
Informatics in Education, 2010, Vol. 9, No. 1, 115–132 115
© 2010 Institute of Mathematics and Informatics, Vilnius

Invariant Based Programming in Education –
An Analysis of Student Difficulties

Linda MANNILA
Department of Information Technologies, Åbo Akademi University
Turku Centre for Computer Science
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
e-mail: linda.mannila@abo.fi

Received: September 2009

Abstract. In this paper, we analyze the errors novice students make when developing invariant
based programs. In addition to presenting the general error types, we also look at what students
have difficulty with when it comes to expressing invariants. The results indicate that an introduc-
tory course utilizing the invariant based approach is suitable from the very beginning of university
studies in CS without being “too advanced”. Although inventing the invariant was not found to
be trivial, the main difficulty faced by novices when applying a correct-by-construction approach
to program development seems to be related to weak skills in translating intuitive and informal
statements into a symbolic form using logical notation in general and quantifiers in particular.

Keywords: invariant based programming, programming education, introductory formal methods,
student difficulties.

1. Introduction

The concept of loop invariants was introduced by Naur (1966) and Floyd (1967) already
in the 1960s. Continuing on their work, Hoare (1969) defined inference rules for correct-
ness proofs based on loop invariants. This development lay the basis for Dijkstra’s (1968,
1976) work on outlining a new programming methodology for writing programs with
built-in correctness proofs. Half a decade later, Gries (1981) wrote a textbook on using
this methodology aimed at education. Dijkstra also discussed the question of how much
formality to include in the computer science (CS) curriculum in the paper “On the cru-
elty of really teaching computer science” (Dijkstra, 1989), a paper which was followed by
many responses collected in “A debate on teaching computing science” (Denning, 1989).

Regardless of the rather early developments, loop invariants and formal techniques
are commonly underutilized in introductory CS courses. There are many other reasons for
this. First, these topics are typically considered difficult, requiring prerequisite knowledge
of advanced mathematics and logic, which students simply do not have (Tam, 1992). As a
result, different, some more informal, approaches for introducing invariants and program
correctness concepts in education have been presented, e.g., (Arnow, 1994; Astrachan,
1991; Evans and Peck, 2006; Ginat, 1995; Tam, 1992). Unfortunately, we have not found
any empirical evaluation of these approaches in the literature.



116 L. Mannila

Moreover, most CS curricula treat the teaching of programming and the teaching of
more formal courses as separate disciplines, where, for instance, logic is viewed as a sep-
arate “add-on” instead of as an integral part of programming. Consequently, students get
only little exposure to correctness concepts, precise reasoning and symbol manipulation
(Almstrum et al., 2001). When formal techniques are taught as an activity independent
from the programming process, students get the impression that formal techniques are
only applicable in theoretical courses (McMaster et al., 2007). This in turn gives rise to
attitude problems, as students do not see any point in having to take more theoretical
courses. Dijkstra described this as “mental resistance” among students (Gries, 1981).

Reed and Sinclair (2004) suggest that another reason for students’ resistance may be
found in the prevailing culture where students want and are used to getting quick results;
a hacker mentality clearly does the job much faster than one aiming at verifying the
correctness. Moreover, CS students seem to be driven by external factors, and learning
the skills that they believe are relevant and are needed to earn money may make it difficult
to motivate the study of other topics. Finally, the challenges can be traced back to the
actual teaching situations. Most textbooks on introductory programming, for instance, do
not discuss program correctness or concepts such as loop invariants (Astrachan, 1991). In
addition, it is common for CS faculty to argue against formal methods (Roychoudhury,
2006).

Although attempts at introducing formal methods in education have been made
and the importance of more rigorous formal reasoning in CS has been emphasized in
curricula and other recommendations e.g., (Joint Task Force on Computing Curricula,
2001; McGettrick et al., 2004), it seems safe to say that convincing students of the value
of formal techniques is everything but easy.

Starting in 2007, we have been evaluating an approach to teaching “practicable for-
mal methods” in a course for CS novices. We refer to this approach as invariant based
programming (IBP). IBP is a visual program construction and verification methodology,
which introduces a minimum of notational overhead and allows students to reason about
correctness using mathematical concepts with which they are already familiar (such as
set theory and basic logic). Through this course we aim at addressing several of the chal-
lenges discussed above: changing the image of formal methods as difficult while at the
same time reducing the gap between theory and practice. Issues related to lack of teach-
ing material or teacher attitudes can be addressed by educators and method developers.
Overcoming students’ mental resistance and changing their cultural preferences are how-
ever things that one could believe are not easily accomplished during a single course.
Our experience from the course has, however, been positive, indicating that students find
it fun and useful. In addition, they seem to appreciate learning about program correctness
and seeing the programming activity from another perspective (Back et al., 2007).

