
listings and (3) general consistency checking. The consistency checking are various, for
instance, students that fail the exams loose their scholarship. The data model should con-
tain informations about students, professors, scholarships, courses, classes, grades and
others.

The implementation request was made by the end of November 2010 and the basic
functionalities should be implemented before March 2011, which is when the new school
year starts (the school year in Brazil starts in March and it ends in November).

2.3. Common Issues

Both systems have a set of common requirements:

• CRUD applications and listings;
• user access control;
• database access.

The initial steps were:

• to define the team and project roles;
• to choose and to set up a common development framework;



32 M.D.D. Fabro et al.

• to define the application data model;
• to start implementing.

We present our methodology in the following section.

3. The Methodology

In this section, we describe the teaching format, the project roles and how we adapt agile
programming techniques with tutoring time.

3.1. The Teaching Format

In Brazilian public academia, human resources (HR) are basically composed by under-
graduate students and professors (no engineers were used). The teaching format was
conceived based on the time constraints. The first constraint was the time to ship both
systems, ranging from six to eight months. In addition, the students have a tight schedule
to dedicate to the projects, generally split into lectures, exams, assignments and also the
projects. Professors have an even tighter schedule.

We chose to offer non-obligatory and remunerated apprenticeships, instead of tra-
ditional lectures and assignments. This has three main implications: (1) the number of
participating students is limited; (2) the working time is longer (3 hours/day); (3) the
students are recruited and they do not have grades, thus they need to be motivated.

3.2. Project Roles: The Rookie Challenge

The roles were divided into project leaders, tutors and developers/architects. The lecturers
were the project leaders and tutors. The students were the developers and the architects.
After choosing the students, we allocated them in pairs according to their capabilities.

However, in CS courses, it is difficult to recruit experienced students (from 3rd or
4th years), because they prefer the computer science job market that delivers better
wages (CNN, 2006). In addition, we had to “compete” for the best students with other
academic projects. Research projects tend to attract students of the last year, since they
are close to prepare their final project. Therefore, we were bounded mostly to 1st–2nd
year students.

One may ask whether 1st–2nd year students have the skills to develop a complete
web application upon a tight schedule. Some of these students did not achieve their basic
formation yet, such as: some basic algorithms, non-linear data structures, or even object-
oriented (OO) programming.

Due to the project requirements, we had to boost their formation with the following
initiatives:

• to introduce Object-Oriented Design (e.g., inheritance, encapsulation, polymor-
phism);

• to teach the Model–View–Controller (MVC) software by handouts;



Teaching Web Application Development: a Case Study in a Computer Science Course 33

• to set up regular meetings when improving some feature or deciding complex as-
signments.

Teaching OO programming was the less complicated task. Sometimes students al-
ready reached OO classes and they helped each other along the development. Teaching
MVC was harder since important concepts were still missing. For instance, complex data
modeling is taught in the middle of the course. Teaching initial project management prin-
ciples consisted on motivating the students to be organized and independent. Our ap-
proach was a tutorial-like and on-demand teaching, mostly with the concepts that the
students did not know.

3.3. Extreme Tutoring

The extreme tutorial is an adaptation of extreme programming/agile methods (Reifer,
2002) and the constraint-driven human resource scheduling method in software develop-
ment (Xiao et al., 2008) with an amount of time for tutoring.

In the initial phases of the project, the tasks were simple tutorials, lasting from 1 to
2 weeks. The result should always be a new functionality. For instance, a task could be
the generation of a PDF report from some database result set. The tutoring time followed
agile programming principles: they were short and periodical. The students felt confident
to reproduce the solution step-by-step afterwards. An example of assignment was to study
the MVC API and to reproduce a simple application found on the Internet. The objective
was to show them how to search for a solution. Once they acquaint the procedure, all
the tasks were done following the same rules. However, tutors should not DO the tasks,
only HELP students with the their questions and motivate them to search for solutions
for themselves.

Tasks were appointed regarding some rules: (i) to assign simple tasks. Moreover, the
business rules required the participation of the end users. Students were encouraged to
search for the end users and to talk with them; (ii) to avoid or diminish the work-load
during the exams week. If some feature was urgent to the system, then it was done by
a pair professor/student; (iii) to reallocate pairs of students. The objective was to let all
the students to execute any task and to share their experiences to accelerate the develop-
ment (Henninger, 1996).

Following the sample principle of the tasks assignments, the concepts were taught
on-demand. For instance, if students already knew linear data structures, we might teach
them collections, such as: lists, queues and sets.

