
Informatics in Education, 2009, Vol. 8, No. 2, 261–280 261
© 2009 Institute of Mathematics and Informatics, Vilnius

Verificator: Educational Tool for Learning
Programming

Danijel RADOŠEVIĆ, Tihomir OREHOVAČKI, Alen LOVRENČIĆ
Faculty of Organization and Informatics, University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia
e-mail: {danijel.radosevic, tihomir.orehovacki, alen.lovrencic}@foi.hr

Received: July 2009

Abstract. The paper introduces Verificator, our learning programming interface aimed for learning
programming in C++ at the university beginners’ level. In teaching programming some specific
problems concerning the teaching itself as well as the organization of the teaching process need to
be considered. One of the biggest problems is that students tend to adopt certain bad programming
habits in their attempt to more easily deal with their examinations, such as trying to write programs
without any syntax and logical checking. It is very hard to help them correct those errors once they
are deeply rooted. Our students’ web questionnaire and its results show that the majority of prob-
lems in learning programming among our students arise from the gap between the understanding of
programming language syntax and problem-solving algorithms. Verificator prevents students from
making a lot of errors they are likely to make in learning programming and helps them to learn
programming language syntax and adopt good programming habits.

Keywords: learning programming, teaching software, Verificator.

1. Introduction

The main goal of this paper is to introduce Verificator, our software tool aimed at help-
ing students to more easily acquire programming skills, and improving the process of
teaching programming at the university beginners’ level. Over the years, while teaching
programming at the University of Zagreb, Faculty of Organization and Informatics in
Varaždin, Croatia, we have faced some problems inherent in the teaching itself as well
as those related to the organization of the teaching process. Students tend to adopt some
bad programming habits in their attempt to pass the exam. There were cases in which
students would learn big fragments of program code by rote, without any or with hardly
any understanding. There were also students who wrote large program code without any
syntax and logical testing, which produced a huge number of errors, discouraging the
students from programming altogether.

Our students’ web-form questionnaire was conducted in 2009 on a population of 182
respondents (students at the University of Zagreb, Faculty of Organization and Informat-
ics, at the beginning of the spring semester, in the Programming I course). Some students
had foreknowledge in programming from the Informatics 1 course (basics of Python),
and some of them, from the secondary school and individual work.

262 D. Radošević, T. Orehovački, A. Lovrenčić

The questions included students’ previous skills in programming and informatics in
general, together with their current problems in acquiring programming skills. Students
declared a lack of foreknowledge and being distracted by other duties in their studies to
be the most common problems. However, some of the most severe problems, like the
fear of programming, are mostly correlated to a lack of programming practice as well as
the misunderstanding of basic programming concepts and programming language (in our
case, C++) syntax.

Therefore we introduced Verificator in our teaching process as a software tool which
should motivate our students towards taking the right approach to acquiring programming
skills by:

• preventing students from copying programs or parts of programs from their col-
leagues. All programs have to be typed (not copied or loaded) in Verificator, and
contain the author’s data, together with the checksum (which verifies that the pro-
gram is really written in Verificator),

• pushing students to check their programs’ syntax after adding several lines of code.
That prevents students from writing programs by rote and collecting a huge number
of errors,

• helping students to find syntax and logical errors in their programs. There are tools
for syntax analysis of programs (e.g., using of curly brackets and open program
structures) and debugging tools (e.g., using breakpoints).

Verificator works as a programming interface (editor with programming tools) which
uses a standard C++ compiler (we used a gcc freeware compiler).

2. Related Work

Programming is one of the fundamental skills to be adopted by students of informa-
tion sciences at the end of the first year of their study. It is also expected that they will
know basic programming concepts and have developed the algorithmic approach to solv-
ing problems. Basic programming concepts include the knowledge of control structures
(sequence, selection, and iteration), mechanisms of aggregation (array, structure, union),
pointers, functions, etc. When teaching programming, our aim is to teach novice students
the basic principles of using programming concepts regardless of the programming lan-
guage. However, goals are sometimes hard to meet in the real-life context. The research
which was conducted at the multi-national level has shown that novice students, after
completing and passing their courses in which they learn the basic concepts of program-
ming, still encounter problems creating simple program solutions (Lister et al., 2004).
This is probably accounted for by the fact that novice programmers do not have enough
experience or skills regarding which programming constructs to use or where and how
to use them. Furthermore, students are often faced with syntax errors. It is common for
a small set of identical mistakes to occur regularly with all novice students (Spohrer and
Soloway, 1986; Ben-Ari, 1998; McCracken et al., 2001). In order to help students in their
first steps in learning programming, many visualization and animation software systems
are developed.

Verificator: Educational Tool for Learning Programming 263

Visualization tools can be very useful in teaching programming, primarily because
their main purpose is to facilitate students’ understanding of code execution by guiding
them through a series of animated techniques (Mulholland, 1998; Hundhausen et al.,
2002). In addition, the results of several studies (Fowler et al., 2000; Cardellini, 2002,
Thomas et al., 2002) showed that the majority of students (more than 75%) adopt new
content best when it is presented visually. Thus, the use of a visualization tool in teaching
programming allows students to create a mental model of program execution or its parts
(Tudoreanu, 2003). However, Naps et al. (2002) emphasizes that visualization tools can
be useful only if students are actively involved in the learning process. Owing to the
above-mentioned advantages of visualization tools in the educational process, they have
been actively used in the study and animation of algorithms (Garner, 2003; Costelloe,
2004) and data structures (Grissom et al., 2003; Laakso et al., 2005). Visualization tools
can be divided into two groups: flowcharts and simulation tools.

