
Informatics in Education, 2010, Vol. 9, No. 2, 229–237 229
© 2010 Institute of Mathematics and Informatics, Vilnius

Feedback Improvement in Automatic Program
Evaluation Systems

Bronius SKŪPAS
Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: bskupas@ktl.mii.lt

Received: January 2010

Abstract. Automatic program evaluation is a way to assess source program files. These techniques
are used in learning management environments, programming exams and contest systems. How-
ever, use of automated program evaluation encounters problems: some evaluations are not clear
for the students and the system messages do not show reasons for lost points. The author proposes
several ideas for possible improvements in black box testing, which can lead into better service for
the users of automatic evaluation systems.

Keywords: automatic program evaluation, feedback.

Why We Need Automatic Program Evaluation in Contests and Teaching

Nowadays it is common to have programming classes in secondary schools and univer-
sities. The assessment of programming assignments places significant demands on the
instructor’s time and other resources (Douce et al., 2005). This demand has led to the
creation of automatic evaluation systems.

Students could be given different programming assignments, which are assessed using
automatic program evaluation systems. Such systems provide a possibility for the student
to submit solution, test it with some set of tests, and receive some feedback. These sys-
tems also provide feedback for the teachers and evaluators.

In general the systems provide feedback generated by a wide range of static and dy-
namic program analyses (Ala-Mutka, 2005). Development of automatic program evalua-
tion systems with high quality feedback show good results (Malmi et al., 2005; Higgins
et al., 2005).

Use of automatic evaluation systems in programming exams is not so popular. The
main reason is the approach to marking the submissions during the exams. Some pro-
gramming errors should not influence the final score heavily. This cannot be achieved
using only a black box testing. A typical approach is to use semi-automatic systems for
programming exam evaluation. Feedback from the automatic program evaluation part is
helpful for the examiner in search for the errors (Skūpas and Dagienė, 2008). Analy-
sis methods used in these systems are similar to methods used in systems developed for
teaching.



230 B. Skūpas

Automatic evaluation systems are also typical for the programming contests. There
they are used as a fair and efficient way of marking and distinguishing the solutions
(Ribeiro and Guerreiro, 2009). Most contests (including IOI – International Olympiad
in Informatics) use dynamic program analysis, black box testing approach. Feedback
in these systems helps the contestants to examine program in real testing environment.
However, feedback in most contest systems is rather poor and discussions about other
possible grading methods are still open (Pohl, 2006; Forišek, 2006).

Typical Automatic Evaluation System

A typical approach for automatic evaluation systems is to provide interfaces for 3 classes
of users: administrators, teachers/evaluators and students. Possibilities for the users are
rather different in the systems. However, it is possible to find something in common in
most of them. Fig. 1 presents the most typical use cases for automatic evaluation systems.

As is shown in the use case diagram, automatic evaluation systems include a lot of
use cases which are responsible for task data handling, task preparation, user manage-
ment etc. Most of the current systems are providing Web interfaces for the users. Popular
platforms for this type of systems include Tomcat application server, Apache web server
with PHP, and Python. MySQL database is the most popular for storing submissions.

Typical Evaluation Process Workflow

Most important part for feedback generation in automatic evaluation systems is the use
case “Evaluate submission(s)”. This part usually is separated in a grading client process,
which is usually running on separate computer(s). The grading clients are responsible for
program evaluation and feedback generation.

Most grading clients’ workflow is similar in different automatic evaluation systems. It
involves preparation of sandbox (safe running environment), running of compilers, prepa-
ration of input data, analysis of program provided output, and generation of feedback.

One of possible client workflows is presented in Fig. 2. OWINF grading system (Pol-
ley, 2006) has an advanced feature in test data organization: It is possible to define test-
cases – groups of tests (testruns). A testcase is graded considering results of all testruns.

Runcave – the name of sandbox used in this client. The sandbox is required to run
programs in a safe environment. Usually in a POSIX compliant system, the programs
are linked to static executables and run in chroot’ed environment with low privileges.
Sandboxes usually are written in C and C++ languages (Mareš, 2007).

Most of automatic program evaluation systems provide several feedback possibilities
for submissions. Typical feedback messages include the following:

• program compilation error,
• program run time error X (program finished with signal X) in testrun Y,
• program run time limit exceeded in testrun Y,



Feedback Improvement in Automatic Program Evaluation Systems 231

Fig. 1. Use case diagram for typical automatic evaluation system.

• program provided wrong answer in testrun Y,
• program provided correct answer in testrun Y.

Feedback is accumulated through all the grading process and sent back to the eval-
uation system after grading of all testcases have been completed. Grading is performed
by the grader (evaluator) process, which generates most important feedback messages
about output correctness.

Grader (Evaluator) Process

Operations performed in the grader process depend on the type of the task. For example
OWINF can handle three (typical for IOI) task types (Polley, 2006; Mareš, 2007):



232 B. Skūpas

Fig. 2. OWINF automatic grading system client workflow (Polley, 2006).