The goal was to motivate the student by quickly seeing a result. Yet, simple tasks were
easier to debug by more experienced students or by a tutor. This approach has proven to
be worthwhile: in average, after 3 months of work any member of the team was capable
to execute any task (even more complex ones, such as a business rule). Furthermore,
more complex assignments were always discussed in periodical meetings to make sure
the students understood the underlying concepts.



34 M.D.D. Fabro et al.

4. Choosing the Infrastructure

We used the Model–View–Controller (MVC) architecture (Krasner and Pope, 1988) to
develop the web application. The MVC architecture has three layers, with a good sepa-
ration between the data model, the visual interface and the interaction between both. The
model layer contains the data definitions and the business logic. The view layer contains
the user interface, which may be web-based or not. The controller layer contains the code
responsible for handling the application flow, i.e., the glue between the model and the
view.

The first design choice was to choose an MVC development framework. However,
there are dozens of MVC frameworks available, with different set of features. The most
common features are:

• usage of patterns for storing the files, i.e., the same kind of files are stored in similar
structures and places;

• availability of initial standard components for developing views and models;
• generation of the CRUD code.

Using such frameworks, the CRUD components are developed in very short time.
However, the existence of so many MVC frameworks for almost every platform and lan-
guage revealed to be a problem, because we needed to choose amongst several of them.
In addition, we were starting from scratch, without any constraint or preference on the
platform, so we could choose between any existing MVC. We cite below just a few of
them1:

• Java: Struts, Struts2, Spring, Spring Roo;
• Ruby: Ruby on Rails, Nitro, Ramaze;
• .Net: ASP .Net MVC, MonoRail, Spring Framework.Net;
• PHP: Agavi, Drupal, Joomla;
• Python: Django, Pylons, TurboGears.

To choose the most appropriate framework, we set up 3 meetings with the students
and tutors. The meetings also followed the extreme tutoring principle: to assign/do simple
tasks, which should be entirely completed in a short time. The tasks here were (1) to do a
research on the existing frameworks, (2) to experiment them and (3) to choose the most
appropriate one. They had different backgrounds, with experience in distinct development
architectures. We did initial assumptions that restrict the choices: everything must be open
source, so the .Net branch was not a choice. PHP neither, because of some security issues.
The framework must support an open source database, such as PostgreSQL or MySQL
derivations, which led to Java, Python and Ruby-based frameworks.

We reviewed the remaining systems platforms. We needed to choose between a rich-
enough platform for rapidly developing the applications and that was suitable for teaching
as well. However, it was not feasible to test all of them in detail. Based on the size of the
community, the documentation found and on the apparent maturity, we narrowed the
choice between Spring Roo (Roo, 2011), Ruby on Rails and Django (Django, 2011).

1Another list can be found at http://en.wikipedia.org/wiki/Model-view-controller.



Teaching Web Application Development: a Case Study in a Computer Science Course 35

Table 1

Comparison of web development frameworks

− Spring Roo Ruby on Rails Django

Implementation Java Ruby Python
CRUD generation graphical and command line (++) graphical and command line (++) integrated with code (+)
CRUD appearance very good (++) good (+) user defined (+−)
Database integration multi database (++) multi database (++) multi database (++)
Data model generated (++) generated (+) manual (+−)
Security support multiple support (++) multiple support (++) manual support (+)
Application server easy (++) easy (++) easy (++)
Reporting support yes (++) yes (+−) ? (−)
API richness very rich (++) limited (+−) rich (+)
IDE integration very good (++) very good (++) good (+)
Framework complex (−) complex (+−) complex (−)
Documentation good (+) good (+) fair (−)
Testing generated (++) generated (++) manual (+)
HR: current skills 1/4 (+) 1/4 (+) 1/5 (+−)
HR: maintenance 1/4 (permanent) 1/4 (students) 1/5 (permanent)
HR: jobs several (++) few (+−) some (+)

Spring Roo is based on Spring, which is one of the most known and used MVC in Java.
Ruby on Rails has increased popularity, it is being used in different projects, and it has
enough maturity. Django is Python-based, which has a very rich API and resources. These
three frameworks are also chosen based on the experiences of the involved people: we
have 2 experts in Java, 1 in Python and 3 in Ruby. The familiarity with the languages and
frameworks are important aspects on the choice of the framework, to be able to provide
valuable tutoring. Otherwise, it is difficult to technically help the students. For that reason,
we may say the choices were not only based on technological issues, but also on practical
aspects for teaching.

