
Informatics in Education, 2011, Vol. 10, No. 2, 149–162 149
© 2011 Vilnius University

Distributed Social Bookmarking Web Service
Architecture. SOAP vs. iCamp FeedBack

Andrej AFONIN
Kaunas University of Technology, Research Laboratory of e-Learning Technologies
Student ↪u 67-513, LT-51392 Kaunas, Lithuania
e-mail: andrej.afonin@ktu.lt

Received: December 2010

Abstract. Social bookmarking services became very popular recently. Easy of use, possibility to
share and discover in addition to accessibility though the Internet, turns social bookmarking sys-
tems into powerful repository of shared knowledge. Obviously this attracts attention of educational
institutions and recently such systems started to appear under their domains. However, usually these
systems stay separate and limit their users by their bounds. It means that separate systems’ students
could reach each other and use knowledge base, aggregated in other systems. On the other side,
institutions usually want to own this assembled data and do not give away collected knowledge
base to third side. This issue does not allow building social bookmarking systems that can be used
by multi-institutional users. An idea is to develop distributed system where every institution will
have their own database, but, on the other hand, will allow exploring and using data from other net-
work sources. This article overviews possible distributed system architecture models and suggests
a solution that will eliminate such service issues. Moreover, two different approaches towards dis-
tributed services communication are evaluated in this article: SOAP vs. iCamp FeedBack. SOAP
is a lightweight XML based protocol for exchanging structured information between distributed
applications. FeedBack is another model that uses plain RSS feed to transmit data. Both models are
tested and evaluated in this article.
Keywords: distributed system, software architecture, web 2.0, social bookmarking system, SOAP,
iCamp FeedBack.

1. Introduction

Social bookmarking systems kicked of the web 2.0 craze in 2003. Joshua Schachter found
the website called del.ico.us in late 2003. He proposed a different way of storing book-
marks with what was used before. The innovative idea was to move bookmarks from
browser’s preferences to online server, where they would become available from any
computer that has internet access 24 hours a day. Additionally, a new social way of in-
formation organization and tagging system benefits provide broader possibilities to ex-
plore and access them. Since that time, hundreds of social bookmarking services were
launched, with the most popular (in no particular order): Google Bookmarks, Digg, Red-
dit, Shashdot, Furl, Spurl, Newswine, Yahoo MyWeb, StumbleUpon, Technorati, Linka-
GoGo, Twine, Diigo and many more.



150 A. Afonin

Stunning popularity of bookmarking sites was quickly noticed by educators, they
found it attractive and started using it in learning process (D’Souza, 2006). Online com-
munity, tagging system and online sharing provided wide possibilities for research, share
and students collaboration (D’Souza, 2006).

In Icamp project (www.icamp.eu) social bookmarking services were admitted into
student’s portfolio as a part of networking tools group. Social bookmarking tools were
used to help different countries students, working on the same topic, to aggregate and
share useful internet resources. Interestingly, that first Icamp trial showed that students
from different countries prefer their own local services instead of global. Additionally,
project mentors had raised data ownership problem: why university has to give away
students’ generated data to a third part services? Finally, exactly users’ generated data
and their activeness are most important aspects defining web 2.0 startup price.

The problem solution was to develop distributed social bookmarking system that will
satisfy universities in their wish to keep data and users on one side, and also, provide
distributed solution benefits, such as bigger amount of data and wider networking possi-
bilities to students. That was the first challenge in system development.

Another challenge was a suitable distributed architecture meeting bookmarking ser-
vice performing needs. Working on possible distributed patterns evoked four different ar-
chitectural designs of distributed social bookmarking systems: federation search (through
middleware), replication (through middleware) or managed synchronization, peer-to-peer
synchronization, pull/push and aggregate. All these models are presented in this paper
with a special attention to selected model.

And the last challenge was a cross-site scripting problem. Due to security reasons
it is not allowed to communicate with remote database directly. This problem is well
known and is usually solved implementing communication using SOAP protocol. But
the performance of SOAP is rather low because it needs extra process parsing and build-
ing message to process an XML document (Takeuchi et al., 2005; Davis and Parashar,
2002). Especially, that parsing SOAP message causes high CPU load (Takeuchi et al.,
2005). Also, when using multiple system calls to send one message, it is a large source of
inefficiency in SOAP (Davis and Parashar, 2002). Typical high performance systems use
RMI or CORBA technologies instead (Takeuchi et al., 2005). On the other hand, XML
use in SOAP protocol helps to archive high interoperability between distributed systems
(Chiu et al., 2002). This is more important, if considered that cross domain communica-
tion in this particular case is going to perform between two social bookmarking systems,
that have been build in RSS feed delivery mechanisms. Therefore, it makes sense to
use iCamp FeedBack mechanism that is dealing with plain RSS feeds and light-weight
RPC-calls (Wild et al., 2007). Initially it was developed to run communication between
separate blogs to push posting updates to all subscribers. iCamp FeedBack is based on
RSS feed use, so it might work faster, that heavyweight SOAP protocol.