Feedback Improvement in Automatic Program Evaluation Systems 233

• Batch tasks (input/output tasks): programs which transform an input file into an
output file.

• Reactive tasks (interactive tasks): programs which call library functions of a pro-
vided library.

• Output only tasks (open-data tasks): the submission consists only of an output data
file.

Batch task type is most popular in automatic evaluation systems. The main reason for
this can be:

• Easy task presentation on paper, no need of specific libraries (opposite to reactive
tasks). Tasks were prepared in a long period of time in different textbooks and
transferred to automatic evaluation systems.

• Students are forced to write programs (opposite to output only tasks).

However batch task submissions raises problems in evaluation systems:

• Students must follow task description about strict data input and output formats.
• Program execution time is highly dependant on efficiency of data stream reading

in programming languages and their compilers.

The grader process usually uses three input files and one output file as illustrated in
Fig. 3. In simple unambiguous tasks usually it is enough to compare the student program
generated output with the correct solution. However there are a lot of tasks where more
than one correct solution is possible.

Another problem is related to strict answer format. Most of the students which use
automatic evaluation systems are not top programmers, but students. This raises problem
with errors in student programs related to line endings, extra spaces, blank lines in end
of output, case of letters, etc. Adding or changing of these symbols in output files messes

Fig. 3. Typical grading process has 3 input files and one output file.



234 B. Skūpas

up files comparison process and students can get 0 points for a rather good program. This
can be solved by using simple output formats (Vasiga et al., 2008).

The third problem is that the feedback of file comparison is not so evident if the output
and the answer files are large.

All of the mentioned problems can be solved using a specific grading program for each
task, which is not so easy. Martin Mareš (Mareš, 2009) proposes to use standard judges
with different possible customizations on required comparisons. However this approach
is not so comfortable for ambiguous tasks – these standard judges are not suitable for
them.

In general, feedback of automated program evaluation in the contests is rather poor.
Some contests (e.g., ACM ICPC) provide only general feedback for all the tests. One
reason is that most of the contests are pointed to best programmers. Another point is that
extra help provided from grading system will influence results of contest.

Grading tools, developed for a specific task can provide better feedback, but these are
not so common, as they requires extra work. Scoring for partially correct outputs is not
common also.

Automated program evaluation systems used for teaching faces another problem –
authors of such systems try to have huge banks of tasks. Preparation of specific grader
algorithms for every task is too expensive.

Suggestion for Better Feedback with Less Effort

It was considered that automated evaluation systems must have better feedback. Impor-
tant suggestion is to provide new type feedback message – “output file format is not
correct”. This message must provide detailed analysis of provided output file and show
wrong place. This can be reached using output file syntax analysis.

We already have practice to use this type of change: LOI (Lithuanian Olympiads in
Informatics) automated evaluation system grading client (based on IOI’2002 system with
several minor changes) was patched to support cascading graders. Typical use of these
cascaded graders included two grading steps. The first step is responsible for student
program output format checking. The second step is related to output correctness (Fig. 4).

Such a change required to have two graders per task. However it was easily solvable,
as first grader was easily programmable with specific parser based library. Second grader
was programmed without thinking about possible format problems so it was easier to
create even for ambiguous tasks.

Two step grading worked slower, as it read output files twice. Bad output format files
were rejected from second analysis and this saved part of the time. So required time for
testing was not twice longer and it was not a big disadvantage.

Feedback transferring to students required deeper system analysis and it was not easy
as we had to patch information transfer protocol and to secure that all other system com-
ponents will “understand” new messages.



Feedback Improvement in Automatic Program Evaluation Systems 235

Fig. 4. Cascading grader structure used in Lithuanian Olympiads in Informatics.

Student Opinions about Feedback in Patched System

This approach was used for several years and in year 2009/2010 Lithuanian Olympiad
moved to another evaluation system (OWINF). We used this technique with new sys-
tem after easy grading script patching. However sending output format error feedback to
students showed to be not so easy.

Because of this situation it was possible to discuss with a group of 5 students about
advantages and disadvantages of the new system. Two students stated that they would
like to have “old format error messages”, which are missing in the new system.

Students also mentioned new nice features of the new system like “all submissions
testing”, which helps to analyze their performance in contest time, they really liked “after



236 B. Skūpas

a contest” mode, which presented a possibility to test other modified submissions after
contest with all testcases.

Discussions with students demonstrate that they still need more feedback about their
errors. They also would like to have more clear feedback about run-time errors. However
the suggested solution does not help a lot in this place. Probably a patched Linux kernel
and better sandbox are required for the grading client.

In Lithuanian Olympiad in Informatics it is typical to have several tasks with 10%
points for programming style. Students were interested about more clear feedback con-
cerning lost points for programming style.