We defined a set of requirements to compare these three frameworks in more detail.
At this point, we went further and created sample applications in all the three frameworks,
to simulate the development process. We separated the students and professors in three
groups. After that, we set up a competition to create a simple web application and to
present in detail their features. The competition was a motivator for the teams to dig into
the details of each tool. Table 1 shows these requirements and how it is supported by each
platform.

It is important to note that this table is based on our experiments and vision. We do
not say that one framework is better than the other, but only which framework is more
adequate for our requirements: teaching and rapid development.

We were able to do the same tasks with all the frameworks. However, Spring Roo and
Ruby on Rails have a better code generation support. Since we wanted to teach as well
how we can benefit from code generation facilities, we restricted our choice to these two
frameworks. In addition, another reason for avoiding Python is the lack of experts in our
staff.



36 M.D.D. Fabro et al.

Spring Roo and Ruby on Rails have a similar set of capabilities. The CRUD gener-
ations of both systems are very complete. We can use both tools either using command
line, or integrated within Eclipse. Spring Roo produced better-looking layouts. Both have
support to different database systems and application servers. The data model (i.e., the
database tables) generated by Spring Roo are simpler than the one from Rails. This is
because the tables and columns in Roo have exactly the same name as the object model.
Ruby make assumptions about plurals, which are not evident at the beginning. In ad-
dition, the plurals are English-based, so it is necessary to modify the Object-Relational
mapping manually when using non-English concepts. The closer mapping between the
objects and the data model of Spring Roo are more easily understood by students.

Both systems have good support for security. The API of Spring is richer than Ruby,
because we can use any Java-based API. This is also valid for the report generation sys-
tem. As first conclusion, the technical aspects of both frameworks are rather equivalent,
with a small advantage of Spring Roo due to the richness of API and available compo-
nents. In contrast, Ruby is simpler to use for simple projects. We think frameworks would
be good enough considering only the technical aspects.

The human resources aspect is also important, because the tutoring could be compro-
mised if we started from scratch with a new framework and language. In our case, we
had more permanent people with Java skills than with Ruby. This is important for the
application maintenance at the long term, since students turnover is quite high. The num-
ber of available jobs is also important, since we wanted the students to learn something
that they can use in the market. This point advantages Java. For instance, a search on
http://monster.com returned 1000+ job offers for Java, 488 for Ruby and 789 for
Python.

Finally, we chose Spring Roo as our development framework. While we were inclined
to choose Ruby on Rails, because it is relatively new, with a good set of features and
simple, we chose for “safety” and we took a Java-based framework. The complexity of
Spring Roo turned into an advantage to show students that real world projects are difficult
and involve several technologies.

5. The Resulting Systems

We started the implementation with the chemistry department stock control. This was the
simplest application, thus we used it for the initial tutoring lessons. The application had
only 8 model classes, thus the model and the first user interface was generated rapidly.
The additional functionalities concentrated the implementation efforts2.

The MVC framework has several different components. We noticed that the students
did not understand everything they were doing in the beginning, because the numerous
number of components that interact and that are generated. There were several concepts
and technologies that were involved and that required some experience to understand:

2The chemistry product control system source code is freely available for download in our public reposi-
tory: http://git.c3sl.ufpr.br/gitweb?p=c3sl/cpquimica.git;a=summary.



Teaching Web Application Development: a Case Study in a Computer Science Course 37

Fig. 1. Chemistry product control system.

JSP, object oriented programming, Java, HTML, Javascript, internationalization, ORM
mapping, SQL, relational databases, the MVC framework, configuration files, application
servers, version control, etc. This was overwhelming for students that did not have any
real development experience. This means that the initial tutoring time was crucial.

The first application was finished in 4 months (1 and a half months more than ex-
pected). The students needed approximately two months to be relatively comfortable
with the framework. This means that initially the applications were developed slowly.
The framework was even contra-productive, because new functionalities could involve
new concepts/technologies that needed to be taught. After this stage, there was a remark-
able increase in the productivity. A simple new view could be developed in less than one
day.

A screen-shot of one application view is illustrated in Figure 1. It has one left menu
for each model component. The selected view creates new users (first name, last name,
email, phone number, login, password, etc.).

Once the first application was finished, we started the implementation of the second
application: management of the graduate course. We defined a first version of the model
with 26 classes3. This system is still under development. We used a as starting point a
data model available in the database book of Navathe(Elmasri andd Navathe, 2000). We
adapted this model to our needs.

