
Informatics in Education, 2011, Vol. 10, No. 2, 225–232 225
© 2011 Vilnius University

Visual NNet: An Educational ANN’s Simulation
Environment Reusing Matlab Neural Networks
Toolbox

Emilio GARCÍA-ROSELLÓ, Jacinto GONZÁLEZ-DACOSTA,
María J. LADO, Arturo J. MÉNDEZ,
Baltasar GARCÍA PÉREZ-SCHOFIELD, Fátima FERRER
Faculty of Computer Sciences of University of Vigo
Campus As Lagoas, s/n. 32004 Ourense, Spain
e-mail: {erosello,jdacosta,mrpepa,mrarthur}@uvigo.es

Received: December 2010

Abstract. Artificial Neural Networks (ANN’s) are nowadays a common subject in different curric-
ula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic
nature of ANN’s, simulation software has been commonly used to teach this subject. This software
has usually been developed specifically for learning purposes, because the existing general pack-
ages often lack of a convenient user interface, and are too complex or inadequate for these goals.
Since ANN’s algorithms, types and applications grow regularly, this solution becomes more and
more complex and inefficient. In this paper, we present Visual NNet, a learning-oriented ANN’s
simulation environment, which overcomes this problem by reusing Matlab Neural Networks Tool-
box (MNNT), a well-known, comprehensive and robust ANN implementation. Visual NNet com-
bines an on-purpose learning oriented design with the advantages of an ANN’s implementation like
MNNT. Furthermore, reusing MNNT has done Visual NNet development more cost-effective, fast
and reliable.
Keywords: artificial neural networks, simulation software, reusability.

1. Introduction

Artificial Neural Networks (ANN’s) are nowadays a well-known data processing method
used in a growing range of applications, from pattern recognition to multidimensional
data classification (see for example research journals like Neural Computing & Appli-
cations). Therefore, its presence in the educational curricula of different graduate and
postgraduate studies has been more and more common in the last years. ANN’s internal
algorithms are based on relatively complex mathematical grounds, which are not within
the scope of the interests of some curricula. For that reason some references focuses on
a global understanding of neural networks and their usage from an intuitive perspective
(Veelenturf, 1995).

However, in order to achieve a meaningful learning of ANN’s concepts, behavior and
practical applications, apart from the mathematical and algorithmic concerns, it is im-



226 E. García-Roselló et al.

portant to illustrate their structural and dynamic aspects, giving to students the chance of
using them without necessarily having to deal with their underlying complexity. More-
over, this qualitative view of ANN’s can help their quantitative understanding (Ploetzner
and Spada, 1998). Computer-based modeling and simulation environments can be an
excellent way to facilitate students to build ANN’s models and to reach both a theoret-
ical and procedural significant understanding of those concerns (Jonassen and Henning,
1999; Jonassen et al., 2007). This approach has been successfully used and reported in
many works (see for example García Roselló et al. (2003), Gokbulut and Tekin (2006) or
Gonzalez et al., (2003)). In most of these references, an on-purpose application has been
developed. This could seem curious, since there are many very robust and comprehensive
implementations of ANN’s, such as SNNS (University of Stuttgart, 2009), PDP++ (Uni-
versity of Colorado Boulder, 2007), Neuron (Yale University, 2005) or Matlab Neural
Networks Toolbox (MNNT). Moreover, some of them are open software, and obviously
less expensive than the development of a new on-purpose application. This could be ex-
plained by the need of a specifically learning-oriented software environment, which of-
fers a simple and intuitive user interface, and a suitable support to teach ANN’s concepts,
since those aspects have been traditionally more valued than robustness or state-of-the-art
features.

Nevertheless, new ANN’s algorithms with increasing complexity are regularly com-
ing up, and the range of problems and type of ANN’s applied to solve them is also con-
tinuously growing up; therefore, this development of ad-hoc learning oriented ANN’s
applications turns to be also more complex and time-consuming. An efficient solution
should consist in developing applications that comply with particular learning require-
ments, especially concerning user interface and complexity level, but reusing existing
high-quality ANN’s implementations for the internal processing. Unfortunately this is a
challenging goal, because most of those implementations are not intended to be reused,
or cannot be separated from their own user interface (Méndez et al., 2007). In this pa-
per, we explain the way to overcome this problem, in order to develop Visual NNet, a
simulation environment that combines a very simple and easy-to-use learning-oriented
user interface with the state-of-the-art and well-proven implementation of ANN’s of the
MNNT. In this way, Visual NNet development was clearly shortened and simplified, since
algorithmic complexity relies on MNNT, and, furthermore, this provides a more robust
and comprehensive ANN’s functionality.

