
Informatics in Education, 2011, Vol. 10, No. 1, 65–72 65
© 2011 Vilnius University

A Didactic Analysis of Functional Queues

Christian RINDERKNECHT
Konkuk University
143-701 Seoul Gwangjin-gu Hwayang-dong, Republic of Korea
e-mail: rinderkn@konkuk.ac.kr

Received: January 2011

Abstract. When first introduced to the analysis of algorithms, students are taught how to assess
the best and worst cases, whereas the mean and amortized costs are considered advanced top-
ics, usually saved for graduates. When presenting the latter, aggregate analysis is explained first
because it is the most intuitive kind of amortized analysis, often involving enumerative combina-
torics. We show how the aggregate analysis of functional queues can be carried out accurately and
graphically, without combinatorics nor analytical tools like asymptotics, hence making it amenable
to undergraduates. Our presentation is independent of any programming language.

Keywords: didactics of informatics, analysis of algorithms, amortized analysis, aggregate analysis,
functional queue, functional language, Dyck path, Dyck meander.

1. Analysis of Algorithms

The branch of theoretical computer science devoted to the mathematical study of the
efficiency of programs has been pioneered by Donald Knuth, who named it analysis of
algorithms (Knuth, 1997, 2000; Sedgewick and Flajolet, 1996). Given a function defini-
tion, this approach consists basically in three steps: defining a measure on the arguments,
which represents their size; defining a measure on time, which abstracts the wall-clock
time; expressing the abstract time needed to compute calls to that function in terms of the
size of its arguments. This function models the efficiency and is called the cost (the lower
the cost, the higher the efficiency). For example, when sorting objects, also called keys,
by comparing them, the input size is the number of keys and the abstract unit of time is
often one comparison, so the cost is the mathematical function which associates the num-
ber of objects and the number of comparisons to sort them. Of course, the cost varies
depending on the algorithm and it also often depends on the original partial ordering of
the keys, so, for a given procedure, the size does not capture all the aspects needed to as-
sess efficiency. This quite naturally leads to consider bounds on the cost: for a given input
size, the minimum cost is the cost of the configurations leading to the smallest possible
cost, or best case; the maximum cost corresponds to the worst case. For example, some
sorting algorithms have their worst case when the objects are already sorted, others when
they are sorted in reverse order.

Once we obtain bounds on a cost, the question about the average or mean cost (Vit-
ter and Flajolet, 1990; Knuth, 1997, §1.2.10) arises as well. It is computed by taking

66 C. Rinderknecht

the arithmetic mean of the costs for all possible inputs of a given size. Some care is nec-
essary, as there must be a finite number of such inputs. For instance, to assess the mean
cost of sorting algorithms based on comparisons, it is usual to assume that the input is
a series of n distinct keys and that the sum of the costs is taken over all its permuta-
tions and divided by n!, the total number of permutations. The uniqueness constraints
actually allows the analysis to equivalently, and more simply, consider the permutations
of (1, 2, . . . , n). Some sorting algorithms, like merge sort (Knuth, 1998, §5.2.4; Cormen
et al., 2009, §2.3) or insertion sort (Knuth, 1998, §5.2.1; Cormen et al., 2009, §2.1), have
their average cost asymptotically equivalent to their maximum cost, that is, for increas-
ingly large numbers of keys, the ratio of the two costs become arbitrarily close to 1. Some
others, like Hoare’s sort, also known as quicksort (Knuth, 1998, §5.2.2; Cormen et al.,
2009, §7), have the growth rate of their average cost being of a lower magnitude than the
maximum, on an asymptotic scale (Graham et al., 1994, §9)

Sorting algorithms can be distinguished depending on whether they operate on the
whole series of keys, or key by key. The former are said off-line, as keys are not sorted
while they are coming in, and the latter are called on-line, as the sorting process can
be temporally interleaved with the input process. For instance, insertion sort is an on-
line algorithm, whereas Hoare’s sort is not because it is an instance of the divide-and-
conquer strategy that splits the data. This distinction is pertinent in other contexts as well,
like with algorithms that are intrinsically sequential, instead of allowing some degree
of parallelism. For instance, a database is updated by a series of atomic requests, but
different requests on different parts of the data might be performed in parallel.

