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Abstract. In this paper we report a study in which we have developed a teaching cycle based 
closely on Bloom’s Learning for Mastery (LFM). The teaching cycle ameliorates some of the prac-
tical problems with LFM by making use of the STACK online assessment system to provide au-
tomated assessment and feedback to students. We report a clinical trial of this teaching cycle with 
groups of university level engineering students. Our results are modest, but positive: performance 
on the exercises predicted mastery according to the formative tests to a small extent. Students also 
report being supportive of the use of the new teaching cycle.
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1. Introduction 

This research is motivated by the remarkable observation of (Bloom, 1984) that students 
taught by an individual tutor achieve test scores which are two standard deviations better 
than students who attend traditional classroom teaching. Learning for Mastery (LFM) 
is an educational philosophy proposed by Bloom as a partial solution to the problem of 
finding resources for individual tutorials. However, Learning for Mastery also has prac-
tical problems. Current automatic computer aided assessment (CAA) of mathematics 
has reached a level of sophistication which suggests some of the practical problems with 
LFM might be overcome, and this is what we set out to investigate. Can the practical 
problems traditionally associated with implementing Bloom’s Learning for Mastery be 
overcome effectively with online CAA in mathematics? In this paper we report a study 
in which we have developed a teaching cycle based closely on Bloom’s LFM, making 
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use of online assessment. We report a study to investigate whether we see any significant 
learning gains using CAA and our LFM approach.

In Section 2 we provide a theoretical background to LFM and discuss contemporary 
CAA of mathematics in more detail. Our precise research questions are given in Sec-
tion 3. Section 4 provides details of the methodology undertaken to address our research 
questions. Results in Section 5 precede the final discussion.

2. Background

2.1. Mathematics for University Engineers 

All university engineering students learn mathematics as a core part of their undergradu-
ate education. Engineering mathematics curricula have been well-developed as an ongo-
ing international collaboration, see (Barry and Steele, 1992, Mustoe and Lawson, 2002, 
Alpers, 2013). The resulting framework includes content and concepts, but goes well 
beyond this to include competencies. Indeed, (Alpers, 2013) opens the executive sum-
mary of the most recent framework document by arguing that “the main message of this 
new edition is that although content remains important, knowledge should be embedded 
in a broader view of mathematical competencies.” The phrase “mathematical competen-
cies” means that a student has proficiency in a set of interrelated mathematical skills. 
The previous work of (Kilpatrick et al., 2001; p. 116), for example, identified conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning and pro-
ductive disposition as five important strands.

2.2. Mastery Skills 

We separate mathematical skills (loosely) into two groups: mastery and problem solv-
ing skills (for related discussion, see (Burkhardt and Swan, 2007) and (Rasila et al., 
2015)). The essential distinction is that mastery skills are rarely the end goal, rather 
they form part of a subsequent wider task. These skills form a loose hierarchy: weak 
basic conceptual and procedural skills seriously hinder a student’s ability to formulate 
and solve mathematical problems. (Skemp, 1971), for example, framed the discus-
sion of this issue in terms of a schema: “inappropriate early schemas will make the 
assimilation of later ideas much more difficult, perhaps impossible”, (Skemp, 1971; 
p. 51). Note that mastery skills are framed within a particular context and the goals of 
instruction.

Mastery skills are emphatically not confined to the lower order tasks, such as re-
call of knowledge. Mathematics is highly structured: as a specific example, writing a 
rational expression using partial fractions require students to look ahead to anticipate 
the consequences of their choices. Symbolic integration, in turn, relies on choosing par-
ticular algebraic forms, including re-writing rational terms as partial fractions. In this 
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context, multi-step partial fractions and symbolic integration techniques are mastery 
skills precisely because successful implementation of these skills are not the end point 
for engineers.