In this article, these two approaches will be compared trying to decide which one is
more suitable for developing distributes social bookmarking system.



Distributed Social Bookmarking Web Service Architecture 151

2. Building Distributed Architecture Design

Common system architecture vision in combination with reviewing state of the art
conduced to develop several designs of developing distributed solution. There are two
main approaches to designing back-end (i.e., database layer) of distributed database sys-
tem. The database could be replicated, partitioned or combination of both. A replicated
database is one, where full or partial copy of database exists on different platforms. A par-
titioned database is one, when part of database is stored on one platform and part on
another(s) (Beverage, 2002).

A research on distributed system architectures brought four main models widely
used in distributed systems development. George Couloures (2003) defines client-server
model, services provided by multiple servers, proxy servers and cashes and peer processes
model as main models (Couloris et al., 2003).

A review on most popular distributed systems architecture and back-end design ap-
proach allows to define four most suitable models to build distributed social bookmarking
system. Defined models allow analyzing advantages and disadvantages of each schema
and select which model meets requirements best. Prototype analysis could give a brief
view, on which schema will require less changes in existing software that is going to
be reused. Every solution was named upon key features of each model: joint central
middleware service, pull/push & aggregate, synchronize and federate. Advantages and
disadvantages will be discussed subsequently.

But before starting working on patterns, definition should be done on what design
requirements are raised for distributed system. Coulouris et al. (2003) defines a list of
requirements, which have to be evaluated during design process. These are performance
issues, quality of service, use of cashing and replication, dependability issues, fault toler-
ance and security.

2.1. Pattern 1: Federated Search Through Middleware (Joint Central Middleware
Service)

A design of the first pattern is based on partitioned database distribution model. In this
case, we have a federated system of local systems that work independent (services pro-
vided by multiple servers architecture) and are accessed by others using middleware layer
(proxy servers architecture). The basic pattern’s idea is, that every local social bookmark-
ing system is an independently working system without true “knowledge” of the existence
of other systems.

Figure 1 illustrates architecture of this model. Data managing process for local user is
the same as in undistributed system. Local system user works with a local version of the
system and database, performing actions with data on the same local machine. The dif-
ference comes, when service user wants to make a “distributed” search. In this case, local
server is calling another server, which is called mediator, forming query with a search
keywords. Mediator is a web service (proxy server) that works as a middleware layer
between query source and search target and “knows”, where other social bookmarking



152 A. Afonin

Fig. 1. Joint central middleware service model.

services are located. Middleware is a layer that is responsible for providing transaction
management, messaging, distributed data, web serving, and other services (Beverage,
2002). An important aspect of middleware is the provision of location transparency and
independence from the details of communication protocol, operating system and com-
puter hardware (Couloris et al., 2003).

Mediator is querying all known federated social bookmarking services with keywords,
forming response list with wanted data and gives it back as RSS feed to search initiator –
local bookmarking system’s search portlet. The last one performs grouping, sorting or
any other actions with received data and shows it to the end-user.

The main advantage of this model is that every stored data piece is unique and is not
duplicated anywhere else. Also it does not require database changes of queered databases.
The whole shared data discovery work lies on a middleware and query/retrieve algo-
rithms. Likewise, the model has a small dependency on nodes availability, because one
node down will not affect the whole system work, but will decrease a number of data re-
trieved from distributed nodes. But on the other hand, this model causes more problems
than gives benefits. First of all, such model requires a person, who will be administrat-
ing mediator, which will be adding new and removing old service’s addresses. Second,



Distributed Social Bookmarking Web Service Architecture 153

problems with server response time and results rendering on a user machine comes along,
that is when system does not know, if there are some more results coming from “slow”
servers. These problems can be solved by making additional data flow management on
slow node respond, but it will require additional user interface change and that is better
to voide. Besides, it is important to evaluate special social bookmarking features’ work,
such as “tag cloud”. A tag cloud is a visual depiction of user-generated tags, used to
describe the use and importance of a certain tag. It means that in addition to stored book-
marks information, every node has to be asked to return the list of all used tags. If some
particular server is not responding, it will affect tag cloud visualization and tag ‘impor-
tance’ status. Finally, it will work slower than other models, because of different distance
to physical server location that could affect system performance and decrease shared data
discovery time.