For this paper, we have conducted a thorough analysis of student created invariant
based programs, focusing on the errors made. The aim is also discovering to what extent
IBP requires knowledge and skills falling under the “too advanced” section. The study
seeks to investigate three research questions:



Invariant Based Programming in Education – An Analysis of Student Difficulties 117

1. What kind of errors do novices make when using IBP?
2. Do these errors change as the course progresses, and if so, how?
3. Does the year of study impact student performance?

The paper is organized as follows. Next, we describe the invariant based approach,
after which we present the study design. In the following two sections, we put forward
and discuss the results. The paper is concluded with some final words and ideas for future
work.

2. Invariant Based Programming

IBP is an approach to constructing correct programs, where not only pre- and postcondi-
tions, but also loop invariants are to be written before doing any coding. The approach is
not new – it was studied already in the 1970s by Reynolds (1978) and Back (1978, 1983).
Similar ideas were also proposed by van Emden (1979). In 2004, Back (2005) revisited
the topic and has since worked on developing IBP into a practical hands-on method.

In IBP, a program is constructed and verified at the same time. We use the term
situation for a condition that describes a collection of states. A condition is a predicate on
states and can thus be identified with the set of all states satisfying the predicate. Hence,
the precondition, postcondition and loop invariants are situations. An invariant based pro-
gram may have many situations and is not restricted to single-entry, single-exit control
structures.

In essence, IBP provides a visual representation of a program. A variety of graphical
programming/pseudocode formats have been proposed in the literature (Blackwell et al.,
2001; Roy, 2006), and all of these have one common goal: “to provide a clear picture of
the structure and semantics of the program through a combination of graphical construc-
tions and some additional textual annotations” (Roy, 2006; p.3). To our knowledge, these
have, however, focused on representing control flow and data flow. IBP, on the other hand,
describes programs from another perspective as it emphasizes the invariant properties of
the program data structures, and thus makes it possible to reason about the correctness of
the constructed program in a rather straightforward manner. This is accomplished without
sacrificing either clarity or expressiveness of the diagrams.

2.1. An Illustrating Example

We will here exemplify the work flow for developing invariant based programs by con-
structing a program that implements the selection sort algorithm. We use a cursor to
traverse an array from left to right, and for each position we find the smallest element to
the right of the cursor and swap that element with the one pointed at by the cursor. After
each swap the cursor is advanced, and the array is sorted when the entire array has been
traversed.

We formulate the problem more precisely by drawing figures capturing the basic data
structures involved and how their values change during execution of the algorithm. This



118 L. Mannila

Fig. 1. Visualization of the specification.

is an essential step of the IBP work flow as the figures describe the algorithm at work and
thus help the programmer get a feeling for the behavior of the algorithm. As this example
illustrates, the figures also aid in identifying the situations of the program.

The first figure (Fig. 1) illustrates the specification (the pre- and postcondition), which
helps us identify the initial and final situations. Here, A0 refers to the initial array, i.e.,
the array where the elements are still in the original order. Permutation(A, A0) means
that the elements in array A form a permutation of the elements in the initial array A0.

To describe the final situation, we need a way to express that an array, or a part of it,
is sorted. We assume that Sorted(A, i, j) means that the elements in array A are non-
decreasing in the interval [i, j]. As situations are sets of states, the final situation is a sub-
set of the initial one where an additional constraint, Sorted(A, 1, n), is satisfied. Shading
is used to indicate which elements have already been sorted. Initially, no elements have
been sorted (no shading), whereas in the final situation all elements have been sorted
(entire array is shaded).

We use a nested invariant diagram to represent the program and the strengthening of
situations. Our first diagram is shown in Fig. 2. Because situations are contained in each
other (as sets), they are drawn in a nested manner. An constraint in an outer set needs
therefore not be repeated in the inner ones (for instance, n: integer holds in both the
initial and the final situation). Dashed arrows are used to indicate the computation that
we want to define and are labeled with a potential guard (written in square brackets, see
Figs. 3–7) and the variables that may be changed in the computation.