We followed the same development and extreme tutoring process. Figure 2 shows the
listing of courses (this information is public).

3The management of the graduate course is also available for download in our repository:
http://git.c3sl.ufpr.br/gitweb?p=c3sl/sapos.git;a=summary.



38 M.D.D. Fabro et al.

Fig. 2. Courses listing.

The applications had database access, user access control and test interfaces. We
found little bugs related to the standard generation, thus it was possible to concentrate
on the new functionalities. The choice of a MVC code generation framework was really
helpful to develop both applications.

There was a flagrant increase on the productivity from the first system to the second
one, because the students already knew the framework and the core concepts when they
started the development. We implemented more functionalities in a shorter time. We also
diminished the number of periodical meetings and close tutoring, since the tasks were
more easily understood. This means the students acquired a good degree of independence.
The quality of the developed applications was also very satisfying.

6. Lessons Learned

The teaching and development of both systems using the extreme tutoring approach was
a valuable experience that enabled us to learn different lessons about web application
teaching. We present these lessons below.

6.1. Methodology

The extreme tutoring style coupled with agile programming provides a good balance
between programming and teaching. The students should work in pairs, at least initially.



Teaching Web Application Development: a Case Study in a Computer Science Course 39

This is because they are at different levels, so they can exchange experiences and learn
from each other. This also implies that the learning curve is slightly different. We cannot
assume that the same task is developed similarly by two different developers. The tasks
must be very clear and concise, with small and independent functionalities developed
in short time. The development of large tasks does not work, specially when there are
several concepts involved.

It is very important to have periodical code inspection by one experienced devel-
oper. This is because students first want to develop something that works, without paying
enough attention to coding patterns. For instance, in the initial coding inspections we
found components with the method signatures shown in the listing below. The first cre-
ateForm is the standard method to create a form; the second one creates a form and ini-
tializes some parameters (this was not acceptable). After some inspections, the students
get used to reasonably good development patterns. We need to get increasingly exigent
with students. We could see that the first application code could be improved a lot, but it
was a good training.

Listing 1. Example of bad method naming

public String createForm(
@PathVariable("id") Long id,
Model model,
HttpServletRequest request) {

public String createForm2(
@PathVariable("id") Long id,
Model model,
HttpServletRequest request) {

6.2. Extreme Tutoring

It is necessary to set up frequent meetings and follow up tasks. The tutoring tasks need to
be a complete functionality (even if simple) and preferably with a new concept or technol-
ogy involved. The concepts were taught on-demand. The tutoring is specially important
in the initial phases, when the students do not have autonomy. However, it requires a lot
of time from the tutors.

The positive part is that the tutoring time decreases with time. We started working
about 3 hours/week, which is a lot considering the tight schedules of the tutors. This time
decreased to almost zero at the end of the project, since it becomes a typical development
project. Figure 3 shows the number of tasks implemented by a professor and a student
per week (Effort – Y axis) and its evolution over the weeks (Week – X axis). This means
that initially, one professor and one student developed 3 tasks per week. The number
of tasks implemented by the students increases with time. The turning point is about
after 12 weeks: the students get autonomy and “learned how to learn”: they continue
implementing with little tutoring time. After 6 months the students perform an average
of 5 tasks per week.



40 M.D.D. Fabro et al.

Fig. 3. Professor/students tasks x week.

We give an overview of the developed tasks below. A particular task could be im-
plemented either by a student/couple of students, by a professor. There is no distinction
among “who does what”.

• implementation of a simple CRUD application (e.g., a “HelloWorld”);
• inclusion of database access;
• inclusion of security capabilities;
• generation of the CRUD interfaces;
• implementation of one “finder”, i.e., a method that returns a list of elements ac-

cording to some criteria;
• implementation of a new listing, i.e., a view based on a previously implemented

finder;
• implementation of a PDF report.

The weekly meetings must be kept to synchronize and to help with any pending issues.
This means the initial part of the apprenticeship should be concentrated to tutoring and
learning. The second part is more related to practicing and development. The process
evolved from extreme tutoring to extreme programming.