Sometimes an update is costly because it is delayed due to an imbalance in the data
structure that calls for an immediate remediation, but this remediation itself may lead
to a state such that subsequent operations are faster than if the costly update had not
happen. Therefore, when considering a series of updates, it may be overly pessimistic
to cumulate the maximum costs of all the operations considered in isolation. Instead,
amortized analysis (Okasaki, 1998; Cormen et al., 2009, §17) takes into account the
interactions between updates, so a lower maximum bound on the cost is derived. Note
that this kind of analysis is inherently different from the average case analysis, as its
object is the composition of different functions instead of independent calls to the same
function on different inputs. Amortized analysis is a worst case analysis, but of a sequence
of updates, not a single one.

For example, consider a counter enumerating the integers from 0 to n in binary by
updating an array containing bits (Cormen et al., 2009, §17.1). In the worst case, an
increment leads to inverting �lg n�+1 bits, where �x� is the greatest integer lower or equal
than x and lg n is the binary logarithm of n, as it is the minimum number of bits required
to encode n. The cost of the n increments is thus bounded from above by n lg n + n, but
this is too pessimistic, as carry propagation clears a series of rightmost bits to 0, so the
next addition will flip only one bit, the following two etc. A counting argument shows
that the exact total number of flips is

∑�lg n�
k=0 �n/2k � < n

∑
k�0 1/2k = 2n, which

is of a lower magnitude than expected. This particular example resorts to a particular
kind of amortized analysis called aggregate analysis, because it relies on enumerative

A Didactic Analysis of Functional Queues 67

combinatorics (Martin, 2001) to reach its result (it aggregates positive partial amounts,
often in different manners, to obtain the total cost). As such, it is very much suited to teach
undergraduates because it can be illustrated with tables and figures. A visually appealing
variation on the previous example consists in determining the average number of 1-bits
in the binary notation of the integers from 0 to n (Bush, 1940).

Despite its didactic qualities, aggregate analysis is less frequently applied when
the data structures are not directly in connection with numeration. We propose to extend
its scope by showing a compelling case study on functional queues.

2. Functional Queues

A functional queue is a linear data structure that is used in functional languages, whose
semantics force the programmer to model a queue with two stacks. Items can be added
to a stack, or pushed, on only one of its ends, called the top. They can be removed, or
popped, only at the top:

Push, Pop (top) � a b c d e

A queue is like a stack where items are added, or enqueued, at one end, called rear, but
taken out, or dequeued, at the other end, called front:

Enqueue (rear end) � a b c d e � Dequeue (front end).

Let us implement a queue with two stacks: one for enqueuing, called the rear stack, and
one for dequeuing, called the front stack. The previous queue is equivalent to

Enqueue (rear stack) � a b c d e � Dequeue (front stack).

Enqueuing is now pushing on the rear stack and dequeuing is popping on the front stack.
In the latter case, if the front stack is empty and the rear stack is not, we swap the stacks
and reverse the (new) front stack. Graphically, dequeuing in the configuration a b c

requires first to make a b c and then dequeue c.
As a side note, although our presentation is independent of any programming lan-

guage, programmers using Erlang (Armstrong, 2007, 2010) may implement enqueu-
ings and dequeuings as in Fig. 1. As a measure of the input, we shall say that the queue

enqueue(Item,{Rear,Front}) -> {[Item|Rear],Front}.

dequeue({[Item|Rear],[]}) -> dequeue({[],rcat(Rear,[Item])});
dequeue({Rear,[Item|Front]}) -> {{Rear,Front},Item}.

rcat([],To) -> To;
rcat([Item|From],To) -> rcat(From,[Item|To]).

Fig. 1. Enqueuing and dequeuing in Erlang.

68 C. Rinderknecht

has size n if the total number of items in both stacks is n. As a measure of time, we
shall count as one unit one item movement. Therefore, the cost of enqueuing is Cenq

n = 1.
The minimum cost for dequeuing is Bdeq

n = 1, when the front is not empty, so exactly
one item moves (out). The maximum cost is Wdeq

n = n+1, when the front stack is empty
and the rear contains n items: these move frontward and then the top moves out.

Let Cn be the cost of a sequence of n updates on a functional queue originally empty.
A first attempt at assessing Cn consists in ignoring any dependence on previous operations
and take the maximum cost individually. Since Cenq

k � Cdeq
k , we consider a series of

n dequeuings in their worst case, that is, with all the items located in the rear stack.
Besides, after k updates, there may be k items in the queue, so we draw

Cn �
n−1∑

k=1

Wdeq
k =

1
2
(n − 1)(n + 2) ∼ 1

2
n2.