In the same manner as the final situation was identified as a subset of the initial one,
we introduce new situations by adding new constraints to the ones present in the more
general situations. We further develop the figure of the algorithm at work by introducing
the intermediate situation (Fig. 3). Here only the elements in the beginning of the array
(A[1]...A[i − 1]) have been sorted (illustrated by the shaded region). In addition, we know
that all elements in the unsorted part are larger than or equal to any element in the sorted
part. To express this, we define the predicate Partitioned(A, i) to indicate that every
element in array A below index i is smaller or equal to any element in A at index i or
higher.



Invariant Based Programming in Education – An Analysis of Student Difficulties 119

Fig. 2. Invariant diagram with the initial and final situations.

Fig. 3. Sorting program with invariant.

As is shown in the corresponding diagram (Fig. 4), this newly inserted situation is a
subset (i.e., a constrained version) of the initial situation. Whereas dashed arrows illus-
trate what we want to accomplish, we use solid ones to indicate computations that we
have already planned and defined. We call these solid arrows transitions. Each transition
is labeled with a potential guard and the program statements executed when the transition
is carried out.



120 L. Mannila

Fig. 4. Invariant diagram with the intermediate situation inserted.

We still need one more loop to find the smallest element in the remainder of the array,
since this requires that we scan through all remaining elements. Again, we use figures as
a tool to help us get an idea of how the algorithm works. We add yet another situation,
where part of the unsorted elements have been scanned for the smallest element (indicated
by lighter shading). The new situation is shown in Fig. 5 and the corresponding invariant
diagram in Fig. 6.

To finish the program, we need to define the final transition, i.e., how the smallest
element is to be found. Fig. 7 shows the complete invariant diagram for the selection sort
program.

When all situations and transitions have been added to the diagram, we still have
to check that no infinite loops exist, i.e., that the program terminates. We introduce a
termination function (variant) for each intermediate situation. A termination function is
an integer function that is bounded from below and whose value is decreased before re-
entering the situation. The termination functions are written in the right upper hand corner
of the respective invariants (Fig. 7).

Finally, we must check that the program is live, i.e., that termination only occurs in
final situations. In practice, this means that we must make sure that for all situations,
except for final ones, there is at least one enabled transition.

An invariant based program is correct if it satisfies the three criteria above, i.e., 1)
is consistent, 2) terminates and 3) is live. For a more in-depth presentation of IBP as a
method, see the articles by Back (2005, 2006, 2009).



Invariant Based Programming in Education – An Analysis of Student Difficulties 121

Fig. 5. Sorting program with two invariants.

Fig. 6. Invariant diagram with the newly inserted situation.



122 L. Mannila

Fig. 7. Complete invariant diagram.

3. Design of Our Error Study

The study presented in this paper is part of a larger developmental research project
(Richey and Klein, 2005; van den Akker, 1999), in which we empirically evaluate the
use of three methods for teaching introductory CS courses. The empirical evaluations act
as a feedback mechanism for making improvements to the methods or changes to the
ways in which the methods are used in education.

3.1. Data Collection

A course covering IBP was introduced at the Department of Information Technologies at
Åbo Akademi University in Turku, Finland in spring 2007. The data for the study reported
on in this paper have been collected during 2007–2008, when 23 students completed the
course.1 Half of the students were on their first or second study year, whereas the other
half had studied for three years or more. Most students were CS or software engineering
majors.

The course includes 34 hours in class and has been given in an interactive lab lecture
format. Approximately a third of the time has been used for hands-on training. During
these exercise sessions, students solve assignments which are later handed in for grading
and feedback. At the end of the course, all participants take a final exam. The exercise
sessions and the exam include different types of assignments:

1In this context, completing the course stands for “handing in at least 50 % of all assignments and partici-
pating in the final exam”.



Invariant Based Programming in Education – An Analysis of Student Difficulties 123

• “Look at this invariant diagram and explain what it accomplishes” (reading).
• “Modify this invariant diagram so that the program does X instead of Y. Prove that

the resulting program is correct” (reading and modification).
• “Find the corresponding imperative program for this invariant based one” (read-

ing).
• “Construct an invariant based program that does X. Prove that the program is cor-

rect” (construction).

In this study, we focus on evaluating students’ difficulties when constructing pro-
grams, and will thus only consider the construction part of the final type of assignment.
All in all, we have analyzed solutions to six assignments for 23 students. Two of the
solutions were solved at the beginning of the course (Exercise set 1), two towards the
end (Exercise set 2) and the final two on the exam (Exam). Nine solutions were missing,
giving us a total of 129 analyzed solutions (out of 138).

