Informatics in Education, 2010, Vol. 9, No. 1, 141-158 141
© 2010 Institute of Mathematics and Informatics, Vilnius

Improving the Evaluation Model for the Lithuanian
Informatics Olympiads

Jurate SKUPIENE

Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: jurate@ktl.mii.lt

Received: August 2009

Abstract. The Lithuanian Informatics Olympiads (LitlO) is a problem solving programming con-
test for students in secondary education. The work of the student to be evaluated is an algorithm
designed by the student and implemented as a working program. The current evaluation process
involves both automated (for correctness and performance of programs with the given input data)
and manual (for programming style, written motivation of an algorithm) grading. However, it is
based on tradition and has not been scientifically discussed and motivated. To create an improved
and motivated evaluation model, we put together a questionnaire and asked a group of foreign
and Lithuanian experts having experience in various informatics contests to respond. We identi-
fied two basic directions in the suggested evaluation models and made a choice based on the goals
of LitlO. While designing the model in the paper, we reflected on the suggestions and opinions
of the experts as much as possible, even if they were not included into the proposed model. The
paper presents the final outcome of this work, the proposed evaluation model for the Lithuanian
Informatics Olympiads.

Keywords: informatics olympiads, programming contests, algorithms, evaluation, grading.

1. Introduction: Structure of LitlO

The Lithuanian Olympiads in Informatics is an individual competition on algorithmics,
open for every interested student in secondary education. The competition follows the
model of the International Olympiads in Informatics (I101), the most famous international
competition in programming (algorithmics) for individual contestants in secondary edu-
cation from various invited countries. There are many other competitions for secondary
school students (and for others) which follow a similar model as the 101 (101; Poranen,
2009; ACM-ICPC; TopCoder; BOI’2009; CEOI’2009).

The Lithuanian Olympiads in Informatics (Dagiene, 2007, 2004) consist of three
rounds and focus on algorithmic problem solving. The contestants get two or three al-
gorithmic tasks in each round. They have to design an algorithm which would solve the
given task, write a short verbal motivation for the algorithm, and implement® the algo-
rithm in one of the allowed programming languages, currently Pascal, C and C++.

1There have been other types of tasks in LitlO which do not require submission of an implementation (e.g.
theoretical tasks), but they are very rare in LitlO and will not be part of this investigation.

142 J. Skupiené

The solutions (programs together with verbal descriptions in the form of comments)
have to be submitted through a web-interface of a Contest Management System (CMS),
which provides various services needed to manage the contest (Mare$, 2007). Lithuania
started using a CMS in its Informatics Olympiads in 2003 (Skupiené, 2004). When a con-
testant submits a solution, the program is compiled and executed with some small sample
tests. However, other bigger tests may also be included in the acceptance test, if the task
designers can motivate that. All submission errors are immediately reported back to the
contestant. The contestant has the possibility to work on his program, to improve it and
resubmit it again. There is no penalty for resubmission. Thus it is assured that the sub-
mitted programs compile and satisfy input/output formatting requirements. Executing a
program with sample tests helps to achieve this. The grading procedure consists both of a
human part and black-box grading parts. The verbal algorithm description and program-
ming style are graded by human evaluators, whereas each submitted program is executed
with various input data by the grader in CMS. Typically, the points, awarded for each
part, are summed to get the final grade (Dagiene, 2007).

The number of contestants in the final round varies from 50 (on-site contest) to 300
(on-line contest). On average there are five to eight jury members available for task design
and grading. They agree to spend up to three to five working days for preparing one task
for senior students and up to two to three days for preparing one task for junior students.
Those who have more time available are preparing more than one task.

The scores have to be produced either in four-five hours (on-site contest) or in two
weeks (on-line contest). However, no member of the jury will agree to spend more than
a couple of full working days on grading for one contest.

The Lithuanian Informatics Olympiad in many aspects follows the International
Olympiad in Informatics. At the same time it inherits evaluation problems which have
become a topic of discussion in the 101 community as well as in scientific papers in re-
cent years (Cormack, 2006, Forisek, 2006; Verhoeff, 2006). One of the main questions
is to which extent black-box grading results satisfy the expectations of the jury. The na-
ture of black-box grading suggests no knowledge of internal logic and structure of the
program. Another question (specific to the Lithuanian Olympiads) is evaluating the ver-
bal descriptions of algorithms and relating the evaluation of programming style to the
overall correctness of a solution (typically to the results of black-box testing). For ex-
ample, a program which does not try to solve the task should not be awarded points for
programming style (Skupiene, 2006).

2. The Concept of Quality

There exist different perspectives on evaluation in informatics contests. In Cormack
(2006), achievement is chosen as the central perspective and the evaluation in the contests
is discussed from this perspective. Our perspective on the evaluation in this paper will be
the quality of the solution. Before going any further we will discuss the concept of quality
in general.