We also include basic deductive reasoning as a mastery skill, at least to the extent 
that the student should understand the role of assumptions, conclusion, particular/uni-
versal statements, etc. Without these it is impossible to create even modest chains of 
reasoning needed to apply more complex methods and procedures, typically taught to 
engineering students. Furthermore, the distinction between “reasoning” and “computa-
tion” is not entirely clear. Indeed, Boole’s programme was to transform some forms of 
logical reasoning into a computation, precisely to help mathematicians gain mastery of 
this notoriously difficult topic, (Inglis and Attridge, 2017).

We should also delineate via examples what is not a mastery skill. Problem solving 
skills are often applicable more widely, and are affective in nature (e.g. resilience) rather 
than framed in terms of specific knowledge schemas. Problem solving skills can often 
only be evaluated in terms of qualitative better-worse judgements, rather than right-wrong 
absolute judgements. There is a substantial body of work on the learning of teaching of 
problem solving skills, from the reflective work of (Polya, 1962), through the empirical 
studies such as the work of (Schoenfeld, 1985) and to more specialist contemporary dis-
cussion, such as pedagogy for engineers (Michalewicz and Michalewicz, 2008). Since 
effective problem solving is normally considered to be an important part of the end goal, 
we do not include these skills within mastery skills. Similarly, skills which do not form 
part of subsequent wider tasks are also not included within mastery skills. Depending on 
the goals of the course, mastery skills may include both pen/paper calculations and the 
use of tools like CAS or even programming environments like MATLAB.

2.3. Teaching, Assessment and Learning for Mastery 

Different areas of mathematical proficiency require different learning strategies, e.g. 
conceptual and procedural abilities are typically learned though conscious practice of 
exercises. Assessments, particularly high-stakes examinations, are often cited as impor-
tant drivers of students’ learning by providing strong extrinsic motivation. We acknowl-
edge that high-stakes school examinations have been criticised for privileging proce-
dural items over conceptual e.g. (Iannone and Simpson, 2012; Noyes et al., 2011). At 
universities (Tallman et al., 2016) found that little had changed in the last twenty five 
years: the majority of items required students to recall and apply a rehearsed procedure 
and few required conceptual understanding or problem solving. This emphasis on proce-
dural items is partly explained by the ease with which they can be produced and scored 
(Swan and Burkhardt, 2012), indeed compared to other subjects scoring reliabilities tend 
to be high in mathematics (Brooks, 2004). For further discussions of mathematical tasks 
see (Smith et al., 1996), (Pointon and Sangwin, 2003), (Watson and Ohtani, 2015) and 
(Foster, 2013).

The review of (Bloom, 1984) considered research which compared different forms 
of teaching. (Bloom, 1984) reports that individual tutoring resulted in student achieve-
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ment which is two standard deviations better than that of students who attend traditional 
classroom teaching. To close this gap (Bloom, 1984) devised and evaluated a teaching 
intervention called Learning for Mastery (LFM). In LFM students are regularly tested 
by using formative tests and students are required to demonstrate a correct answer to 
90% of the test problems, i.e. demonstrate “mastery”. When a student falls short of 
mastery further teaching and testing is repeated, several times if necessary. Bloom’s 
Learning for Mastery has been well-studied, with a number of independent studies re-
porting significant positive effects, e.g. (Anderson et al., 1995), and see (Hattie, 2012) 
for a review.

One of the practical impediments to LFM is the difficulty faced by the teacher who 
has to orchestrate the work of many students who are potentially all at different stages. 
They also potentially have to devise different but related formative tests. In traditional 
settings such extensive testing is still impractical. Certainly in typical university entry-
level mathematics courses, with hundreds of students, this will be impossible. Online 
assessment has the potential to remove this practical barrier. However, mastery learn-
ing can lead into surface-oriented learning strategies, especially if formative testing is 
mainly based on multiple choice questions. Our interest in this topic arose because of the 
potential we see with contemporary online assessment in mathematics.