In the following, we briefly describe and exemplify the types of assignments included
in the exercise sets and the exam. The assignments were of increasing difficulty level, i.e.,
those included in the first exercise set were the easiest, while the ones in the second set
and on the exam were more difficult.

Exercise set 1: In these assignments, students were provided with readily defined pred-
icates and there was no need to use quantified expressions. The following is an example
of this type of exercise.

Construct a correct invariant based program2that checks if an integer (n > 0, given) is odd
and returns the result as a boolean value (True if the integer is odd, False otherwise). You are
only allowed to use addition. To simplify your work you can define the predicate isOdd(x) =

x mod 2 �= 0 to describe what it means that an integer is odd.

Exercise set 2: In these assignments, students needed to define predicates themselves
and also use quantified expressions, for instance as in the following:

Construct a program that substitutes the number one (1) for all odd numbers in an array. The
even numbers should be kept unchanged. Use the mod operator (x mod n) to decide if a number
is odd or even.

Exam: In these assignments, students needed to define predicates and use quantified
expressions.

Construct a program that calculates the sum of every m-th integer between 0 and n. Assume
that n and m are given integers (n � 0, m > 0), i.e., if m = 3 and n = 10, the following
integers should be summed up: 0 12 3 45 6 78 9 10 (sum = 15).

One of these assignments also included nested loops:

A polynomial is an expression of the format a0 + a1x1 + a2x2 + ... + an−1xn−1 + anxn.
Construct a program that calculates the value of the polynomial given a non-negative integer n,
the value of x and an array a containing the coefficients a0, a1, ..., an (a[0] = a0, a[1] =

a1, ..., a[n] = an).

2In the following assignment specifications the word “program” refers to a correct invariant based program.



124 L. Mannila

If we had the precondition n = 3 ∧ x = 4 ∧ a = [2, 3 , 0 , 5], the results of the calculation
should be 334 (2+3·41+0·42+5·43). Note! You do not have access to the exponential function
in the calculations, so you will need to come up with another way to calculate the powers (e.g.,
in a nested loop).

3.2. Method

When analyzing student solutions, we are dealing with rich data. In order to be able to
interpret such data, it first needs to be reduced. In this study, a content-analytical approach
was chosen for this purpose.

The basic idea of content analysis is to take textual material and analyze, reduce and
summarize it using emergent themes. These themes can then be quantified, and as such,
content analysis is suitable for transforming rich data into a form which can be statisti-
cally handled and analyzed (Cohen et al., 2007).

The content analysis was done in two phases. First, a subset of the student programs
were analyzed one at a time by comparing these to the problem specification. Each so-
lution could contain no, one or several error types. During this initial analysis, all errors
were listed, resulting in 14 different errors types. In order to further organize and reduce
the data, detailed types were combined into higher level error categories. This resulted in
eight (8) categories.

Based on these categories, a coding scheme was created. This coding scheme was
then used in the second phase to analyze all assignments, resulting in an overview of the
errors each student made in the different assignments.

The results of this second round analysis indicated a need for making a more thor-
ough analysis of the problems related to the invariant. Therefore, all solutions, in which
an invariant related error had been found, were revisited. A process similar to the one
described above was initiated to find the different types of errors made by the students
when attempting to find and express the invariant. This resulted in a new scheme contain-
ing nine (9) error types for invariants.

Whereas questions looking to describe a phenomenon are best answered using a qual-
itative approach, quantitative methods are better at addressing more factual questions
(Cohen et al., 2007). Hence, when the initial (quite qualitative) analysis had been com-
pleted, a quantitative approach was taken in order to present and statistically analyze the
data. We also wanted to find out whether there was any difference between the exam
performance of novices (students on their first or second study year) and students having
studied for a longer period of time. The Kolmogorov–Smirnov test showed that the exam
data were not normally distributed, and hence the non-parametric Mann–Whitney U test
was used in the analysis.

4. Results

4.1. General Error Types

In this subsection, we address the first two research questions: ”What kind of errors do
novices make when using IBP?” and ”Do these change as the course progresses, and in
that case how?”



Invariant Based Programming in Education – An Analysis of Student Difficulties 125

The analysis revealed eight main error types, which are presented and exemplified in
the following.

• Updates: Missing or redundant update. The student may, for instance, have for-
gotten to update the variable containing the result when finishing execution and
moving to the final situation. Redundant updates do not make the program erro-
neous, but were still considered an error as they are unnecessary.