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 143

Hoyer (2001) indicates that quality is mainly defined in one of two ways. One of them
is conformance to a specification, i.e., the product is of a good quality if its measurable
characteristics satisfy specified characteristics. The second understanding is meeting the
customer’s needs. In this case, quality is the capability to satisfy the needs of the client
and it is not related to any measurable characteristics.

Berander (2005) gives an overview of different understandings of quality. P.B. Crosby
indicates that quality is neither luxury nor elegance, but just strict conformance to re-
quirements (Crosby, 1979). In his view the standard for quality must be very precise
and “close enough” is not acceptable. Following Deming (1990) quality is conformance
to user requirements, but this becomes more difficult when there is a need to describe
the user requirements using measurable characteristics. He claims that the quality can
be described only in terms of the agent, i.e., the concrete judge of the quality. Accord-
ing to A.V. Feigenbaum, quality can be determined only when the customer is using the
product. However, the needs of the customer are changing and therefore the concept of
quality is also changing. K. Ishikawa also supports the idea that quality is the ability to
conform to the requirements of the customer. At the same time he emphasizes that inter-
national standards (ISO, IEEE) are not perfect and are not flexible enough to keep in pace
with constantly changing consumer requirements. W.A. Shewart describes two views on
quality. On the one hand, quality is the objective reality independent of the existence of
designers and users. On the other hand, it is a subjective perspective dependent upon the
feelings and senses as a result of the objective reality.

To summarize we can say that there is no absolute definition of quality; it is a con-
structed and changing concept.

The same holds for the quality of a solution in a contest. The term solution often is
used in a broader sense. It might include possible solution, expected solution or theoreti-
cal solution. Therefore we will talk about submission (and quality of a submission) which
consists of an algorithm implementation in one of the allowed algorithmic languages
and/or other material required by the task, submitted for evaluation. I.e., submission is
the material presented for the examination of the jury.

3. Approach to Creating an Improved Evaluation Model

As we concluded in the preceding section, quality is either conformance to very concrete
specifications or conformance to the needs of the users. However, in this case, there is
only one acting subject. It is the scientific committee who determines the specifications
and at the same time is the only user of the submitted solutions?. Therefore the scientific
committee has the final word in determining the quality of the submission and should
take into account the contest goals and resource limitations, the problem solving part of
the contest and the software quality models (Skupieng, 2009b).

2According to the LitlO regulations there is only one body (the National Scientific Committee) which
performs the functions of the scientific committee (it is responsible for preparing a contest syllabus, tasks and
tests) and the jury (it is responsible for the evaluation).

144 J. Skupiené

Fig. 1. The framework of evaluation model.

To discuss this we invited a group of ten experts to participate. By an expert we under-
stand a person having at least several years experience of working in informatics contests
either as a member of the scientific committee or as a jury member. We made an excep-
tion and invited as an expert one person who had one year experience of being a member
as scientific committee. However, he had been the participant and the winner of many
national and international Olympiads before he joined the NSC of LitlO. Eight out of ten
experts were involved in the contests for more than ten years. Even though the object of
discussion is evaluation in LitlO, in order to discuss it from a broader perspective, the
group of experts consists half of Lithuanian and half of international members, all having
experience in various national, regional and international contests. As the experts were
located remotely, there was no interaction between them as a group during the work.

The experts were provided all the relevant information about the structure, scope and
available resources for LitlO. Creating an evaluation model consists of identifying aspects
that need to be measured and defining metrics that measure each aspect. The following
tree model was used as the basis of the questionnaire distributed to the experts.

We asked the experts to answer the following questions:

1. What attributes of a submission are most relevant for determining a score and can
be objectively measured? You can restrict yourself to what you consider the five
most relevant attributes.

2. What metrics would you suggest to measure these attributes (more than one metrics
could be used to measure each attribute). Define each metric as precisely as you
can.

3. How would you suggest to implement each metric (taking into account the re-
sources and limitations described below). Metrics can be implemented by a manual
measurement procedure, or by an automated procedure, or by a combination. De-
scribe each procedure as precisely as you can.

4. How would you suggest to integrate the separate metrics to get one score (for one
submission).®

3Score aggregation is not discussed in this paper and the responses of the experts to this question will be
used in further research.

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 145

The concept of submission was also included into the evaluation model, i.e., the ex-
perts could suggest to alter it. The second level is the attribute level. The third level
contains metrics for measuring these attributes. This model was developed on the basis
of the Goals, Questions, Metrics (GQM) approach which is a mechanism for defining and
interpreting measurable software (Basili, 1994).

3.1. Defining the Concept of a Submission

Currently the submission consists of a verbal description of an algorithm and the source
code of the implemented algorithm. It should be noted that the algorithm presented in
the verbal description does not have to match the implemented algorithm. Therefore, the
verbal description is graded independently of the implementation. It is graded even if the
implementation is not submitted.

The experts came with two types of suggestions which could be classified into two
totally opposite categories. One group of experts suggested to shrink a submission to the
source code only, while the other group was suggesting to expand it by including test data
as a new element of a submission.

The verbal description of an algorithm was the first submission element to be dis-
cussed.