The rest of this paper is organized as follows. Firstly, we describe the materials and
methods used to develop Visual NNet. Next, Visual NNet functionality is explained. Fi-
nally, the conclusions are detailed.

2. Materials and Methods

The main goal for developing Visual NNet was to provide to both students and teach-
ers with a complete and easy-to-use ANN’s learning environment, which offers a broad
range of ANN types and algorithms, reusing an existing ANN’s implementation, instead



Visual NNet: An Educational ANN’s Simulation Environment 227

of building it from the scratch. The MNNT implementation was chosen because of its
comprehensiveness (it implements any type of current ANN and a very large set of algo-
rithms), robustness, regular updating, and also because of the large spreading of Matlab
in university education.

The integration of MNNT functionality in another application requires reusing Matlab
engine. However, we have previously explained that this is not always easy task, as there
are important limitations or difficulties to reuse those existing packages (García Roselló
et al., 2007). To overcome this problem, we resorted to a solution that our research group
has previously developed, aiming at improving reusability of this type of proprietary en-
vironments. This solution basically consists in a structured framework of reusable com-
ponents, called IMO.Net for Matlab, that encapsulates and allows for the fully integration
of the functionality of the proprietary environment in other applications. This framework
includes a first-level component set that allows for reusing the common Matlab function-
ality, and several second-level component sets that offer more specific-domain features.
One of those second-level component sets, called IMO.Net for Neural Networks Library,
encapsulates the MNNT complexity and offers an intuitive object-oriented API (Méndez
et al.,2007), making very easy to reuse it. It is beyond the scope of this article to describe
in depth this framework, although detailed explanations can be found elsewhere (García
Roselló et al., 2007; Méndez et al., 2007).

ANN’s are basically data processing algorithms, and an application like Visual NNet
has to offer to the users a simple way to input data to an ANN, like training and simu-
lation patterns; and to visualize output data, such as simulation results, error adjustment
rates or topological classifications (for ANN’s like Self-Organizing Maps, for example).
Instead of building our own solution for those requirements, which would require some
adaptation and learning effort from users, we have chosen to reuse and integrate in Visual
NNet an existing worksheet application. Since it is common that data susceptible of being
processed with ANN’s were managed and stored using these tools, and that the majority
of the users are familiar with their usage, this solution makes easier to work with Visual
NNet and to process results. At the same time, it also simplifies its development. Partic-
ularly, we have selected to integrate Microsoft Excel in Visual NNet because of its wide
spreading.

The resulting architecture of Visual NNet is shown in Fig. 1. As it can be seen, users
only have to deal with Visual NNet graphical user interface (GUI) and with worksheet
software, but neither with details of the subjacent MNNT nor Matlab engine. Users are
actually unaware of the fact that MNNT is used as ANN’s implementation.

For the internal design, we have followed a typical Model-View-Controller architec-
tural pattern (MVC) (Krasner and Pope, 1988). The model (a particular ANN implemen-
tation and the API to work with) is provided by the classes of the IMO.Net for Neural
Networks Library. The view and the controller classes are implemented as part of the
Visual NNet GUI; they are in charge of rendering the model in a suitable way for the user
to be able to see and to interact with it, and they are responsible of making the pertinent
calls to the model in response to user requests and events.



228 E. García-Roselló et al.

Fig. 1. Visual NNet architecture components.

3. Visual NNet Functionality

Visual NNet allows the user for creating, configuring, training and simulating an ANN
through an intuitive and easy-to-use GUI. The user has first to select the type of ANN that
he wants to create, choosing it in the corresponding menu option, and then sets its size.
As it will be obvious from the previously explained, Visual NNet virtually supports all the
types of ANN of the MNNT, notably simple and multilayer perceptrons, backpropagation
networks, radial basis function networks, or self-organizing maps, to mention some of the
more frequently used in ANN’s courses. Once created, the ANN will be shown in a new
window. Visual NNet has in fact a MDI (Multiple Document Interface), thus allowing for
creating and working with several ANN’s simultaneously, as each one will have its own
child window. This feature is very useful for some learning purposes, such as, for exam-
ple, activities including the comparative assessment with distinct ANN’s, algorithms, or
parameter values, which can be proposed to students.

An ANN is shown depending on its type. Feedforward-like networks are depicted in
a visually intuitive way: each neuron is painted as a box that receives input connections
from previous layer neurons and has output connections to next layer neurons. Layers
are drawn from top to bottom, with input layer at the top and output layer at the bottom
(Fig. 2).

Topological networks like self-organizing maps are typically shown as a bidimen-
sional map with a dot for each neuron, and connections between the neurons within a
Euclidean distance of 1.



Visual NNet: An Educational ANN’s Simulation Environment 229

Fig. 2. Screenshoot of visual NNet showing a backpropagation network. The properties panels on the right
allow user easily to see and modify all network parameters and functions.