6.3. Teaching Format

The use of remunerated apprenticeships instead of lecture-based courses enables to teach
in much more details the core aspects of web application development. However, it has
two main drawbacks. First, the number of students is limited to the number of schol-
arships available. Second, it is hard to find students for non-obligatory apprenticeships.
This is because the “competition” with CS companies, which offer better wages. We also
compete with research projects that generally attract last-year students. It is necessary
to be prepared for high turnover of people. There is no guarantee that one student stays



Teaching Web Application Development: a Case Study in a Computer Science Course 41

along the entire development. We started the project with 5 students and we finished the
initial experiment with 3 students, who were different from the initial group. For this
reason, it is important that the students master the full process, from the design until the
testing phase. It is difficult to keep a consistent development pace, since students have
exams and handouts. Thi s turnover is positive in the sense that “senior” students help to
tutor the newly arrived.

The choice of real web applications motivates the students and it helps to finish on
schedule. However, the application should not be overly complex, in the sense it could
not be delivered in 4 to 6 months, because the result would not be visible at the end of the
apprenticeship.

6.4. Framework

The choice of the framework is a difficult task, because there are dozens of frameworks
available. One MVC frame-work is not better than the other, thus the choice is based on a
compromise of technical capabilities and also practical issues. The expertise of the tutor
is very important. We have chosen a quite complex framework. While initially it is more
difficult, it prepares the students to go more easily from a complex framework to a simple
one. The goal is to demonstrate that the technology is just a facilitator and that the related
concepts are the most important to know (OO, MVC, agile programming, ORM, etc.).
The complexity of the framework gives a vision that application development is complex,
with dozens of API’s, databases, providers, functionalities. This difficulty reproduces a
non-familiar environment that is often found in companies when they will start working.

Setting up a competition to choose the framework is a positive activity because the
students want to win. Thus they are motivated to create sample applications and to explore
the frameworks. Some go farther than expected by showing hard coding, so they can
better “sell” their framework.

The evaluation and choice of frameworks is not only driven by the technical details.
The existing knowledge of the permanent team about the language and related frame-
works plays an important role. Even if this is a key issue for teaching the concepts,
choosing the framework is important when the systems need to be maintained on the
long term. This also gives more responsibility on the choice of the technology.

We spent a reasonable amount of time to learn the frameworks and to feel relatively
comfortable with them. This is mainly due to the lack of experience of students with
complex application development. In addition, many of the concepts were not yet learned
in the course. To address this issue, the initiatives we took to boost their formation were
worthwhile. However, we should avoid ad-hoc teaching, i.e., teaching particular concepts
without giving a global view.

6.5. Follow-Up

The students follow-up is important to evaluate if the method was worthwhile from
them. Unfortunately, it is difficult to gather information from students after the end of



42 M.D.D. Fabro et al.

the project. We needed to informally find out what they were doing. From the 7 stu-
dents that participated, 1 student is now doing an internship in application development
in a company; 2 students are doing apprenticeships in application development in other
projects; 2 students continue in the CS course without no particular internship or task; we
lost contact with 1 student; finally, 1 student is still working at the project, improving the
application of the CS graduate course. This means 4 out of 7 continue in the application
development domain. However, we cannot conclude if the experience influenced on their
choices or not.

To summarize, teaching web application development using apprenticeships was a
worthwhile experience. On one hand, we had to spend considerable time in the beginning
with tutoring. On the other hand, we clearly saw the improvement of students, which
gradually learned (and are still learning) how to develop simple to complex applications.
We used up-to-date development practices and technologies, with hard deadlines. This
enables to better prepare students to application development.

7. Conclusions

In this paper, we reported on a case study of teaching web application development on
a CS undergraduate course. We described the main issues we had and how the process
evolved to ship two working applications. The main success factor was to teach in an
apprenticeship manner, coupled with extreme tutoring at the initial phase of the project,
instead of typical theoretical/practical lectures. During this experience, we faced differ-
ent issues. First, the choice of the development framework is not straightforward, because
there is a very large set of available implementations. Second, the turnover of students is
high compared with typical lectures, so we needed to handle project changes frequently.
Third, our extreme tutoring approach that couples programming/agile methods (Reifer,
2002) and the constraint-driven human resource scheduling method in software develop-
ment (Xiao et al., 2008) has proven to be effective.

We initially spent a large amount of tutoring time, but this time decreased consider-
ably along the months towards a weekly follow-up meeting. The result could be seen in
the good level of autonomy acquired by the students. Fourth, we could not simulate an
industrial environment, due to the differences in the physical/logical environment and due
to the educational character of the project. However, we could see the positive evolution
of the students in terms of maturity, which probably would not be acquired with typical
lectures. The implementation of real applications was a major factor of motivation: they
are both running today with their code available for download in a public repository.