The opinions expressed by the experts were totally opposite. Some of them suggested
removing the verbal description from the submission, motivating that the main skill of
a contestant is whether he can make work his program or not; any other efforts outside
this (e.g. verbal description with impressive ideas) are of a little help if the program does
not work. Others were more lenient, but strongly emphasized that these are of secondary
importance and whatever is included into the evaluation model, functional correctness
and efficiency are the main attributes to be evaluated, ... verbal algorithm description
is for those who didn’t have enough time to implement their solution, but not for those
who have failed to implement it. The contestants should submit either verbal description
or the implementation, but not both. In the responses of some experts it was mentioned
that it is most likely that the verbal description of an algorithm is used for identifying
heuristics. This helps to achieve that submissions with heuristic algorithms will not get a
full score. The experts suggest other ways to try to avoid this, rather than through a verbal
description.

The other experts suggested to include an implementation description or the reason-
ing for the design. Currently the required algorithm description may have no connection
with the implementation. The reasoning for the design might come in the form of a sep-
arate text or comments and ideally, once the design decisions have been established, the
program code is a straightforward derivative (synthesis).

None of the experts clearly supported the current practice where the verbal algorithm
description may have no connection with the implementation. There had been lengthy
discussions in the scientific committee of LitlO whether it should be required to describe
the implemented algorithm or just any algorithm which solves the given problem. The
decision not to connect the description and the implementation was motivated by the

146 J. Skupiené

Yorbm| descryphinr Algnndhim ¥

ul i Al X pléine s

Siappesied goncepls al Shdmission

Fosgasining fior {has S | iEeon

e o

Fig. 2. Suggestions from the experts to modify the current submission concept.

simpler evaluation process. Another reason was the possibility for the contestants to come
up with a better solution, once they implemented their solution and realized that it was
not good enough.

One more suggestion found in the responses of several experts was to include the test
data, preferably with motivation. Each test should consist of an input file and the corre-
sponding output file. One of the experts commented that when equal programs have been
developed by two contestants (or companies), | would have more trust in the program
that was systematically tested over one that was not. One suggestion was to include test
data in the form of a challenge phase like in the TopCoder contest (TopCoder; Skiena,
2003). l.e., the participants would have to provide test data intended to break other sub-
missions (prepared by the jury or those of other contestants). Different approaches of the
experts represent the existing variety of views in the community of informatics contests
(Cormack, 2006; Verhoeff, 2006; Pohl, 2008).

To choose a particular submission model, we decided to focus on the goals of LitlO as
the key factor. One very important goal in LitlO is an educational goal, i.e., to disseminate
good programming practice. Even though we agree with the point of one of the experts
that contest as educational event...sounds strange;...you learn lot of things before or
after, but not during the contest, it must be taken into account that there are few qualified
teachers in Lithuania, who have experience in applying and teaching good programming
practices and who would know how to write a program in conformance with academic
standards. Therefore the two major events for high-school students, the maturity exams
in programming (Blonskis, 2006) and the Lithuanian Olympiads in Informatics serve as
guidelines and kind of “reference” for the teachers.

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 147

The proposed submission model consists of:

e Reasoning for the design which replaces the verbal description of an algorithm;

e Solution implementation presented as source code in one of the allowed program-
ming languages; it should be based on reasoning for the design, if such is provided:;

e Set of test cases with motivation.

Long experience of the author working in LitlO showed that it took many years for
the contestants of LitlO and their coaches to get used to providing material other than the
source code (i.e., writing verbal descriptions of an algorithm). In order to avoid reluctance
towards the new element of submission, i.e., a set of test cases, it would make sense to
look for different options to implement the new concept of submission (for example to
arrange it as some kind of challenge phase rather than simply ask for a set of test cases
for checking submissions).

There is one more practical motivation for that. Two attributes might be checked for
each separate test case (input data and the corresponding output). One of them is validity:
is it a valid input file and the correct valid output to this input. Another attribute is whether
the test is really assessing the feature it claims to. Checking the latter might be compli-
cated or even require writing several different checkers. For example if it is claimed that
the test assesses performance of a solution when the input graph satisfies specific condi-
tions, then the jury might need to code a checker to verify whether the graph modelled in
the input file really has those specific properties.

Another practical issue is related to the contest structure. Flexibility has always been
present in LitlO to reasonably distribute the efforts of the contestants and the jury. Some-
times two tasks instead of three are given in an exam session, for some tasks it is not
required to present verbal descriptions of algorithm (those tasks are chosen very care-
fully) and for some tasks programming style is not graded, as it has been noticed that
programming style of submissions is not influenced by the concrete grading scheme (i.e.,
whether the points are awarded for style or not). Complementing a submission with test
cases would require even more flexibility as generating test cases might require a lot of
extra time depending upon the task.