• Guards: Missing guard or incorrect bounds.
• IBP notation: Issues with the IBP syntax. The student may, for instance, have left

out some brackets surrounding guards, set boundaries or a transition arrow. Another
version of this error was the use of a Java-like syntax for expressing transition
actions, i.e., using = as the assignment operator instead of :=.

• Logical notation: The student had problems expressing situations correctly using
logical notation. Note that this error type does not include quantifier related errors
found in the invariant (these are included in the “invariant” error).

• Invariant: The analysis revealed the invariant related error type to be a multi-
faceted one; hence a more thorough analysis of these errors was conducted. The
results from this analysis are discussed in Section 4.2 below.

• Postcondition: Erroneous or imprecise. The student may have used an incorrect
postcondition or expressed it carelessly.

• Terminating function: Missing or erroneous.
• Algorithm: The student may have constructed a program solving another problem

than the one intended or taken shortcuts in the algorithm (e.g., not storing the result
of a calculation in a variable, but instead assuming it was kept in memory).

The frequency of error types in the two exercise sets and on the exam is illustrated in
Fig. 8. As the assignments were different, it is naturally not possible to make an absolute
comparison of the error frequencies in them. The error frequencies do show the trend of
how the errors made by the students developed as the course progressed and the assign-
ments became more difficult. Evidently, the frequency of all error types decreased from
the beginning to the end.

Fig. 8. Occurrence of general error types in the two exercise sets and on the exam.



126 L. Mannila

4.2. Invariant Related Error Types

As the diagram in Fig. 8 shows, invariant related errors were most common throughout
the course, and as mentioned above, this called for a deeper analysis in order to investigate
where the main difficulties lie.

The results from this analysis revealed that the invariant related errors were indeed
quite multifaceted, as nine error types were found.

• Quantifier syntax: Malformed quantified expression.
• Quantifier bounds: Incorrect bounds in a quantified expression.
• Variable bounds: Missing, incorrect (“off-by-one”) or incomplete (e.g., lacking

upper bound) bounds for a declared variable.
• Variable declaration: Use of an undeclared variable.
• Logical notation: Imprecise logical notation not related to quantifiers.
• Incomplete: An essential part of the invariant is missing.
• Missing relationship: The invariant includes all essential information, but lacks

the relationship between a variable and a describing predicate. For instance, stating
only sorted(A, 0, k) instead of isSorted = sorted(A, 0, k).

• Strong: A part of the invariant is too strong, for instance, stating that a variable is a
constant (e.g., isSorted = False) instead of expressing it in terms of a predicate.

• Erroneous: Where the student had written a program solving the wrong problem,
the invariant naturally also was incorrect. A variation of this error was demon-
strated in solutions where the student apparently had not been able to come up
with a sensible invariant.

As in the previous subsection, we illustrate the occurrence of these error types for the
exercise sets and the exam separately using a diagram (Fig. 9).

These nine error types can further be classified as severe or less severe. For instance,
one could argue that using an incorrect syntax in a quantified expression is not a severe
error, as long as it is possible for the human reader to interpret what the student has
meant and this underlying meaning is sound. Using a 100% correct syntax when using
the quantifier is not necessary to accomplish this. Similarly, one could claim that variable

Fig. 9. Occurrence of invariant related error types in the two exercise sets and on the exam.



Invariant Based Programming in Education – An Analysis of Student Difficulties 127

declarations are easily overlooked when writing programs by hand. This type of errors
would not necessarily get caught when writing formal proofs by hand.

Incomplete, too strong or erroneous invariants on the other hand can be classified as
severe, as these are directly related to the student’s ability to find a suitable invariant.
Likewise, bound errors indicate that the student has not done a good job at verifying
the program, because such misses would easily have been found during the verification
process. Based on this distinction, we get the following classification:

• Severe errors: related to the invariant (incomplete, strong, erroneous, quantifier
bounds, variable bounds)

• Less severe errors: notational (quantifier syntax, logical notation, missing rela-
tionship) or careless (missing variable declarations)

As is shown in the diagram, the frequency of most severe errors decreased as the
course progressed. The only exception is for errors related to variable bounds, which
showed an increasing trend.3 A similar development can be seen for the less severe “no-
tational” errors, where the increase in errors related to quantifier syntax is especially
eye-catching. No careless errors (missing variable declarations) were found after the first
exercise set.