2.2. Pattern 2: Replicate Through Middleware or Managed Synchronization (Replicate)

This system design derives from federated model pattern described previously. Basically,
a replicated version of distributed system is a mirrored version of federated model de-
scribed as Pattern 1. Figure 2 illustrates replication model design principles.

Fig. 2. Replicate through middleware model.



154 A. Afonin

The same concept of middleware layer is taken, its role changed from “data harvester”
to “data replicator”. Every user of the local system passes data to middleware layer that
is responsible for delivering data to replicated version of the database, after performing
action on data calls. Middleware layer has a list of replicated databases. After every user’s
action, whether it is create, edit or delete, middleware is forming a package with new
data and sending it to every copy of the database, updating its information. In the end,
there are identical copies of databases in every system node. There is no more need for
middleware, during the search action. Database replication allows searching only local
node of the system that owns the same information as every other node. In this case, data
discovery action is performed much faster, then in federated model. Besides, tag cloud
construction is no more dependent on all nodes response.

However, this model faces the same problem of nodes response during create/edit pro-
cess as in Federate pattern. If one of the nodes is not responding during add/edit action,
it will not get bookmarks update information from middleware. This problem could be
solved developing scheduled processes in middleware layer that is tracking down nodes
state and sending those changed packages, when they start to respond. Nevertheless, this
solution reduces the risk of non delivered data, but the problem still remains: if nodes are
down for a longer period of time or additional changes are made to the particular data that
is held re-sending. This may require additional synchronization algorithms in middleware
layer, what would add additional complexity to this model.

2.3. Pattern 3: Peer-To-Peer (Point-To-Point) Synchronization (Synchronize)

Peer-to-peer synchronization model is based on peer processes architectural model and
uses replicated database model as a back-end. This model does not require middleware
layer to perform synchronization actions. Every node of this system could receive re-
quests for services from other system nodes and respond to them. As well, every system
node could request every other node on the net to ask for particular data. The only condi-
tion is that every node needs to have a mapping scheme of other nodes, where information
has to be sent.

Figure 3 illustrates peer-to-peer synchronization model. The main advantage of this
model is that it requires only small changes of existing social bookmarking software.
Basically, create/edit functions as well as search are being performed the same as in
single solution model. It means that this solution brings all advantages of non-distributed
version, such as high data collection speed. The only change that needs to be done is
change during information create or edit process. Every time when system user commits
changes to local database, a package has to be formed and sent to every other node of the
system. Basically, there is a replicated version of a database in every node. This kind of
solution allows having a distributed solution of independent databases. It means that, if
one of the nodes is not responding it is not affecting other nodes performances.

However, in this case replicated pattern disadvantage appears: if some of nodes are
down during update time, it has to be tracked and update action has to be performed later.
Besides the problem with unsent and edited data and change tracking remains in this



Distributed Social Bookmarking Web Service Architecture 155

Fig. 3. Peer-to-peer synchronization model.

model too. The main model disadvantage could be named high data traffic, when a node
has to update information in every other node. And this traffic is rising exponentially,
adding every new node to the system.

2.4. Pattern 4: Push/Pull and Aggregate

This pattern is based on a client-server model, id est a particular case of client-server
model, when every server node is using one defined server node as a data storage. This
model is a case of both federated and replicated database models, so it lets to employ
both models’ advantages.

Figure 4 illustrates push/pull and aggregate model. This model has a set of indepen-
dent databases that are used for store information. Every time a user creates/edits infor-
mation, changes are committed in a local node of the system. After that, every change
is committed to central database that is later used to get all information aggregating it
from other nodes. Committed information could be either pushed to central database or
pulled by the request of central database after getting ‘change of status’ message. This al-
lows decreasing data replication in every separate node and avoids synchronization issue
between distributed databases. In turn, central database provides collective information
retrieval from every node, when local system user performs search action. User queries
not a local database there, but central one. This model’s quality of service depends on
central database reliability, so a special attention has to be paid to insure its permanent



156 A. Afonin

Fig. 4. Push/pull and aggregate model.

work. Local nodes do not affect the whole system work, what decreases whole system’s
dependability on particular nodes.