3.2. Submission Attributes

The current grading model foresees three measurable attributes of a submission. They
are the quality of a verbal description of an algorithm (sub-attributes: correctness and ef-
ficiency of the described solution and quality of the description), performance of already
compiled program code (sub-attributes: functional correctness and time and memory ef-
ficiency) and programming style (sub-attributes: consistency, clear layout, use of proper
names, suitable explicit substructures, absence of magic numbers, proper comments).
Concerns of some of the experts about the elements of submission other than imple-
mentation were reflected in the suggestions about the attributes. Those who restricted a
submission to source code only were against any attributes except for performance of al-
ready compiled code. They especially stressed programming style. Once the style is bad
enough, the contestant will leave a bug and will bear consequences. If the implemen-
tation is fully correct this means that the style was good enough. Here is an opinion of

148 J. Skupiené

o W) oy, Ty
Jumlmy ol & ¥ or AT - I
Lgsenphiom il an sl Ceds Pmgrarmming iyl

prithm

i H
Consisen
L laar brymnd

Proper mime

I'roer commaonis
| S
—_— L AN A

Fig. 3. Attribute level of current evaluation model; the sub-attributes of programming style are not separated
because the score is not a direct combination of evaluation of each of the attributes.

another expert who refers to the research of Grigas (1995) who investigated relationship
of programming style and 10l score in 101°1994: goto was used by the best and worst
students therefore it is hard to say how particular programming construction influences
achievement of the contestant. . . defining some formal criteria of what is a good style and
what is not seems to be extremely hard; better style leads to better programs and therefore
to better results.

Different attitudes were expressed by other experts. There was proposed another inter-
esting model consisting of five attributes*. The first attribute is the quality of the solution
idea. The next three attributes refer to concrete parts of submission, i.e., the quality of the
description of the solution idea, correctness of implementation (with respect to solution
idea), the quality of implementation (source code quality). The last attribute, conformance
to the requirements of the task description, refers to the entire submission.

This model we found interesting because it considers the submission as integral entity
rather than a set of separate submission elements. From all the suggested models it seems
to be the most educationally motivated. The quality of the solution idea is one concept,
not divided between the reasoning for design and implementation. The implementation
correctness is actually related to the implementation correctness but not to the combina-
tion of solution and implementation correctness. The model seems to separate problem
solving and engineering, which is the ongoing problem of the current model (small im-
plementation mistake resulting in the loss of many points). Despite its attraction, the most
questionable in this model is its practical implementation within contest time pressure.
For example the independent grading of the quality of the solution idea can be done in

4A similar model is applied in (Bundeswettbewerb Informatik).

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 149

I'ammn
ETCC s ol ity ol

Irnj ki ratam el b il LIEL]]

Fig. 4. Attribute level of evaluation model which separates problem solving part (the solution idea) from the
engineering part complemented with attributes to evaluate the quality of test cases.

the manual way only. .. otherwise it will be mixed with implementation correctness. The
model (the expert provided the whole model not just the attributes) seems to be a good
choice for the maturity examination in programming or for smaller informatics contests
than LitlO. This model might also be implemented for some tasks in the finals of LitlO
where the number of submissions of one task might be rather low.

Several experts suggested the same decomposition of the quality of the verbal de-
scription of an algorithm as currently used in LitlO, i.e., to emphasize the correctness
and the efficiency of the described algorithm. However one of the experts suggested a
different approach by putting emphasis on the design issues. The attribute quality of a
design reasoning can be decomposed into ““story’” organization (i.e., appropriate separa-
tion of concerns, introducing appropriate concepts and notations), effective reuse of prior
knowledge (e.g. standard algorithms and data structures) and the level of formality and
convincingness. This decomposition seems to be more attractive as it puts emphasis on
the design issues to reveal which is the main purpose of the written material rather than
serving as double award or punishment for incorrect or inefficient solutions.

With shift of emphasis there still remains the question whether correctness and effi-
ciency of design decisions should be evaluated or not. As this is the only place in the

150 J. Skupiené

Liinformance 1 | ask
Desorspaom pequlnein eas
Chiakety of 3 Sulbnmissan
Fi Salminn .
Pl lmpement § St ol Tess
i m alli
.
I!" Ty
Chadsty of Hesomme for e 5 " -"l
Lhzsign .r"lmr 'II"' ia Chuakey ol Dialivy il St of
Lompiled Cole Froprmmming '\1':.|.' T i

Sepaning oo
il i

Fursiienel
L iness

R e ol priod

Kivirialeslipe

Formamy

Lonvincingness

A

Fig. 5. The improved attribute level of evaluation model.

model where solution idea is evaluated explicitly (it is evaluated implicitly when testing
the implementation), we decided to leave this as a sub-attribute.

Because tests were included into the submission, some attributes should reflect this.
Three sub-attributes can be measured about a test set. They are test validity and belonging
to some category (measured about each test separately) and the completeness of the whole
test set.

The attribute conformance to the requirements of the task description was suggested
by several experts. The attribute should be in the form of a checklist and also might act
as the coordinator between other attributes. For example the item of this attribute might
be the correspondence of the reasoning for design to the implementation.