Of the 23 students, 12 demonstrated a decrease in invariant related errors when com-
paring their solutions in the first exercise set to those written on the exam. For seven (7)
students, the number of invariant related errors increased, whereas it remained unchanged
for the remaining four (4). Unfortunately, one of the assignments in Exercise set 2 con-
tained a subtlety resulting in many students’ invariants being incomplete. In order to get
a sufficiently strong invariant, an unchanged property that was not easy to “see” needed
to be stated. If these errors had not been taken into account, the percentage of incomplete
invariants for the second exercise set would have been 9% instead of 22%. On the exam,
all occurrences of incomplete invariants except one were found in an assignment involv-
ing nested loops; apparently, either invariant tends to become sloppily expressed in such
programs.

Finally, we also wanted to examine how the proportion of completely correct invari-
ants would change if only considering the severe errors. If looking at all errors (both the
severe and the less severe ones), totally correct invariants were found in 31% of student
programs in the first exercise set, with a slight increase in the second set and on the exam.
If, however, only considering the severe errors, correct invariants were found in 45%,
53% and 60% for the exercise sets and the exam respectively.

4.3. Exam Performance

Our final research question aimed at investigating whether “older” students performed
any differently in the course compared to the novices (students on their first or second
study year).

3Errors related to quantifier bounds did increase from exercise set 1 to exercise set 2, but did not occur at
all in the exam at the end of the course.



128 L. Mannila

The maximum score on the exam was 30, out of which 15 points were required to
pass the exam. The average score was 21.2 (std dev = 4.82), while one student failed
(13 points). The Mann–Whitney U test indicated no difference in exam performance
(U = 50, Z = −0.992, p < 0.05). Similarly, the content analysis showed no difference in
error frequencies or error types between the two groups.

5. Discussion

The results indicated a decreasing trend for all general error types comparing the situ-
ation at the beginning of the course to that on the exam. Although the invariant related
errors seemed to be a problem throughout the course, the more detailed analysis of these
resulted in some interesting findings. When dividing the invariant related errors into two
groups (severe and less severe), we found that the number of most severe errors decreased
as the course progressed. The decrease in invariant related errors implies that students be-
came more proficient at finding the invariant, even if the problems to solve became more
difficult. This is an encouraging result, as one of our initial suspicions when introducing
the approach in education was that the largest difficulties would be related to identifying
the invariant.

With this general trend for the severe errors, the increase in errors related to the
variable bounds seems somewhat counterintuitive. Why would students become better
at more difficult things (finding the invariant) while at the same time start doing worse on
aspects that are quite easily checked? Given the way in which the programs were written,
one could argue that the bound errors should be seen as careless errors. After all, there
was no interpreter or compiler checking if a variable had been declared or if it had been
given the correct bounds. Under pressure, these are “smaller details” that may be easily
overlooked. This is especially true for the exam, where the students did not have the time
to do proper proofs.

Looking at how the number of solutions with correct invariants would change if only
considering the severe errors, it became clear that the less severe errors made up a sub-
stantial part of the errors. Although these are not as serious as the other errors, their oc-
currence accentuates a need to further stress the importance of going through and proving
each transition separately, if not by writing a formal proof, at least informally by check-
ing that all properties hold. Without explicit checks, formal or informal, the invariant
approach is no more “safe” than the traditional “trial-and-error” approach to program
development.

In addition, the results indicated that many students are weak at formalizing infor-
mal statements using logic. To be able to, for instance, describe situations precisely and
correctly, students need to be able to move confidently between informal (e.g., situations
illustrated in the figures) and formal representations (the corresponding logical expres-
sions). Apparently, predicate logic and quantifiers are particularly difficult to students.
Similar indications can be found in the literature (Selden and Selden, 1995). This find-
ing also serves as a partial explanation to why students find proofs difficult (Back et al.,



Invariant Based Programming in Education – An Analysis of Student Difficulties 129

2007). How could a student construct a correct proof if he or she does not know how to
express and manipulate the verification conditions formally and precisely? Consequently,
it seems crucial that CS students were given more training in translating informal state-
ments into symbolic form.

A tool could help in addressing both the issue of careless errors and that of logical
notation and syntax. SOCOS4 (Back et al., 2006) is a graphical programming environment
developed within our research group at Åbo Akademi University for the construction and
verification of invariant based programs. It analyzes invariant diagrams semantically, and
generates correctness conditions which are sent to external proof tools. Using SOCOS,
trivial verification conditions can thus be proved or simplified automatically. In addition,
it also compiles invariant diagrams to executable Python code.