The current research is based on experiences gained in previous projects, such as 
(Rasila et al., 2010) where we started to work with the online learning system STACK as 
a tool for learning basic calculation techniques for engineering students, and (Majander 
and Rasila, 2011) where we tried to use formative assessment (much in the sense of 
Bloom) to improve students’ motivation to participate in the course activities. However, 

Fig. 1. A comparison of Bloom’s Learning for Mastery (LFM) cycle and our model.
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this previous work lacked the corrective measures associated with Mastery Learning, 
which we report here. Besides improving learning outcomes, we are also interested in 
finding objective assessment methods suitable for distributed and distance learning (cf. 
(Rasila and Malinen, 2016)).

2.4. Online Assessment for Mathematics 

Computer aided assessment is well established and widely used to support the teaching 
and learning of mathematics. There is over a quarter of a century of experience develop-
ing automatic online assessment of mathematics: an early review is given by (Beevers 
et al., 1991) and a more recent review in (Sangwin, 2013).

The current technical state of the art in online assessment of mathematics focuses 
on accepting a final answer from students and automatically establishing mathemati-
cal properties. This goes well beyond relying on multiple choice (and similar question 
types) which have the well-known difficulties discussed by, e.g. (Sangwin and Jones, 
2017). For example, if a student enters an algebraic expression the teacher will have 
specified in advance that the computer should seek to establish algebraic equivalence 
with the correct answer. They may also additionally, and separately, seek to establish 
that it is written in a particular algebraic form, such as factored. Normally, there are a 
variety of correct answers, e.g. ( ‒ 1)( + 2) or ( + 2)( ‒ 1) could be acceptable. 
Here ( + 1)( ‒ 2) is not equivalent to the correct answer, but is in factored form, and 
it is typical of systems to create specific feedback for students.

The following features are now typical in many, if not most, mathematical systems.
Questions are randomly generated in a structured way using computer algebra  ●
systems (CAS). Normally the question and steps in a fully worked solution are 
reverse engineered from the teacher’s answer. Quiz management components can 
also randomly select from a question bank to create an activity for an individual 
student.
Students provide the final answer in the form of a mathematical expression, e.g. an  ●
equation, rather than responding to multiple choice questions. It is not yet typical 
to automatically assess a complete argument or proof.
Objective mathematical properties of answers are automatically established, e.g.  ●
algebraic equivalence with a correct answer.
Outcomes are automatically generated (including feedback) which fulfil the pur- ●
poses of formative and summative assessment.
Data on all attempts at one question, or by one student, are stored for later  ●
analysis.

The ability to randomly generate similar questions is particularly important for mas-
tery learning. Previous experience suggests the high value to students of the correspond-
ing worked solutions, which provide a model from which students can base their answer 
to subsequent similar versions.

Many example systems provide the features we have outlines above. This project 
made used of the STACK online assessment system described in Section 4.3. STACK 
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is based on a computer algebra system, as is a commercial alternative MapleTA 
https://www.maplesoft.com/products/Mapleta/ (retrieved Jan 2018). The 
NUMBAS project https://www.numbas.org.uk/ (retrieved Jan 2018) aimed for 
light-weight portable code, and does not call a third party computer algebra system. 
There are important differences between the systems, e.g. STACK consciously sepa-
rates out “validity” from “correctness”. Feedback on validity is always provided by 
STACK, whereas correctness might be immediately assessed in a formative setting but 
delayed during an online examination. In some questions floating point numbers might 
be forbidden as approximations, in other questions it may be impossible to establish 
if a student has answered correctly if they provide too few significant digits. Informa-
tion on the context helps students understand what type of answer is expected and 
this has been found to significantly reduce the extent to which students are penalized 
on a technicality. Many other systems have a single feedback mechanism, combining 
information on context validity with the overall assessment. At the current stage of de-
velopment each project has its particular strengths, and particular features. WebWork 
http://webwork.maa.org/ (retrieved Jan 2018), for example, has a large question 
bank of tested materials. Most systems have the features listed above in common.