None of the experts suggested time spent on solving the task as an attribute, which is
common in ACM-ICPC style competitions where each minute from the contest starting
time till the moment the submission is accepted is turned into one penalty point (ACM-
ICPC) or if formulated in a more positive way — the participant gets a bonus for each
minute from the submission time till the end of the contest (Myers, 1986).

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 151

4. The choice of Metrics for the Attributes

The proposed evaluation model suggests five attributes that can be measured to evaluate
the quality of the submission. Some of those attributes require manual grading. All the
experts provided suggestions regarding measuring performance of compiled code. About
half of the experts provided suggestions for the metrics for measuring other attributes.
We will review all the attributes one by one.

Quality of Reasoning for Design

Four sub-attributes were identified in the reasoning for design: separating concerns and
introducing notations, reuse of prior knowledge and formality and convincingness, cor-
rectness and efficiency. All these sub-attributes require manual grading. A concrete grad-
ing scheme presenting a taxonomy of various approaches to solving the problem should
be developed for each task. While it is accepted that tests are designed prior to the contest
and not changed during evaluation, the taxonomy for grading reasoning for design might
have to be adapted during grading as blind spots might be discovered. This resembles
IMO grading (Verhoeff, 2002).

There were many suggestions to include clarity and understandability in the evalua-
tion model. However clarity and understandability seemed to be more important in the
previous model, where the only other sub-attributes were correctness and efficiency. In
this model, clarity as separate metrics seems to be less important.

Performance of Compiled Code
Three sub-attributes were identified in the performance of the compiled code: functional
correctness, time efficiency and memory efficiency. All the three sub-attributes are part

Table 1
Suggestions for metrics to measure quality of reasoning for design

Metrics Human/ Scale Comments
automated
measuring
Level of clarity and Human Ordinal scale Applies to whole attribute;
understandability might influence other scores
of this attribute
Level of story organizationand Human Ordinal scale Proper taxonomy should be
concern separation developed for each task
Level of reuse of prior Human Ordinal scale
knowledge
Level of convincingness and Human Ordinal scale
formality
Level of correctness of design Human Ordinal Scale
decisions
Level of efficiency of design Human Ordinal Scale

decisions

152 J. Skupiené

of current evaluation model and the experts approved the current metrics.

It is accepted to check functional correctness automatically using black-box test-
ing strategy, even though this does not guarantee that all the faults will be discovered
(Williams, 2006). Each submission is executed with each test input. The test is consid-
ered to be passed successfully if the program finishes its execution within given time and
memory limits and provides correct output to the input. Time and memory efficiency is
measured indirectly. Tests are designed in such a way that they would benchmark solu-
tions with different time or memory efficiency, i.e., the solutions with a certain efficiency
are expected to pass a certain subset of tests. However, if the program fails while exe-
cuting some test, then in general without closer analysis it is not possible to determine
whether it failed due to functional incorrectness or due to low time or memory efficiency.
One of the experts wrote if the program fails correctness tests, most of the time it will
fail the efficiency tests®, not to mention the fact that in some cases the line between an
incorrect solution and an inefficient solution is unclear. It is possible to measure perfor-
mance of the compiled code as an attribute; however it is not always possible to measure
separately each sub-attribute.

Despite it, a majority of the experts suggest to measure two sub-attributes separately,
i.e., to differentiate the tests into functional correctness and efficiency tests (both effi-
ciency sub-attributes should be merged). Some required introducing small correctness
tests. Those should test the very basic properties which the submission would have to
solve correctly. l.e., in order to score any points for performance, the program must solve
correctly some very basic case of the whole problem. There also were suggestions to
measure the exact running time of a program with each test (i.e., use it as a metrics) and
take it into account when calculating the score®. In our model we will distinguish correct-
ness and efficiency tests in order to leave room for exploring various score aggregation
models where the points for efficiency tests are related to the points for correctness tests.

There were suggestions to add one more metrics for functional correctness. The ex-
perts suggested to manually identify the programs which do not try to solve the task, but
just output the same answer all the time (e.g. no solution) or just guess the answer (we do
not refer to using randomization as part of solution strategy) and to assign zero score for
performance. Indeed, if there are situations where for some reasons grouping is not used
then this category of submissions may score an inadequate amount of points (Skupiene,
2009a).

Measuring exact program execution time with the purpose to identify its complexity is
a sensitive issue not just due to the choice of test data. Hardware issues, compiler options,
differences between programming language influence program performance.

Different ideas about measuring efficiency were presented in Ribeiro (2009). They
address the difficulties and concerns related to measuring efficiency. The paper suggests
asking to submit functions (procedures) rather than programs and repeating the same
function call several times to increase clock precision and thus decrease input size, which

5We haven’t found corroborating empirical evidence in the literature.
8Exact program execution time is influenced by hardware issues, optimization level, compilers etc., and the
expert had this in mind while suggesting this metrics and afterwards proposing score aggregation.