A beta version of SOCOS was used in the course, and based on the initial teaching
experiences and student feedback, the tool is currently being further developed to better
suit the needs and skill levels of novice CS students. Nevertheless, we still believe that
it is essential to introduce the approach using pen and paper only. Learning to build in-
variant based programs and constructing the corresponding proofs by hand is important
in order for students to become familiar with the approach. The hands-on experience also
makes explicit the link between mathematics and programming and shows that proving
programs manually is a tedious and time demanding process; knowing the effort that goes
into these activities, students can appreciate tool support to a larger extent later on.

The results also indicated that the IBP notation does not pose a problem to students,
as only few such errors were found. Most of the notational errors found were due to
students using a Java like syntax when expressing transitions and invariants. Given that
the students already “knew” how to program, they already had an “ingrained” syntax.
Thus, it is understandable that such students may face initial difficulties in abandoning
their old approach (Denman, et al., 1994). Choosing to use a programming language
like notation may also be closely related to the problems with using logical notation
discussed above; the programming language syntax may be the only formal notation they
feel confident in using.

Finally, the findings presented in the previous section indicate that IBP is just as suit-
able for novices as for students who have studied for a longer period of time.

6. Concluding Remarks

In this paper, we have investigated the difficulties that students face when learning IBP.
Although inventing the invariant was not found to be trivial, the main difficulty seems to
be related to a lack of skills in formalizing expressions and interpreting logical notation.
Problems related to constructing program correctness proofs also appear, at least to some
extent, explainable by the lack of these very same skills. In order to successfully use
the invariant based approach, more attention thus needs to be put on appropriate training
aimed at developing these skills – as early as possible.

4http://mde.abo.fi/confluence/display/SOCOS.



130 L. Mannila

Apart from the problems with logical notation, we have not found any indication that
IBP would be “too advanced” for CS students during their first or second study year.
Although the invariant can be tricky to come up with, our experience shows that this is
not beyond the capability levels of novices. Taken together with the positive attitudes
among students towards the approach presented in (Back et al., 2007), IBP seems to be a
worthwhile, alternative way to introduce a more formal approach to program development
early in CS education.

References

Almstrum, V.L., Dean, C.N., Goelman, D., Hilburn, T.B., Smith, J. (2001). Support for teaching formal meth-
ods. SIGCSE Bull., 33(2), 71–88.

Arnow, D. (1994). Teaching programming to liberal arts students: using loop invariants. SIGCSE Bull., 26(1),
141–144.

Astrachan, O. (1991). Pictures as invariants. In: Proc. of the 22nd SIGCSE Symposium. ACM Press, New York,
USA, pp. 112–118.

Back, R.-J. (1978). Program construction by situation analysis. Research Report, 6. Computing Centre, Univer-
sity of Helsinki, Helsinki, Finland.

Back, R.-J. (1983). Invariant based programs and their correctness. In: Biermann, W., Guiho, G., Kodratoff, Y.
(Eds.), Automatic Program Construction Techniques, No. 223–242. MacMillan Publishing Company.

Back, R.-J. (2005). Invariant based programming revisited. Tech. Rep., 661. TUCS – Turku Centre for Computer
Science, Turku, Finland.

Back, R.-J. (2006). Invariant based programming. In: Donatelli, S., Thiagarajan, P.S. (Eds.), Petri Nets and
Other Models of Concurrency – ICATPN. pp. 1–18.

Back, R.-J. (2009). Invariant based programming: basic approach and teaching experiences. Form. Asp. Com-
put., 21(3), 227–244.

Back, R.-J., Eriksson, J., Mannila, L. (2007). Teaching the construction of correct programs using invariant
based programming. In: Proc. of the 3rd South-East European Workshop on Formal Methods. Thessaloniki,
Greece.

Back, R.-J., Eriksson, J., Myreen, M. (2006). Verifying invariant based programs in the socos environment. In:
BCS-FACS Workshop on Teaching Formal Methods: Practice and Learning Experience. London, UK.

Blackwell, A.F., Whitley, K.N., Good, J., Petre, M. (2001). Cognitive factors in programming with diagrams.
Artificial Intelligence Review, 15, 95–114.

Cohen, L., Manion, L., Morrison, K. (2007). Research Methods in Education, 6th Edition. Routledge, New
York.

Denman, R., Naumann, D.A., Potter, W., Richter, G. (1994). Derivation of programs for freshmen. In: Proc. of
the 25th SIGCSE Symposium. ACM Press, New York, USA, pp. 116–120.