While these systems do not (yet) fully assess complete solutions provided by stu-
dents, we are aware of a number of parallel developments to implement checking of 
“line by line” working in many procedural situations. STACK has this feature for 
algebraic arguments, as do other software such as the SOWISO project https://
calculus.sowiso.nl/ (retrieved Jan 2018). In the near future checking of line by 
line reasoning, and simple logic, is likely to also become standard.

3. Research Questions 

In this paper we report an action research study to investigate the following research 
questions:

To what extent is STACK suitable for implementing Learning for Mastery?1. 
Can mastery be predicted from the STACK exercise data for formative tests?2. 

Lastly, we are interested in how students react to the STACK online tests used in our 
learning model.

4. Methodology

4.1. Adapting Mastery Learning for an Online Environment 

LFM suggests pairing formative assessment with appropriate correctives and we are 
interested in whether the traditional practical problems with implementing LFM can be 
overcome effectively with online assessment. In pursuing our investigation of LFM in 
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an online context we have adopted a Design Research paradigm, aligned with the criteria 
of (Collective, 2003).

The learning environments and the developing theories are connected and inter- ●
twined.
Research and development take place through iterative and continuous cycles of  ●
design, enactment, analysis, and redesign.
Research on design should yield to sharable theories that can facilitate com- ●
munication between the practitioners and educational designers about possible 
implications.
Research must account for how designs function in authentic settings. ●
The development of such accounts relies on methods that can document and con- ●
ceptualize processes of enactment to outcomes of interest.

Indeed, putting these characteristics in the context of our study we have combined a 
theoretical idea of (Bloom, 1984) with the design of contemporary online learning en-
vironments, taking advantage of automatic feedback correctives required by the theory 
but only recently available in a practical setting. Our study takes place in a real-world 
setting. Indeed, unlike (Bellhäuser et al., 2016) who reported randomised control trials, 
we implemented our LFM scheme in a mainstream core course.

Bloom’s Learning for Mastery model was adapted in our study using weekly online ex-
ercises and formative tests to assess mastery in core skills. As a result, the methodology in 
this study differed in some ways from the original LFM model. In LFM, mastery is assessed 
only with formative tests, which usually come in the form of invigilated multiple-choice 
questionnaires with different versions for reattempts. In Bloom’s original implementation 
this was limited to two attempts. In this study mastery was assessed with online exercises. 
The same formative test was used for each attempt, with the possibility of a random ver-
sions of the quiz generated for each attempt. The formative test was given the name “prac-
tice exam” during the course, since this term was more familiar to the students.

The learning units were slightly extended to readjust the workload from the forma-
tive tests. Also, some of the higher-order learning objectives in the course were not 
covered by the formative tests or online exercises, as automatic assessment of these are 
difficult without, in our view, fatally compromising the test validity. Since the online 
component of the course covered mostly procedural skills, a new “guided discovery” 
type of project work was introduced for the exercise sessions to provide students with a 
balance of assessments during their course. This consisted of four paper-based assign-
ments and a final report about the mathematics of harmonic oscillation.

Our current study used the automatic feedback generated by STACK questions as the 
primary corrective. The formative test items were also paired with thirdparty videos of 
similar worked examples, which were made available after the first submission of the 
test. Indeed, (Hodges and Murphy, 2009) found that vicarious experience was one of the 
most important factors, and these videos provide some vicarious experience in an online 
environment that might be provided in person during traditional lecturing. We also believe 
that students who had already gained mastery would gain some benefit from taking the for-
mative test anyway. Lastly, we note that in the absence of a control group and proper pre/
post-tests, the effectiveness of mastery learning itself was not considered in this study.
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4.2. Courses Selected for the Study 

Calculus I (MS-A010x) is a six-week (5 ECTS credits) compulsory course for science 
and engineering students at Aalto University covering single variable differential and 
integral calculus and ordinary differential equations. The course is offered separately 
for each degree programme, but with similar content. MS-A0106 (for student majoring 
in mechanical and construction engineering) and MS-A0107 (for students majoring in 
chemical engineering) were selected for this study, which took place as part of the con-
tinuing Aalto Online Learning (A!OLE) strategic development project coordinated at 
the Aalto University School of Science. The courses consisted of four hours of lectures 
and exercise sessions per week, weekly online exercises, paper-based assignments, for-
mative tests at the end of learning units and a paper-based final exam. The course was 
divided into two three-week learning units, with the first unit covering limits, series and 
differential calculus and the second unit integral calculus and ODEs.