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 153

Table 2
Suggestions for metrics to measure Performance of the compiled code

Sub-attribute Metrics Human/ Scale Comments
automated
measuring
Functional Does the program try to Human Binary: It makes sense to use the
Correctness solve the task Yes/No metrics only if the tests are
not grouped

Functional Small correctness tests Automatic Binary: All these tests cases should
correctness focusing on specific basic Pass/Fail be solved correctly in or-

categories of input data for each test der to score any points for

performance

Functional Correctness tests focusing ~ Automatic Binary: Grouping test cases was
correctness on different categories of Pass/Fail implied by most experts

input data for each test
Time Efficiency tests sorted into Automatic Binary: Grouping test cases was
efficiency groups to benchmark sub- Pass/Fail implied by most experts
Memory missions of different for each test
efficiency efficiency
Time Efficiency tests sorted into Automatic Ratio: Exact Execution time might be
efficiency groups to benchmark execution used either as binary or as
Memory submissions of different time non-binary metrics
efficiency efficiency for each test

nowadays has become too large and started causing problems. Curve fitting analysis is
proposed to be used to estimate program complexity rather than referring to the number
of passed test cases. However the ideas need further investigation before being included
into the model.

Quality of Programming Style

The quality of programming style has several sub-attributes (consistency, clear layout,
proper naming, suitable substructures, absence of magic numbers and proper comments).
The experts proposed three different metrics for evaluating quality of programming style
and suggested to use both human and automated grading.

One metric assumed evaluating the quality of programming style as a whole, taking
into account all the sub-attributes but not evaluating them separately. This should be hu-
man grading with the grading results presented on an ordinal scale. Another suggestion
was to measure the sub-criteria separately, presenting the results on an Ordinal scale again
and afterwards using each measure to aggregate into one score for quality of the program-
ming style. Actually, there is no need to choose one approach. Both of them can be used
depending upon available resources, as the first approach requires much less time, while
the results based on the second approach would be much clearer to the contestants.

The third approach (suggested by several Lithuanian and foreign experts) included
a combination of human and automated grading; however, it was emphasized that the
possibilities of automated grading of programming style must be researched first and

154 J. Skupiené

Table 3
Suggestions for metrics to measure Quality of Programming Style

Metrics Human/ Scale Comments
automated
measuring
Level of Quality of Human Ordinal scale This metrics should be used iff other
programming style metrics from this table are not used
Level of Consistency Human Ordinal scale Possibilities for replacing/combining
Layout clarity Human Ordinal scale with automated measuring
Level of proper naming Human Ordinal scale might be investigated
Suitability of substructures ~ Human Ordinal scale
Absence of magic Human Binary scale:
numbers Yes/No
Suitability of comments Human Ordinal scale

the proper tools developed. Such an approach is applied in the evaluation procedure of
the Lithuanian maturity exam in programming, and special software was developed for
that. The exam submissions are much simpler in complexity and and shorter in length
than contest submissions and the only available compiler is FreePascal (Skupas, 2008).
However, none of the experts provided concrete metrics for performing this type of semi-
automated grading.

Quality of a Set of Tests
The improved evaluation model suggests three sub-attributes to measure the quality of
the submitted test set. The first sub-attribute is the validity of each test (a pair consisting
of an input and the corresponding output). Test validity means that the input is a valid
input according to task specifications and the output is a correct output to the given input.
The next sub-attribute is test category. Each test should be submitted with motivation,
explaining what category of input it targets. The most sophisticated challenge seems to be
verifying that the provided test really targets the category that it claims to be. Checking
this automatically might require too many resources for some tasks.
The final sub-attribute is completeness. This attribute refers to the whole test set and
it checks to which extent the submitted test set covers the domain.

Conformance to Task Description Requirements
Measuring conformance to task description requirements should be arranged in form of a
checklist. The checklist might depend on the concrete task. In some cases it might be of
secondary importance or not needed at all, but if the absence of some item on the check
list makes it impossible or difficult to evaluate another item, then a low grade for this
attribute will result in a low grade for the other attribute as well. One obvious item to
be included in the check list is the correspondence of the reasoning for the design to the
implementation. Another item to be included is the presence of motivation for test-cases.
The model presented in this paper does not include score aggregation, which is an-
other important part of evaluation in contests. Score aggregation and validating the new

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 155

Table 4
Suggestions for metrics to measure Quality of a Set of Tests

Metrics Human/ Scale Comments
automated
measuring
Test validity Automated Binary: Yes/No

for each input/output pair

Belonging to certain test Manual Binary: Yes/No Motivation is evaluated
category Automated for each test and manually
accompanying motivation
Completeness of whole Automated Percentage of coverage Special plug-in for contest
test set statistics system might be needed
Table 5

Suggestions for metrics to measure Conformance to task description requirements

Metrics Human/ Scale Comments
automated
measuring
A checklist based on the Human Binary: Yes/No The need for this attribute at all and its
specification of the Automated for each item of use in score decision procedure depends
concrete task the checklist upon the concrete task

model by applying it in practice is left to future work. While working on this model, we
tried to be reflective, and discuss and incorporate as many ideas and suggestions as pos-
sible that we found in the responses of the experts, even if they were not included into
the proposed model. The model has room for flexibility and for tailoring through score
aggregation methods.