In a case when, central service is down for some reason, distinct nodes could change
central database search to local one, what will increase the whole system’s fault toler-
ance. Besides, such system does not need a middleware service, that will allow avoiding
problems related to it.

2.5. Evaluation and Solution Selection

Designed patterns comparison and models overview show that every solution has its
weaknesses and strengths. It is even more important to have in mind that distributed
system is designed for social bookmarking service, what puts some limitations and raises
problems that could be omitted in other vase. These results are shown in the Table 1.
There are taken design requirements raised by George Coulouris (Couloris et al., 2003),
as a measuring system. The discussion about the security issue is excluded, because it
mostly depends on coding implementation. By defining grades, total evaluation is calcu-
lated: +/ + − if there are more advantages and minor or none disadvantages, +/ − − if
the model has equally advantages and disadvantages, and −/ − − if the model, obviously,
has more disadvantages than advantages.



Distributed Social Bookmarking Web Service Architecture 157

Table 1

Model comparison according to George Coulouris requirements

Federate Replicate Synchronize Pull/Push &

aggregate

Performance issues +/− +/− +/− +/+

Quality of service +/− +/+ +/+ +/+

Use of cashing and replication +/+ +/− +/− +/−
Dependency issues −/− +/− −/− +/−
Fault tolerance −/− −/− +/− +/−

Total + : 4/− : 6 + : 5/− : 5 + : 5/− : 5 + : 7/− : 3

Performed research allows conduction that designed “Pull/Push& Aggregate” (Fig. 4)
design is the most suitable model for applying it to develop distributed social bookmark-
ing system.

It combines pluses of both federated and replicated database models, has high perfor-
mance issues, provides good quality of service, avoids a high level of replication, is not
dependable on every system node and is tolerant on faults. However, it is important to
mention that a special attention has to be paid to central server development and its sta-
bility. Besides, it is necessary to implement fault tolerant algorithms that will help reduce
damage, when central node is not responding.

3. System Implementation: SOAP vs. iCamp FeedBack

3.1. SOAP Approach

SOAP (Simple Object Access Protocol) is a lightweight XML based protocol for ex-
changing structured information between distributed applications over native web proto-
cols, such as HTTP (SOAP Version Protocol). A SOAP protocol consists of three parts:
an envelope which describes the contents of message; a set of rules for serializing data
exchange between applications; a procedure to represent remote procedure calls (Tsenov,
2006).

That is how such architecture defines Tsenov (2006), distinguishing next steps. First
web application makes a procedure call on the WSDL file and SOAL Service client.
Then SOAP client takes data, builds XML container for them and sends it over HTTP
as SOAP request. After getting SOAP message from the client, server parses that XML
container and passes it to appropriate method, executes it and returns a result. This result
is packaged to XML container and returned to the client over the POST request, which in
turn parses returned result and decides what to do next.



158 A. Afonin

Fig. 5. Pull/push and aggregate model using SOAP web servers.

3.2. FeedBack Approach

There are three main steps when managing feeds with FeedBack (Wild et al., 2007).
First, central server has to be informed about opportunity to pull data from node server.
Therefore, central server fetches node feed, parses it for xml-rpc endpoint, and calls feed-
back.offer() remote procedure.

Next, central server has to acknowledge whether it wants to get updates from node
server, i.e., confirm the subscription. To ensure that next time it will be exactly the same
client, central server generates security token and passes it back to node server, executing
feedback.request (token) procedure. Finally, node server has to ping central server every
time when updates are ready to be taken and node is ready to perform synchronization –
using the feedback.notify(token) procedure. After getting ping, central server retrieves
RSS feed with latest updates from the node.

Detailed specification of FeedBack communication process is presented in Fig. 7.



Distributed Social Bookmarking Web Service Architecture 159

Fig. 6. Pull/push and aggregate model using FeedBack approach.

3.3. Performance Evaluation

To find out which implementation is more preferable we tested both implementations
using real bookmarking data. To test SOAP implementation a ‘SOAP for PHP’ ex-
tension was selected. In turn FeedBack module is available on sourceforge.net por-
tal (http://sourceforge.net/projects/icamp/files). The results are
shown in the Table 2.

Table 2

SOAP and FeedBack evaluation

Number SOAP, FeedBack,

of records latency [ms] latency [ms]

1 1.5 1.2

10 12 10

100 90 60

1000 800 500

10000 6000 2000



160 A. Afonin

Fig. 7. The communication process in ‘FeedBack’ (Wildet al., 2007).