The course content included analysis of sequences and series, approximation of 
functions by series. Students were expect to be able to differentiate and integrate basic 
functions, and use these techniques in simple applications. The course included first or-
der linear and separable differential equation, and second order linear differential equa-
tions with constant coefficients. Specifically, the course used (Adams and Essex, 2013) 
as the textbook and the defacto syllabus including material from chapters 1,2, and 3–12 
inclusive.

4.3. Online Assessment of Mathematics with STACK 

Our study adopted the STACK online assessment system. STACK has sustained develop-
ment and use for over a decade with significant contributions of code from Aalto Univer-
sity Finland (see (Sangwin, 2013; Chapter 8) and, for very recent work (Harjula et al., 
2017)), the United Kingdom Open University and latterly the University of Edinburgh 
in Scotland. STACK was originally developed for Moodle but has been ported to ILIAS 
(see http://www.ilias.de, retrieved Jan 2018) and is used in other systems, including 
Blackboard, through the LTI protocol. See https://stack.maths.ed.ac.uk/demo 
(retrieved Jan 2018). STACK was developed by the last author, and the experimental 
study reported in this paper was undertaken by the first two authors at an independent in-
stitution. The key features of STACK include its mathematical sophistication, and the full 
authoring interface which aims to give teachers a wide range of options in a way which 
still makes writing learning materials practical.

STACK is used reliably with thousands of users on over 700 registered Moodle 
sites. For example, at the United Kingdom Open University during the academic year 
2015–2016, students attempted over 880,000 questions on seven modules. The STACK 
question type accounted for approximately 15% of all questions used, and is second 
only to multiple choice in popularity (at 35% of all questions). There are a number of 
large international projects such as the Abacus https://abacus.aalto.fi/ (re-
trieved Jan 2018) multi-lingual material bank which makes use of STACK, (Rasila, 
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2016). Other projects include (Barbas and Schramm, 2016), (Mäkelä et al., 2016) and 
(Paiva et al., 2015), and publishers are increasingly supplementing textbooks with on-
line assessments such as (Coletta, 2010) which has 600 online homework problems 
written with STACK.

4.4. Description of the Procedure 

New STACK questions were developed for the formative tests and weekly online exer-
cises and the same set of questions were used on both courses. The mastery threshold 
was set to a minimum of 75–80% of the points available in the weekly exercise or 
formative test. Neither the online exercises or formative tests were strictly compulsory, 
but in line with much teaching in mathematics, both contributed a small proportion of 
the final course grade. Including reattempts, only points above each mastery threshold 
were awarded, and we refer to this as the mastery bonus point scheme. We intended and 
anticipated that all students would achieve mastery, and so these points will be above 
80% and will contribute a small proportion of the final course grade. As a result, these 
points had a minimal effect differentiating course grading, and should be considered 
primarily as formative assessment.

The online exercises and formative tests had slightly different functions and were 
setup accordingly. While both gave feedback on the progress of a student’s learning, 
the online exercises were meant for initial practice, while the formative test was to en-
sure that mastery in those skills had actually been gained and retained. In both cases 
questions could be reattempted an unlimited number of times without penalties, but in 
exercise questions the feedback was immediate, whereas in the formative tests it was 
deferred until submission of the entire test.

Fig. 2. An example of a STACK question used on the course.
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The weekly online exercises were due on a Sunday, and consisted of five questions 
related to the lectures of the week. The formative tests could be taken at the end of the 
learning unit before the next lecture or course exam, and the use of calculators, text-
books or other accessories were discouraged although not controlled. The first formative 
test included four and the second five items.