5. Conclusions

The Lithuanian Informatics Olympiads were started twenty years ago and the evaluation
model has not changed much since olympiads in the computer labs replaced pen and pa-
per contests. The goal of this research was to reconsider the evaluation model. As quality
of a solution is a constructed notion, we invited a group of Lithuanian and International
experts to discuss this concept and suggest an improved evaluation model for the Lithua-
nian Informatics Olympiads. We provided the experts with a description of the Olympiad
structure, scope and resources as well as a three level (submission, attributes, metrics)
hierarchical evaluation model pattern to be discussed and filled.

The experts were representing two trends that can be distinguished in informatics con-
tests. Some of them associate quality of submission with performance of implementation
only, while the others think that a high-quality submission should have both reasoning for

156 J. Skupiené

design and test data to check the implementation. The educational aspect of the Lithua-
nian Informatics Olympiad was the key factor in deciding in favour of the latter concept
of quality of a solution. Two significant changes were introduced into the current model.
The verbal algorithm description which was not related to implementation and empha-
sized correctness and efficiency was replaced by reasoning for the design, which should
be related to implementation and shifted focus to design issues. Another new aspect was
introducing a test set as part of a solution. As a result of this work, an improved evalua-
tion model is proposed for the Lithuanian Informatics Olympiads. In the suggested model
the concept of submission is altered. The attributes that need to be measured about the
submission are identified, as well as metrics to measure each of the attributes. The next
step would be to complete the model by creating a score aggregation algorithm and to
propose adopting it in LitlO.

Finally, I would like to thank all the experts very much for their cooperation and useful
ideas.

References

ACM-ICPC International Collegiate Programming Contest.
Accessed at: http://cm.baylor.edu/welcome. icpc

Basili, V., Caldeira, G., Rombach, H.D. (1994). The goal question metric approach. In: Marciniak, J. (Ed.),
Encyclopaedia of Software Engineering. Wiley.

Berander, P, et al. (2005). Software quality attributes and trade-offs. In: Lundberg, L., Mattson, M., Wohlin, C.
(Eds.), BESQ - Bleckinge Engineering Software Qualities. Blekinge Institute of Technology. Accessed at:
http://www.bth.se/tek/besqg.nsf/pages/017bd879b7c9165dc12570680047aae2!
OpenDocument

Blonskis, J., Dagiené, V. (2006). Evolution of informatics maturity exams and challenge for learning program-
ming. In: Mittermeir, R.T. (Ed.), Informatics Education — The Bridge between Using and Understanding
Computers, Lect. Notes in Computer Science, Vol. 4226, 220-229.

Bundeswettbewerb Informatik. Accessed at: http: //www.bwinf.de/

(2009). CEOI°2009 — The 16°th Central European Olympiad in Informatics. Accessed at:
http://www.ceoi2009.ro

Cormack, G. (2006). Random Factors in 101 2005 test sase scoring. Informatics in Education, 5(1), 5-14.

Croshy, P.B. (1979). Quality is Free: The Art of Making Quality Certain. New York, McGraw-Hill Education.

Dagiene, V., Skupieng, J. (2007). Contests in programming: quarter century of Lithuanian experience.
Olympiads in Informatics: Country Experience and Developments, 1, 37-49.

Dagiene, V., Skupieng, J. (2004). Learning by competitions: olympiads in informatics as a tool for training high
grade skills in programming. In: Boyle, T., Oriogun, P., Pakstas, A. (Eds.), 2nd International Conference on
Information Technology: Research and Education. London, London Metropolitan University, 79-83.

Deming, W.E. (1990). Out ot the Crisis: Quality, Productivity and Competitive Position. Cambridge Univ. Press.

ForiSek, M. (2006). On the suitability of tasks for automated evaluation. Informatics in Education, 5(1), 63-76.

Grigas, G. (1995). Investigation of the relationship between program correctness and programming style. Infor-
matica, 6(3), 265-276.

Hoyer, R.W., Hoyer, B.B.Y. (2001). What is quality? Quality Progress, 7, 52-62.

101 - International Olympiad in Informatics. Accessed at: http://ioinformatics.org/

Lundberg, L., Mattson, M., Wohlin, C. (Eds.) (2005). Software Quality Attributes and Trade-offs. Blekinge
Institute of Technology. Accessed at:
http://www.bth.se/tek/besqg.nsf/pages/017bd879b7c9165dc12570680047aae2!
OpenDocument

Mare$, M. (2007). Perspectives on grading systems. Olympiads in Informatics: Country Experiences and De-
velopments, 1, 124-130.

Improving the Evaluation Model for the Lithuanian Informatics Olympiads 157

Myers, D., Null, L. (1986). Design and implementation of a programming contest for high school students. In:
Proceedings of the Seventeenth SIGCSE Technical Symposium on Computer Science Education, 307-312.