At the right side of the window two panels of properties are displayed (Fig. 2). The
first one allows the user for easily consulting and modifying the general parameters and
functions of the network, notably the function that will be used to train the network, the
learning rate, etc. The second panel shows the properties corresponding to the network
element currently selected by the user. That is, if the user clicks on a layer or a particular
neuron of the graphic drawing of the network, this panel will automatically show its
properties, like bias settings or input function for a layer, or connections weights for a
neuron. The most of those parameters and functions, when modifiable, can be selected
from a list of permitted values, which avoids mistakes and simplifies the usage. A help
text is also displayed on the bottom of the panel corresponding to a brief explanation of
the currently selected property.

To provide input data for both training patterns and simulation of ANN’s, as we
pointed above and in order to simplify and make more intuitive those tasks, Visual NNet
allows users to directly use data contained in Excel worksheets. In this way, to define a
dataset the user only has to open the worksheet where data are stored (or create a new
sheet) and select the corresponding range of cells. Then he/she has to select the option of
creating a new dataset in Visual NNet, assigning it a name. Visual NNet will automati-
cally detect the selected range in Excel and link it to the assigned name. Visual NNet does
not make a copy of the selected data, but it just registers the information needed to local-



230 E. García-Roselló et al.

ize and retrieve them when needed. In this way, the users can define all the datasets they
want. Then, when they want to train or simulate an ANN, the users have simply to select
the dataset name to be used as input from a dropdown listbox. The information about the
defined datasets is automatically stored by Visual NNet so it is directly available from
one work session to another.

Output data produced by ANN’s training or simulation are also transparently exported
and displayed in an Excel worksheet by Visual NNet. That simplifies output data handling
and analysis, such as performing statistical calculi or creating graphics, since the majority
of the users know Excel functionality. For supervised training, typical data outputted by
Visual NNet include error rate, expected and real output, to allow for an easy understand-
ing of the performance of the ANN training. Obviously for simulation tasks, only real
data output is shown.

It is important to stand out that, as it could be seen from the previous explanation of
Visual NNet features, the user has no to directly deal with Matlab or MNNT. Visual NNet
completely hides this aspect making it totally transparent to the user, which only has to
work with its GUI and can be totally unaware of the fact that ANN’s processing is done
by MNNT.

4. Conclusions

In this paper we presented Visual NNet, a learning software environment for simulating
ANN’s developed with the aim of offering a specifically learning-oriented user interface
but without renouncing to provide robust, complete and state-of-the art ANN features. To
reach this goal with affordable costs and time, the choice was done of reusing MNNT, a
well-know ANN’s implementation. Thanks to the usage of the IMO.Net framework the
integration of the full functionality of MNNT in Visual NNet was very simplified, and
very little effort had to be put in this part of the development, compared to what should
be required if ANN’s algorithms and data structures had to be implemented. This also
permitted to concentrate more resources in the user interface design and the learning-
related features, and to drastically save time and costs without making any sacrifices in
terms of functionality. By contrary, reusing MNNT provided Visual NNet with clearly
more comprehensive ANN’s features than it surely should have if we had to develop
them from the scratch, and, at the same time, a specific learning-oriented design, which
was very relevant for our aims.

Furthermore, the employ of Excel as either input source or output destination simpli-
fies the data management and it does not require new learning from the users. In fact, this
is an additional example of reutilization of proprietary environments. We can conclude
that the reutilization of existing proprietary environments, of wide functionality, into on-
purpose applications with educative aims, and with a friendly user interface, provides
advantages in order to develop high quality educational software in a fast way.

Visual NNet will be shortly incorporated as a part of a Posgraduate course in the field
of neural networks bases, to be held in the University of Vigo, Spain, in a near future.



Visual NNet: An Educational ANN’s Simulation Environment 231

Acknowledgements. This work has been developed as part of a research project funded
by Xunta de Galicia (Spain) with identification key PGIDIT06SIN30501PR.

References

GarciaRoselló, E., Garcia Perez-Schofield, J., González Dacosta, J., Pérez Cota, M. (2003). Neuro-lab: a highly
reusable software-based environment to teach artificial neural networks. Computer Applications in Engi-
neering Education, 11(2), 93–102.

Garcia Roselló, E., Lado, M., Méndez, A., González Dacosta, J., Pérez, M. (2007). A component framework
for reusing a proprietary computer-aided engineering environment. Advances in Engineering Software, 38,
256–266.

Gokbulut, M., Tekin, A. (2006). An educational tool for neural network control of brushless dc motors. Inter-
national Journal of Engineering Education, 22(1), 197–204.