5. Results 

95 of 134 enrolled students in MS-A0106 and 118 of 198 enrolled students in MS-
A0107 consented to the use of their data for this study. Of these students, 176 in the 
first learning unit and 168 in the second had opened all the weekly quizzes and the 
formative test at least once, which was counted as an attempt. These were used for 
predictive modeling.

Individual STACK item scores and numbers of attempts were extracted from the 
Moodle learning management system using a purpose-made export tool. This data 
was then imported to R for analysis. Both the data from STACK and course feedback 
was used to determine the suitability of STACK for implementing mastery learning. 
We implemented predictive modelling with various different classification methods 
and pre-processing with the help of the caret R package. Performance was evaluated 
with ten-fold cross validation with three repeats. Similar results were achieved with 
many of the methods. The results from logistic regression (‘glm’ in caret) are pre-
sented here.

Mastery was defined as achieving a score of 4 out of 5 (80%) or 3 out of 4 (75%) on 
a weekly quiz or formative test. Initial mastery denotes the percentage of students who 
had achieved mastery on the first attempt, and eventual mastery those who achieved 

Table 1 
Percentages of students who had gained mastery

W1 W2 W3 FT1 W4 W5 W6 FT2

Initial mastery 
MS-A0106 13% 22%   7% 47%   6% 11%   8% 52%
MS-A0107 22% 25% 10% 44%   7% 13%   3% 38%
Both 18% 24%   8% 45%   6% 12%   6% 44%

Eventual mastery
MS-A0106 92% 95% 85% 95% 79% 90% 90% 98%
MS-A0107 90% 90% 83% 90% 85% 90% 87% 94%
Both 91% 92% 84% 92% 82% 90% 89% 96%

Difference
MS-A0106 80% 73% 78% 47% 73% 78% 82% 46%
MS-A0107 67% 65% 74% 47% 78% 77% 84% 56%
Both 73% 69% 76% 47% 76% 77% 83% 52%
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mastery on any attempt. The difference between initial and eventual mastery is the 
percentage of students who gained mastery after the first attempt. The mastery statistics 
are presented in Table 1. On average, 88% of quiz and 94% of formative test takers 
achieved mastery eventually. Initial mastery was achieved by 12% on quizzes and 45% 
on formative tests. As could be expected, the level of initial mastery was higher on the 
formative tests than on the quizzes. It was however significantly lower than the even-
tual mastery on quizzes would suggest.

When the pen-and-paper examination scores were compared against initial mastery 
on the second formative test (Fig. 3), a difference of 0.51 standard deviation in mean 
test scores was found. This would further suggest that eventual mastery is not entirely 
equivalent to initial mastery.

5.1. Qualitative Questionnaires 

The MS-A0106 course feedback questionnaire included four likert-scale questions con-
sidering the ML model used on the course, and a summary of results is shown in Table 2. 
The feedback was mostly in favour of the model.

The “mastery bonus point scheme” (that is where no points are awarded below mas-
tery) seemed to encourage (40% of respondents) more than discourage (14%) practice. 
37% found the formative tests very useful, while only 5% found the formative tests not 
useful at all.

The videos that served as correctives on the formative tests were also found useful 
(91%) by those who had watched the videos (26%). It is unclear why so many chose 
not to watch the videos, but the figure should be nonetheless compared to the level of 
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initial mastery (50% on average in MS-A0106), as they were only watchable after the 
first attempt.

As the formative tests were meant to be solved without the aid of calculators or 
learning materials, but were not invigilated, activities which might be considered as 
`cheating’ caused some concern. A majority (84%) of students admitted using acces-
sories like calculators and books during the formative test occasionally, although only 
13% reported this often. Judging from the mass of erroneous answers even to the ques-
tions easily solvable with a CAS, it would seem that at least the first attempt was usually 
relatively sincere.