As it was expected, iCamp FeedBack module showed better results transmitting var-
ious amount of data. SOAP web service delays part of working time wrapping data to
SOAP envelope and performing additional tasks, defined by specification; in turn Feed-
Back works with pure RSS feed and spends time only for sending notification to central
server. However, it is important to stress, that SOAP protocol ensures higher data deliv-
ery level because of its call back mechanism, which could re-transmit lost data in case of
non-delivery.

4. Conclusions

Four different architectural models for building distributed social bookmarking sys-
tems were presented in this article, and they are: federated search through middleware
model, replicated through middleware model, peer-to-peer synchronization model and
pull/push and aggregate model. Considering basic requirements for distributed system



Distributed Social Bookmarking Web Service Architecture 161

raised by George Coulouris and specific requirements, raised for social bookmarking
system. Pull/push and aggregate model is most suitable for this particular case. Besides,
the system was implemented using two approaches: SOAP specification and iCamp Feed-
Back module. Performance evaluation showed that FeedBack module is more suitable in
this particular case. However, it is important to mention, that SOAP approach is more
fault tolerant, because it has build-in mechanism to check if data transmission completed
successfully.

Acknowledgements. I gratefully acknowledge the help of Fridolin Wild and Steinn Sig-
urdarson from Vienna University of Economics and Business.

References

Beverage, T. (2002). Guide to Enterprise IT Architecture: A Strategic Aproach. Secaucus, NJ, USA, Springer-
Verlag New York.

Couloris, G. et al.. (2003). Distributed Systems: Concept and Design. 3rd edn. China Mashine Press.
Chiu, K., Govindaraju, M., Bramley, R. (2002). Investigating the limits of SOAP performance for scientific

computing. In: Proceedings of 11th IEEE International Symposium, 246–254.
Davis, D., Parashar, M.P. (2002). Latency performance of SOAP implementations. Cluster computing and
the grid. In: The 2nd IEEE/ACM International Symposium, 407–407, 21–24.

iCamp Codebase. http://sourceforge.net/projects/icamp/files/.
SOAP Version 1.2 Specification Assertions and Test Collection. http://www.w3.org/TR/2003/REC-

soap12-testcollection-20030624/.
D’Souza, Q. (2006). Web 2.0 ideas for educators. A guide to RSS and more. Version 2.0. In: Meeting of the

K12. Online, 2006.11.06. Available online at
http://www.teachinghacks.com/files//100ideasWeb2educators.pdf [Accessed
2010.02.22].

Takeuchi, Y., Okamoto, T., Yokoyama, K., Matsuda, S. (2005). A differential-analysis approach for improving
SOAP processing performance. In: Proceedings IEEE’05 . International Conference on e-Technology, e-
Commerce and e-Service, 472–479.

Tsenov, M. (2006). Web services example with PHP/SOAP. In: International Conference on Computer Systems
and Technologies. CSREA Press, USA.

Wild, F., Sigurðarson, S.E., Sobernig, S., Stahl, C., Soylu, A., Rebas, V., Górka, D., Danielewska-Tulecka, A.,
Tapiador, A. (2007). An interoperability infrastructure for distributed feed networks. In: Proceedings of the
1st International Workshop on Collaborative Open Environments for Project-Centered Learning, COOPER-
2007. Sissi, Lassithi, Crete, Greece.

A. Afonin is seeking doctor degree at Kaunas University of Technology. He is a junior
scientific employee at Research Laboratory of e-Learning Technologies, Department of
Multimedia Engineering, Kaunas University of Technology, Lithuania. His research in-
terests include web 2.0 technologies, distributed systems architecture, interoperability,
development of e-learning software, personal learning environments and collective mind
usage in educational software.



162 A. Afonin

Paskirstytos socialini ↪u nuorod ↪u sistemos architektūra.
SOAP prieš iCamp FeedBack

Andrej AFONIN

Straipsnyje aprašomas paskirstytos socialini ↪u nuorod ↪u sistemos projektavimas. Straipsnyje
pateikiamos keturios tokios paskirstytos architektūros modeliai ir j ↪u tolimesnė analizė. Taip pat
nagrinėjami du skirtingi paskirstyt ↪u sistem ↪u realizavimo būdai: pirmas, naudojant gerai žinom ↪a
SOAP protokol ↪a ir XML format ↪a, ir antras, naudojant iCamp FeedBack mechanizm ↪a ir RSS for-
mat ↪a. Straipsnio pabaigoje pateikiami abiej ↪u būd ↪u duomen ↪u perdavimo analizės rezultatai.


	INFE183