Denning, P.J. (1989). A debate on teaching computing science. Commun. ACM, 32(12), 1397–1414.
Dijkstra, E.W. (1968). A constructive approach to the problem of program correctness. BIT Numerical Mathe-

matics, 8(3), 174–186.
Dijkstra, E.W. (1976). A Discipline of Programming. Prentice-Hall.
Dijkstra, E.W. (1989). On the cruelty of really teaching computer science. Communications of the ACM, 32(12),

1398–1404.
Evans, D., Peck, M. (2006). Inculcating invariants in introductory courses. In: ICSE ’06: Proceeding of the 28th

International Conference on Software Engineering. ACM Press, New York, USA, pp. 673–678.
Floyd, R. (1967). Assigning meanings to programs. In: Symposium on Applied Mathematics, Vol. 19. American

Mathematical Society, pp. 19–32.
Ginat, D. (1995). Loop invariants and mathematical games. SIGCSE Bulletin, 27(1), 263–267.
Gries, D. (1981). The Science of Programming. Springer-Verlag.
Hoare, C. A.R. (1969). An axiomatic basis for computer programming. Commun. ACM, 12(10), 576–580.
Joint Task Force on Computing Curricula (2001). Computing Curricula, Computer Science.



Invariant Based Programming in Education – An Analysis of Student Difficulties 131

McGettrick, A., Boyle, R., Ibbett, R., Loyd, J., Lovegrove, G., Mander, K. (2004). Grand challenges in com-
puting education. Tech. rep., BCS – The British Computer Society.

McMaster, K., Anderson, N., Rague, B. (2007). Discrete math with programming: better together. In: Proc. of
the 38th SIGCSE Symposium. ACM Press, pp. 100–104.

Naur, P. (1966). Proof of Algorithms by General Snapshots. BIT Numerical Mathematics, 6(4), 310–316.
Reed, J.N., Sinclair, J.E. (2004). Motivating study of formal methods in the classroom. In: TFM 2004. Springer-

Verlag Berlin Heidelberg, pp. 32–46.
Reynolds, J.C. (1978). Programming with transition diagrams. In: Gries, D. (Ed.), Programming Methodology.

Springer Verlag, Berlin.
Richey, R.C., Klein, J.D. (2005). Developmental research methods: Creating knowledge from instructional

design and development practice. Journal of Computing in Higher Education, 16(2), 23–38.
Roy, G.G. (2006). Designing and explaining programs with a literate pseudocode. J. Educ. Resour. Comput.,

6(1), 1.
Roychoudhury, A. (2006). Introducing model checking to undergraduates. In: Formal Methods Education Work-

shop. pp. 9–15.
Selden, J., Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathe-

matics, 29(2), 123–151.
Tam, W.C. (1992). Teaching loop invariants to beginners by examples. In: Proc. of the 23rd SIGCSE Symposium.

ACM Press, New York, USA, pp. 92–96.
van den Akker, J. (1999). Design Approaches and Tools in Education and Training. Kluwer Academic Publish-

ers, Ch. Chapter I: Principles and Methods of Development Research.
van Emden, M.H. (1979). Programming with verification conditions. IEEE Transactions on Software Engineer-

ing, SE-5(2), 148–159.

L. Mannila received her PhD in computer science in 2009 from the Department of In-
formation Technologies at Åbo Akademi University, Finland, where she now works as
a researcher. Her main research interests are related to computer science education in
general, and teaching programming and mathematics in particular.



132 L. Mannila

Invariantais gr ↪istas programavimo mokymas – mokiniams iškilusi ↪u
sunkum ↪u analizė

Linda MANNILA

Šiame straipsnyje analizuojamos pradedanči ↪uj ↪u student ↪u klaidos aiškinant invariantais gr↪istas
programas. Pateikiant bendruosius klaid ↪u tipus, atsižvelgiama ↪i tai, dėl ko studentams kyla
sunkum ↪u išreiškiant invariantus. Rezultatai rodo, kad ↪ivadinis kursas, naudojant invariantu gr↪ist ↪a
metod ↪a, yra tinkamas ir pradiniuose universitet ↪u informatikos kursuose (kai studentai turi dar mažai
programavimo žini ↪u). Nors invarianto kūrimas pasirodė esanti sunki užduotis, tačiau pagrindiniai
sunkumai su kuriais susidūrė pradedantieji, buvo susij ↪e su ↪igūdži ↪u stoka. Pradedantieji programos
kūrimui taikė taisykling ↪a konstravimo būd ↪a, naudodami loginius žymenis ir kvantorius, tačiau
jiems stygo ↪igūdži ↪u užrašant intuityvius ir neformalius sakinius ↪i simbolin ↪e form ↪a.