In the responses to the question “Which things were good on the course? What pro-
moted your learning?” parts of the LFM model were commended. Almost all of the 74 
responses mentioned exercises or exercise sessions in some way. 18 mentioned STACK 
exercises specifically and 8 the formative tests. Some examples (translated from Finnish 
to English by us) were:

STACK exercises and practice exams were a good addition. Altogether 
all kinds of extra homework helps, since in my case drilling the basics 
should be emphaised a bit more before moving on to applications.

The middle exams gave a good sense of how well you have mastered 
the course content.

The practice exams forced [me] to revise.

Also the mastery-oriented bonus point scheme got mentioned:

A good thing on the course was that the STACK exercises were, in a 
way, mandatory.

There was also a counterpart to the previous question (Which things were bad / didn’t 
work? What hindered your learning? ). The 68 responses were mostly focused on the 

Table 2
Mastery learning -related questions from the course feedback questionnaire (89 respondents)

 1 2 3 M SD

Were the practice exams useful? 
   1) not at all  2) somewhat  3) very

  5% 58% 37% 2.3 0.6

Were the practice exam related videos useful?* 
   1) not at all  2) somewhat  3) very

  9% 41% 50% 2.4 0.7

Did you use accessories (calculators, books etc...) in 
the practice exam? 
   1) never  2) a few times  3) often

15% 71% 13% 2.0 0.5

Mastery bonus point scheme (0 points if less than 
80% done) had mostly . . . to my practice 
   1) a negative effect  2) no effect  3) a positive effect 

14% 47% 40% 2.3 0.7

                 * - including only those who reported watching the videos (26% of formative test takers)
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project assignments, lectures and lecture notes. Two students felt there were too many 
different types of activities on the course.

STACK exercises were mentioned to be both too difficult and not challenging 
enough.

... Also some of the STACK exercises were such that I couldn’t find 
even a hint of a “basic exercise” in those. At least the lectures gave 
me no clue of solution models, and sometimes I didn’t get it even after 
the teaching assistant had explained it.

... There were all too many exercises and they all were unchallenging. 
I’d prefer three times less exercises but more challenging ones. Espe-
cially STACK exercises often felt like a waste of time.

The formative tests were not criticised apart from unclear instructions.

5.2. Predictive Modelling 

Predicting mastery on the formative tests based on prior performance on the quizzes 
proved to be more challenging than anticipated.

A notable ceiling effect was observed with the unpenalised quiz points. Simulated 
penalty was later applied with a formula

penalised points = floor (raw points) . 07reattempts                                      (1)

where floor() rounds partial points down towards zero. The formula resulted in a less 
skewed distribution, shown in Fig. 4. The penalised points from quizzes 4–6 also had a 
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higher Spearman correlation (0.51) with the paper exam points than the unpenalised raw 
points (0.40).

It should be noted that actual penalties, or limiting the number of attempts, are likely 
to have some effect on behaviour. High numbers of attempts were observed in some 
cases, suggesting that some students adopt a trial-and-error strategy when such behav-
iour goes unpenalised.

When comparing students’ exercise point sums against initial mastery on the forma-
tive tests, it could be seen that the points provided poor separation between mastery and 
non-mastery. The difference in median points were highest when one reattempt was al-
lowed, but the ceiling effect became apparent with further attempts.

As could be concluded from the data in Table 1, the eventual mastery in the quizzes 
did not translate into initial mastery in the formative tests, and the sum of points did 
not seem to separate mastery and non-mastery either (Fig. 5 and Fig. 6). Therefore, a 
more sophisticated model would be required to tell whether a student would be likely to 
achieve mastery in the following formative test. An attempt was made to construct a unit 
mastery classifier that could ultimately replace the formative tests.

We used various different methods found in the caret R package. Logistic regression 
performed comparably to some of the more advanced methods such as gradient-boosted 
trees and was chosen for the model. Logistic regression has the additional advantage of 
providing class probabilities, which allows us to optimise the classification threshold 
easily. In this case, the cost of a false positive (inadequate learning) could be considered 
greater than that of a false negative (waste of time). 