Pohl, W. (2008). Manual grading in an informatics contest. Olympiads in Informatics, 2, 122-130.

Poranen, T., Dagieng, V., Eldhuset, A., Hyyrd, H., Kubica, M., Laaksonen, A., Opmanis, M., Pohl, W.,,
Skupieng, J., Soderhjelm, P., Truu, A. (2009). Baltic olympiads in informatics: Challenges for Training
Together. Olympiads in Informatics, 3, 112-131.

Ribeiro, P., Guerreiro, P. (2009). Improving the automatic evaluation of problem solutions in programming
contests. Olympiads in Informatics, 3, 132-143.

Skienna, S., Revilla, M. (2003). Programming Challenges — the Programming Contest Training Manual.
Springer-Verlag, New York.

Skupas, B. (2008). Is automatic evaluation useful for the maturity programming exam. In: Koli Calling 2008,
Proceedings of 8th International Conference on Computing Education Research, 117-1178.

Skupieneé, J. (2009a). Assessment of solutions of Lithuanian informatics olympiads from the point of view of
software quality model. Accepted for publication in Information Sciences.

Skupiené, J. (2009b). Credibility of automated assessment in Lithuanian informatics olympiads: one task anal-
ysis. Accepted for publication in Pedagogika.

Skupiené, J. (2006). Programming style — part of grading scheme in informatics olympiads: Lithuanian expe-
rience. In: Information Technologies at School. Proceedings of the Second International Conference ”Infor-
matics in Secondary Schools: Evolution and Perspectives”. Vilnius, 545-552.

Skupieng, J. (2004). Automated testing in Lithuanian informatics olympiads. In: Informacinés technologijos
2004, Konferencijos praneSimy medziaga, Kaunas, Technologija, 37-41.

TopCoder Algorithm Competition. Accessed at: http: //www. topcoder.com/tc

Verhoeff, T. (2006). The 10l is (not) a science olympiad. Informatics in Education, 5(1), 147-158.

Verhoeff, T. (2002). The 43rd International Mathematical Olympiad: A Reflective Report on IMO 2002. Com-
puting Science Report 02-11, Faculty of Mathematics and Computing Science, Eindhoven University of
Technology. Accessed at:
http://www.win.tue.nl/~wstomv/publications/imo2002report.pdf

Williams, L. (2006) Testing Overview and Black-Box Testing Techniques. North Carolina State University De-
partment of Computer Science. Available at:
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf

J. Skupiené is a younger research fellow in the Informatics Methodology Department
in the Institute of Mathematics and Informatics. She is a member of the Scientific Com-
mittee of National Olympiads in Informatics since 1994 and a Lithuanian team leader
in International Olympiads in Informatics since 1996. For a few years she was direc-
tor of studies of Young Programmers’ School by Correspondence. Since 2004 she has
been a coordinator of Informatics section in the National Academy of Students. She is
author/co-author of three books on algorithmic problems for informatics contests. Her
research interests include informatics and algorithmic contests, teaching informatics and
computer science in secondary education.

158 J. Skupiené

Sprendimu vertinimo Lietuvos mokiniy informatikos olimpiadose
modelio tobulinimas

Jurate SKUPIENE

Lietuvos mokiniy informatikos olimpiados yra mokiniams skirtos algoritmavimo ir programa-
vimo varzybos. Olimpiaduy dalyviai vertinimui pateikia algoritmus, sprendzZiancius duota uzdavini
ir realizuotus veikianCiomis programomis viena i$ nurodyty programavimo kalbu.

Vertinant darbus, vienus aspektus (programavimo stiliu, sprendimo idéjos apraSyma) vertina
vertintoju komanda. Tuo tarpu pateikty programy teisingumas ir efektyvumas vertinamas jas au-
tomatikai testuojant su i$ anksto parinktais pradiniy duomeny rinkiniais. Si vertinimo schema
paremta metodiniais samprotavimais ir ilgamete tradicija, taiau nebuvo analizuota ir pagrista mok-
sliniais metodais.

Siekdami pagerinti ir moksliSkai pagristi olimpiadose naudojama vertinimo schema, sudaréme
vertinimo modelio Sablona bei anketa ir pakvieteme dalyvauti grupe Lietuvos ir uZsienio eksperty,
turinCiy ilgamete patirti organizuojant bei vertinant jvairaus lygmens algoritmavimo olimpiadose
bei konkursuose.

Eksperty siulyti vertinimo modeliai buvo dviejy tipu ir remdamiesi Lietuvos informatikos
olimpiadu edukaciniais tikslais, pasirinkome viena Siy krypciu. Konstruodami vertinimo modeli
stengémes kiek galima daugiau atspindéti eksperty pateiktus siulymus bei idéjas. Straipsnyje placiai
aptariama dauguma eksperty siulomy aspektu net jei ju ir neitraukéme i vertinimo modelj. Svar-
biausias Sio straipsnio rezultatas — siulomas patobulintas sprendimy vertinimo Lietuvos infor-
matikos olimpiadose modelis.