Actually, this is overly pessimistic and even unrealistic. First, one cannot dequeue on an
empty queue, therefore, at any time, the number of enqueuings since the beginning is
always greater or equal than the number of dequeuings and the series must start with one
enqueuing. Second, when dequeuing with the front being empty, the rear stack is reversed
onto the front stack, so its items cannot be reversed again during the next dequeuing,
whose cost will be 1. Moreover, as remarked above, Cenq

k � Cdeq
k , so the worst case for

a series of n operations occurs when the number of dequeuings is maximum, that is,
when it is �n/2�. If we denote by e the number of enqueuings and by d the number of
dequeuings, we have the relationship n = e + d and the two requisites for a worst case
become e = d (n even) or e = d + 1 (n odd).

Dyck Path (e = d). Let us represent graphically the updates as in Fig. 2. Textually, we
represent an enqueuing as an opening parenthesis and a dequeuing as a closing parenthe-
sis. For example, ((()()(()))()) can be represented in Fig. 3 as a Dyck path, named
in the honor of the logician Walther (von) Dyck (1856–1934). For a broken line to qualify
as a Dyck path of length n, it has to start at the origin (0, 0) and end at coordinates (n, 0).
In terms of a Dyck language, an enqueuing is called a rise and a dequeuing is called a
fall. A rise followed by a fall, that is, (), is called a peak. For instance, in Fig. 3, there are
four peaks. The number near each rise or fall is the cost incurred by the corresponding
operation. The abscissa axis bears the ordinal of each operation.

When e = d, the graphics is a Dyck path of length n = 2e = 2d. In order to deduce
the total cost in this case, we must find a decomposition of the path, by which we mean

Fig. 2. Graphical representations of operations on queues.

A Didactic Analysis of Functional Queues 69

Fig. 3. Dyck path modeling queue operations (cost 21).

to identify patterns whose costs are easy to compute and which make up any path, or
to associate any path to another path whose cost is the same but easy to find. Figure 4
shows how the previous path is mapped to an equivalent path only made of a series of
isosceles triangles whose bases belong to the abscissa axis. Let us call them mountains
and their series a range. The mapping is simple: after the first fall, if we are back to the
abscissa axis, we have a mountain and we proceed with the rest of the path. Otherwise,
the next operation is a rise and we exchange it with the first fall after it. This brings us
down by 1 and the process resumes until the bottom line is reached. We call this process
rescheduling because it amounts, in operational terms, to reordering subsequences of
operations a posteriori. For instance, Figure 5 displays the rescheduling of Fig. 3. Note
that two different paths can be rescheduled into the same path. What makes Fig. 5(c)
equivalent to Fig. 5(a) is the invariance of the cost because all operations have cost 1.
This always holds because enqueuings always have cost 1 and the dequeuings involved
in a rescheduling have cost 1, because they found the front stack non-empty after a peak.
We proved that all paths are equivalent to a range with the same cost. Therefore, the
maximum cost can be found on ranges alone. Let us note e1, e2, . . . , ek the maximal
subsequences of rises; for example, in Fig. 4, we have e1 = 3, e2 = 3 and e3 = 1.
Of course, e = e1 + e2 + . . . + ek. The fall making up the ith peak incurs the cost
Wdeq

ei = ei+1, due to the front being empty because we started the rises from the abscissa

Fig. 4. Dyck path equivalent to Fig. 3.

70 C. Rinderknecht

Fig. 5. Rescheduling of Fig. 3 into Fig. 4.

axis. The next ei − 1 falls have all cost 1, because the front is not empty. For the ith
mountain, the cost is thus ei+(ei+1)+(ei −1) = 3ei. Then Cn =

∑k
i=1 3ei = 3e = 3

2n,
since n = e + d = 2e.

Dyck Meander (e = d + 1). The other possibility for a worst case is that e = d + 1
and the graphics is then a Dyck meander whose extremity ends at ordinate e − d = 1.
An example is given in Fig. 6, where the last operation is a dequeuing. The dotted line
delineates the result of applying the rescheduling we used on Dyck paths. Here, the last
operation becomes an enqueuing. Another possibility is shown in Fig. 7, where the last
operation is left unchanged. The difference between the two examples lies in the fact

Fig. 6. Dyck meander modeling queue operations (total cost 19).