Data from quizzes 4–6 were used to predict the initial mastery on the second forma-
tive test. In the end, the sum of penalised scores (equation 1) provided the best results. 
It should be noted that the number of complete observations (168 in the second learning 
unit) limits how many predictors can be used without overfitting, and might have been 
the reason why the individual question points and numbers of reattempts did not result 
in a more accurate model. Some pre-processing of the data was also needed, because the 
number of reattempts before success and giving up are measuring essentially different 
things. The exponential penalty scheme (equation 1) was chosen after some experimen-
tation, as this provided a way of reducing points and number of reattempts into a single 
variable and did not suffer from a floor effect as would a linear model. The resulting 
model, predicting that a student would not achieve initial mastery on the second forma-
tive test, had an accuracy of 0.64 which is a small improvement over predicting that no 
student would achieve mastery (0.56).

Table 3
Confusion matrix of the classifier (10-fold cross validation with 3 repeats)

 Actual
Prediction non-mastery mastery

non-mastery 33.7% 17.1%
mastery 18.7% 30.6%
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Fig. 5. When one reattempt per exercise problem was taken into account, exercise points 
between mastery and non-mastery students provided some separation.
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Fig. 6. After five reattempts there is no more Difference in median points.
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6. Conclusion

Is STACK suitable for implementing mastery learning? 
The STACK system is able to assess most of the learning objectives of Calculus I, and 
as such is in theory suited for implementing ML on the course. From a technical per-
spective STACK has many advantages over other similar online assessment systems, 
particularly in the potential to create sophisticated feedback. However, we believe any 
online assessment system accepting algebraic answers as students’ answers is likely to 
generate similar overall results.

The implementation was also proven to work in practice, since on each formative test 
and weekly quiz a considerable portion of students’ achievement was raised from non-
mastery to mastery (69–83% on the quizzes and 47–52% on the formative tests).

Based on the course feedback, students generally approved of the model. The forma-
tive tests were seen as useful and the mastery-oriented bonus point scheme encouraged 
the students as was intended. However, some concern is caused by the fact that eventual 
mastery on the weekly quizzes did not translate to initial mastery on the formative tests, 
and that those who had achieved initial mastery on the second formative test also did 
better on the paper examination. This could be due to a difference between exercise and 
test proficiency.

Solving an exercise problem might be considerably easier than solving the same 
problem in a test situation for a number of reasons. The student may get help from a peer 
or a teacher, does not have to rely only on memorised facts, can check his answer, reat-
tempt and may also be more inclined to use a calculator. Similarly, reattempts of a test 
may also be fundamentally different from the first attempt. 

Even so, there is no definite answer to which one of these is the desired level of pro-
ficiency. The formative tests however do seem to reveal something the exercises alone 
cannot, and thus could be beneficial to learning in any case. The difference between ini-
tial and eventual mastery could also be blamed on the ineffectiveness of the correctives 
or the fact that eventual mastery may have been achieved with the aid of a calculator. 
Paper-based examinations have been refined for many centuries, but using online assess-
ment effectively is in its infancy and further cycles will be necessary to develop a full 
theoretical understanding of all the related issues.

Can mastery according to formative tests be predicted from STACK exercise data?
Performance on the exercises predicted mastery according to the formative tests to a 
small extent, and in this case does not warrant using a predictive model as a replace-
ment for the formative tests. However, the result was still positive and could possi-
bly be further improved with more observations, different independent variables and 
fine-tuning of the model. Some of the considerations from the previous section also 
applies here. Invigilation of the formative tests could make the model training data 
more reliable. Our results also suggest that current STACK based examinations are not 
a completely realistic substitute for pen and paper examinations. This is a rather sig-
nificant result which deserves further attention to investigate whether the problems are 
fundamental to online assessment or if the problems are technical and can be addressed 
by improved software design.
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