Students were aware of new possibilities, but they still thought about possible im-
provements in the students interface. This demonstrates that we must pay more attention
to our “customers” – the students and we must analyze all possible ways to improve
feedback and provide more services for them.

Conclusions

Proposed two step grader showed to have more positive features than negative. It helped
to prepare tasks for evaluation more quickly. It is easier to separate several parts of task
preparation and to make technical work for administrator.

Olympiads showed these positive features of this suggestion:

• More clear feedback. Students can distinct programming errors from output format
errors. A failing output format checker creates compiler style feedback for students
with extract of bad output and an arrow, pointing to bad character.

• Easy format checker programming. Format checking is done using a specific parser
based library. Format description is done with several short commands in a high
level language.

• Easy grader programming. It can be done much easier as a programmer can be sure
about data format in files. Less programming errors occurs during programming.

• Approach is easily adoptable to different evaluation systems. This approach was
transferred to OWINF grading system, which was used for Lithuanian Olympiad
in Informatics for the first time in 2009/2010.

Negative features:

• The grading process is slower. Each output file is read twice in the average.
• The evaluation system administrator is forced to learn one more library or to write

his own.
• Feedback from format checker can be misinterpreted by other system components.

The success of this patching also gives an idea to use more than one cascading steps in
other place of evaluation – in compilation. This can extend automatic grading systems to
use static analysis tools, plagiarism detection systems, etc. These systems can provide an
objective statistical programming style analysis, assure on the authenticity of programs.



Feedback Improvement in Automatic Program Evaluation Systems 237

References

Ala-Mutka, K.M. (2005). A survey of automated assessment approaches for programming assignments. Com-
puter Science Education, 15, 83–102.

Douce C., Livingstone D., Orwell J. (2005). Automatic test-based assessment of programming: a review. Jour-
nal of Educational Resources in Computing (JERIC), 5(3).

Forišek, M. (2006). On the suitability of tasks for automated evaluation. Informatics in Education, 5(1), 63–76.
Higgins, C.A., Gray, G., Symeonidis, P., Tsintsifas, A. (2005). Automated assessment and experiences of teach-

ing programming, Journal on Educational Resources in Computing (JERIC), 5(3).
Malmi, L., Karavirta, V., Korhonen, A., Nikander, J. (2005). Experiences on automatically assessed algorithm

simulation exercises with different resubmission policies. Journal on Educational Resources in Computing
(JERIC), 5(3).

Mareš, M. (2007). Perspectives on grading systems. Olympiads in Informatics, 1, 124–130.
Mareš, M. (2009). Moe – design of a modular grading system. Olympiads in Informatics, 3, 60–66.
Pohl, W. (2006). Computer science contests for secondary school students: approaches for classification. Infor-

matics in Education, 5(1), 125–132.
Polley, T. (2006). OWINF Contest System. Available at:

http://owinf.de/book/compiled/single-page-html/.
Ribeiro, P., Guerreiro, P. (2009). Improving the automatic evaluation of problem solutions in programming

contests. Olympiads in Informatics, 3, 132–143.
Skūpas, B., Dagienė, V. (2008). Is automatic evaluation useful for the maturity programming exam? In:

Proceedings of 8th International Conference on Computing Education Research, 117–118.
https://www.it.uu.se/research/publications/reports/2009-004/2009-
004.pdf.

Vasiga, T., Cormack, G., Kemkes, G. (2008). What do olympiad tasks measure? Olympiads in Informatics, 2,
181–191.

B. Skūpas is a PhD student in the Informatics Methodology Department in the Institute
of Mathematics and Informatics. He has been working in Vilnius Lyceum as teacher of
informatics since 1995. Also he is a member of the Technical Committee of the National
Olympiads in Informatics. His research interests include informatics and algorithmic con-
tests, teaching informatics, computer science in secondary education, and automatic grad-
ing systems.

Automatini ↪u vertinimo sistem ↪u gr ↪ižtamojo ryšio tobulinimas

Bronius SKŪPAS

Automatinio vertinimo sistemos yra populiarus ↪irankis student ↪u ir mokini ↪u parašyt ↪u program ↪u
vertinimui. Šis vertinimo metodas naudojamas vrtualiose mokymo terpėse, egzamin ↪u vertinimui,
programavimo varžybose. Tačiau taikant šias sistemas iškyla problem ↪u – mokiniams nebūna aišku,
kodėl jie prarado taškus taip pat iškyla problem ↪u ieškant galim ↪u klaid ↪u. Autorius siūlo nesunkiai
diegiam ↪a patobulinim ↪a, tinkam ↪a daugeliui sistem ↪u besiremianči ↪u juodosios dėžės principu. Šis pa-
tobulinimas turėt ↪u palengvinti užduoči ↪u parengim ↪a automatinei vertinimo sistemai. Taip pat tai gali
padėti mokiniams suprasti j ↪u padarytas klaidas.




	Infe173