Acknowledgments. We would like to thank the students that participated in the im-
plementation, the team from the C3SL (http://www.c3sl.ufpr.br/) labs that
helped to choose the framework and the CS graduate course and the Chemistry course
for providing the case studies.



Teaching Web Application Development: a Case Study in a Computer Science Course 43

References

CNN (2006). What some fastest-growing jobs pay. CNN Report.
http://edition.cnn.com/2006/US/Careers/01/26/cb.top.jobs.pay/index.html.

Django (2011). Django project.
http://www.djangoproject.com/. Django Community.

Elmasri, R., Navathe, S.B. (2000). Fundamentals of Database Systems, 3rd edn. Addison-Wesley-Longman.
Henninger, S. (1996). Accelerating the successful reuse of problem solving knowledge through the domain

lifecycle. In: Fourth International Conference on Software Reuse, 124–133.
Krasner, G., Pope, S. (1988). A cookbook for using the model-view controller user interface paradigm in

smalltalk-80. J. Object Oriented Program., 1, 26–49.
Martin, J. (1983). Managing the Data Base Environment, 1st edn. Prentice Hall PTR, Upper Saddle River, NJ,

USA.
Reifer, D.J. (2002). How to get the most out of extreme programming/agile methods. In: XP/Agile Universe,

185–196.
Roo (2011). Spring Roo. Springsource community.

http://www.springsource.org/roo.
Xiao, J., Wang, Q., Li, M., Yang, Y., Zhang, F., Xie, L. (2008). A constraint-driven human resource scheduling

method in software development and maintenance process. ICSM, 17–26.

M.D.D. Fabro is assistant professor at Federal University of Paraná. He worked as re-
searcher at IBM Software Group (France), on the integration of business rules and model
driven engineering. He did a post-doc at ILOG. He received his PhD in computer science
from the University of Nantes in 2007. His current research is about model driven engi-
neering applied to business rules management systems, software development and data
integration. He has been responsible for the Eclipse/GMT component AMW (ATLAS
Model Weaver), and also a contributor to AM3 and ATL components. He worked for 7
years as a software developer in Brazil.

E.C. de Almeida received his computer science PhD, with high honors (félicitations du
jury), from the University of Nantes (2009), France, supervised by Patrick Valduriez and
Gerson Sunyé (LINA ATLAS-GDDTeam). He received his computer science MSc from
the Federal University of Paraná (2004), Brazil, and his computer science BS from the UP
(1999), Brazil. From 1998 to 2005 he worked as an engineer in database technology at
HSBC Bank, GVT Telecom, and UFPR Foundation. He is currently an assistant professor
at the Federal University of Paraná where he have also been deputy head of the graduate
program in computer science since 2010.

F. Sluzarski is an undergraduate student of computer science at the Federal University of
Paraná (UFPR). He is specialist on developing web applications and he is currently the
responsible for maintaining the web application of the CS graduate course at UFPR.



44 M.D.D. Fabro et al.

Internetini ↪u svetaini ↪u kūrimo mokymas: atvejo analizė informatikos
kurse

Marcos Didonet Del FABRO, Eduardo Cunha de ALMEIDA, Fabiano SLUZARSKI

Internetini ↪u svetaini ↪u kūrimo mokymas informatikos paskutinio kurso studentams yra sudė-
tingas uždavinys. Dažnai egzistuoja atotrūkis tarp student ↪u patirties ir tikrovės pramonėje. Dėl
to, studentai yra ne visada gerai pasireng ↪e, kai jie ↪igyja bakalauro laipsn↪i. Šis skirtumas yra
dėl keli ↪u priežasči ↪u, pavyzdžiui, dėl užduoči ↪u sudėtingumo, darbo aplinkos, naudojam ↪u sistem ↪u
ir laikotarpi ↪u apribojim ↪u. Straipsnyje autoriai aprašo atvejo analiz ↪e, kaip mokė internetini ↪u sve-
taini ↪u kūrimo, naudodami ypač didel↪i kuravim ↪a ir gamybinės praktikos metod ↪a. Buvo paimtos
dvi realios interneto programos kaip pagrindas praktiniam mokymui. Autoriai pateikia skirtingas
svarstomas problemas, su kuriomis jie susidūrė: tobulinimo struktūros s ↪aranka, žmogaus ištekli ↪u

↪ivairiarūšiškumas ir aplinkos kintamumas. Aprašomas visas procesas kaip jis vystėsi teigiama
linkme. Studentai tapo nepriklausomi ir ↪igyvendino dvi programas. Autoriai pasidalija sukaupta
patirtimi.


	INFE201