Gonzalez, E.J., Hamilton, A., Moreno, L., Aguilar, R.M. (2003). Neural networks teaching using Evenet-2000.
Computer Applications in Engineering Education, 11(1), 1–5.

Jonassen, D.H., Henning, P. (1999). Mental models: knowledge in the head and knowledge in the world. Edu-
cational Technology, 39(3), 37–42.

Jonassen, D., Howland, J., Marra, R., Crismond, D. (2007). Meaningful learning with technology, 3rd edn.
London, UK, Prentice Hall.

Krasner, G.E., Pope, S.T. (1988). A cookbook for using the model-view-controller user interface paradigm in
smalltalk-80. Journal of Object-Oriented Programming, 1(3), 26–49.

Méndez, A., García Roselló, E., Lado, M., González Dacosta, J., Pérez, M. (2007). Integrating Matlab neural
networks toolbox functionality in a fully reusable software component library. Neural Computing & Appli-
cations, 16, 471–479.

Ploetzner, R., Spada, H. (1998). Constructing quantitative problem representations on the basis of qualitative
reasoning. Interactive Learning Environments, 5, 95–107.

The Mathworks (2009). Matlab. http://www.mathworks.com/.
University of Colorado Boulder. (2007). PDP + +.

http://psych.colorado.edu/∼oreilly/PDP++/PDP++.htm.
University of Stuttgart. (2009). SNNS-Stuttgart Neural Network Simulator. Stuttgart Neural Network Simulator.

http://www.ra.cs.uni-tuebingen.de/SNNS/.
Veelenturf, L.P. (1995). Analysis and Applications of Artificial Neural Networks. London, Prentice Hall.
Yale University. (2005). Neuron. http://www.neuron.yale.edu/neuron/.

E. García-Roselló is lecturer at the Department of Computer Sciences of the University
of Vigo. He’s got his PhD with a thesis on reusability in educational and scientific soft-
ware. His research work, together with the other authors, is mainly centered on reusability
and component-oriented software engineering and its applications to educational soft-
ware.

J. González is lecturer at the Department of Computer Sciences of the University of
Vigo. He’s got his PhD with a thesis on educational software engineering. His research
work is mainly centered on educational software engineering.

M.J. Lado is an associate professor at the Department of Computer Science of the Uni-
versity of Vigo, Spain. She received a PhD degree in physics in 1999 from the University
of Santiago de Compostela. Her research interests include computer-aided diagnosis in
breast and chest/CT imaging, as well as computer-aided systems for teaching purposes,
and biomedical signal processing.



232 E. García-Roselló et al.

A.J. Méndez is an associate professor at the Department of Computer Science of the Uni-
versity of Vigo, Spain. He received his PhD degree in physics in 1996 from the University
of Santiago de Compostela. His research interests include computer-aided diagnosis and
educational software, and biomedical signal processing.

B.G. Perez-Schofield is an associate professor at the Department of Computer Science
of the University of Vigo, Spain. His research interests include persistence and object
orientation, especially as related to virtual machines and dynamic languages. He received
his PhD in computer science from the University of Vigo.

F. Ferrer has got an MSc degree in computer sciences at the University of Vigo, and she
has been collaborating actively with the other authors in several research projects, as the
one presented in this paper.

„Visual NNet“: mokomoji dirbtini ↪u neuronini ↪u tinkl ↪u modeliavimo
aplinka, naudojanti „Matlab Neural Networks Toolbox“

Emilio GARCÍA-ROSELLÓ, Jacinto GONZÁLEZ-DACOSTA, María J. LADO,
Arturo J. MÉNDEZ, Baltasar GARCÍA PÉREZ-SCHOFIELD, Fátima FERRER

Dirbtiniai neuroniniai tinklai – tai informacijos apdorojimo struktūros, netiksliai imituojančios
kai kuriuos gyv ↪uj ↪u organizm ↪u smegenyse vykstančius informacijos apdorojimo procesus. Šiandie-
ninėje akademinėje bendruomenėje tai populiari tema, kurios mokoma tiek bakalauro, tiek magistro
studij ↪u metu. Dirbtini ↪u neuronini ↪u tinkl ↪u algoritm ↪u sudėtingumas lemia, kad j ↪u mokymui yra nau-
dojama programinė modeliavimo ↪iranga. Ši programinė ↪iranga buvo specialiai sukurta mokymui,
nes egzistuojančiuose bendruosiuose paketuose trūksta patogios vartotojo s ↪asajos. Straipsnio au-
toriai pristato mokymui skirt ↪a dirbtini ↪u neuronini ↪u tinkl ↪u modeliavimo program ↪a „Visual NNet“,
kuri realizuojama naudojantis „Matlab Neural Networks Toolbox“.