A Didactic Analysis of Functional Queues 71

Fig. 7. Dyck meander modeling queue operations (total cost 20).

that the original last dequeuing has, in the former case, a cost of 1 (thus is changed)
and, in the latter case, a cost greater than 1 (thus is invariant). The third kind of Dyck
meander is one ending with an enqueuing, but because this enqueuing must start from the
abscissa axis, this is the same situation as the result of rescheduling a meander ending
with a dequeuing with cost 1 (see dotted line in Fig. 6 again). Therefore, we are left
to compare the results of rescheduling meanders ending with a dequeuing, that is, we
envisage two cases: either a range of n − 1 operations followed by an enqueuing or
a range of n − 3 operations followed by two rises and one fall (of cost 5). In the former
case, the total cost is Cn = Cn−1 + 1 = (3n − 1)/2, because n = e + d = 2e − 1. In the
latter case, the cost is Cn = Cn−3 + 5 = (3n + 1)/2, which is slightly greater than all the
previous costs, so it is the absolute maximum cost.

3. Conclusion

The cost Cn of a series of n queue updates, starting on an empty queue, is tightly bounded
as n � Cn � (3n+1)/2, where the lower bound happens when all updates are enqueuings
and the upper bound when the queue ends containing one item, located at the front. As
a consequence, the amortized cost of one operation is Cn/n and lies between 1 and 2.
The average cost of a series of n updates is an open problem.

References

Armstrong, J. (2007), Programming Erlang, The Pragmatic Bookshelf.
Armstrong, J. (2010). Erlang. Communications of the ACM, 53(9), 68–75.
Bush, L.E. (1940). An asymptotic formula for the average sum of the digits of integers. The American Mathe-

matical Monthly, 47(3), 154–156.
Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2009). Introduction to Algorithms, 3rd edn. The MIT Press.
Graham, R.L., Knuth, D.E., Patashnik, O. (1994). Concrete Mathematics, 2nd edn. Addison-Wesley.
Knuth, D.E. (1997). Fundamental Algorithms, Vol. 1 of The Art of Computer Programming, 3rd edn. Addison-

Wesley.
Knuth, D.E. (1998). Sorting and Searching, Vol. 3 of The Art of Computer Programming, 2nd edn. Addison-

Wesley.

72 C. Rinderknecht

Knuth, D.E. (2000). Selected Papers on the Analysis of Algorithms. CSLI Publications.
Martin, G.E. (2001). Counting: The Art of Enumerative Combinatorics. Springer.
Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University Press, 39–56.
Sedgewick, R., Flajolet, P. (1996). An Introduction to the Analysis of Algorithms. Addison-Wesley.
Vitter, J.S., Flajolet, P. (1990). Algorithms and Complexity, Vol. A of Handbook of Theoretical Computer Sci-

ence. Elsevier Science, 431–524.

C. Rinderknecht received his MSc from Université Pierre et Marie Curie (Paris, France).
His doctoral research at INRIA (French National Institute for Research in Computer Sci-
ence and Control) dealt with the application of formal methods to telecommunication pro-
tocols and was defended in 1998, at Université Pierre et Marie Curie. Since 2005, he is an
assistant professor at Konkuk University (Seoul, Republic of Korea), in the Department
of Internet and Multimedia Engineering of the College of Information and Telecommu-
nication. He teaches programming languages and the analysis of algorithms. His current
research is about didactics of informatics.

Didaktinė funkcini ↪u eili ↪u analizė

Christian RINDERKNECHT

Funkcinė eilė yra tiesinė duomen ↪u struktūra, naudojama funkcinėse kalbose, kuriose progra-
muotojas gali modeliuoti eil ↪e su dviem dėklais. Kai pirm ↪a kart ↪a studentams pristatoma algoritm ↪u
analizė, jie yra mokomi, kaip ↪ivertinti geriausius ir blogiausius atvejus, tuo tarpu algoritm ↪u reikšmė
ir amortizacijos s ↪anaudos laikomos sudėtingesnėmis temomis, kurios skirtos absolventams. Dėstant
pastar ↪asias temas, vis ↪u pirma paaiškinama bendroji analizė, kadangi tai yra intuityviojo tipo amor-
tizuota analizė, dažnai apimanti išskaičiuojam ↪aj ↪a kombinatorik ↪a. Šiame straipsnyje autorius paro-
do, kaip bendra funkcini ↪u eili ↪u analizė gali būti atlikta tiksliai ir aiškiai, nesinaudojant nei kombina-
torika, nei analizės priemonėmis, tokiomis kaip asimptotės. Pabrėžiama, kad ši analizė nepriklauso
nuo programavimo kalbos.