Flowcharts are usually a good choice of a visualization tool for teaching program-
ming, primarily because they can present the algorithm as a mental model that a student
with little or no prior knowledge can easily understand. By using flowcharts, students
will easily perceive the program flow and later, when they try to independently solve
problems, this can be of great benefit. However, whereas flowcharts can be useful for vi-
sualization and modeling of simple programming concepts, they are not suitable for large
and complex applications (Scott et al., 2006). From among the set of visual program-
ming environments based on a flowchart primarily intended for teaching programming,
the following should be pointed out: Rapid Algorithmic Prototyping Tool for Ordered
Reasoning (RAPTOR; Carlisle et al., 2004), Flow Chart Interpreter (FCI; Atanasova and
Hristova, 2003) and Flint (Crews, 2001). All the mentioned tools enable students to create
algorithms through a combination of basic graphical symbols. In addition, studies have
shown that the average grades of students using visualization development environments
based on a flowchart were significantly higher than those who learned programming by
using traditional development environments (Crews, 2001; Carlisle et al., 2004).

The second group consists of visualization simulation tools. The general approach
to animation of algorithms defined in procedural higher level languages began with the
BALSA system (Brown and Sedgewick, 1984) after which TANGO (Stasko, 1990) and
Polka (Stasko and Kraemer, 1993) systems were developed at the Georgia Institute of
Technology. Their main purpose was the teaching of dynamic behavior of complex al-
gorithms. However, those systems were not very successful, primarily because their ani-
mation design was more appropriate for experts in the field than for novice students. At
the University of Helsinki, Jorma Tarhio and Erkki Sutinen developed Jeliot (Haajanen et
al., 1997), which was focused on the animation of programs. The results of the empirical
experiment correlated with the use of the Jeliot tool in teaching programming have shown
that the students’ motivation for learning increased, but also that its interface is too com-
plicated and confusing to novice students (Latte et al., 2000). Therefore, Jeliot 2000 was
developed and exclusively designed for beginners. Jeliot 2000 is experimentally used for
teaching programming in high schools, where the results of a survey showed that students
who used Jeliot 2000 software better understand programming concepts and have a better

264 D. Radošević, T. Orehovački, A. Lovrenčić

developed vocabulary than the control group (Ben-Bassat Levy et al., 2001). The latest
version of Jeliot is Jeliot 3, developed at the University of Joensuu. Its primary purpose
is monitoring the performance of Java code, and thus, easier understanding of control
structures and finding errors in the code (Kannusmäki et al., 2004). One of the most suc-
cessful visualization simulation software packages is certainly Karel, The Robot (Pattis,
1981). It is a tool in which a student controls a robot in a virtual microworld with four
basic actions and thus learns basic programming constructs. Karel is the software that
facilitates novice students to learn the Pascal programming language and has been used
for teaching programming in schools and universities for years. With the development
of object-oriented paradigm, changes in the programming languages which were used in
teaching programming also occurred. Therefore it is not surprising that Karel has had sev-
eral different versions: Karel++ (C++ version; Bergin et al., 1997) and Guido van Robot
(Python version; Elkner, 2004) but none of them has achieved the same success as their
original. It is assumed that the Alice programming environment is the main successor
of Karel. It is a 3-D Interactive Graphics Programming Environment that allows script-
ing and modeling prototype objects that a virtual simulation world is made of (Pausch et
al., 1995). In simulations, students can use simple scripts to control the appearance and
behavior of objects. During script execution, visualization allows students to establish
correlation between the program and the animated action of the complex and thus un-
derstand how basic programming constructs operate. TRAKLA2 is a visual environment
that allows the assessment of simulation of algorithms and data structures (Korhonen et
al., 2003). VILLE is a visual tool that supports Java, C ++ and pseudo programming lan-
guages (Kaila et al., 2009). Programming examples can be simultaneously displayed in
two programming languages, and thus show different implementations of programming
concepts. In addition, VILLE allows monitoring of the execution of the program and thus
of the result of changes in the output arising from changes in the value of variables. Fi-
nally, we should by all means mention BlueJ as an example of a static visualization tool
whose characteristics are a directly parameterized call of the method and automatic gen-
eration of applet skeleton. Its basic purpose is acquiring object-oriented concepts in the
Java programming language (Kölling et al., 2003).

From all the aforementioned examples it can be concluded that visualization tools are
very useful in teaching programming to novice students, primarily because they can show
and explain programming concepts in a very simple way. However, their main disadvan-
tage is that the majority of them are focused on only one programming language and the
simplest program constructs. Furthermore, the aim of teaching programming is that stu-
dents understand basic programming concepts and that they become able to apply those
concepts during the problem solving process, regardless of implemented programming
language. Unfortunately, most of these tools are too focused on the visualization com-
ponent, and less on learning the syntax and semantics of the selected programming lan-
guage. Therefore, we believe that the visualization tools are more appropriate for teach-
ing programming in elementary schools, but not at universities where the student needs
to learn algorithmic approach to solve given problems. Finally, the results of research that
has followed the use of most of the aforementioned tools have not revealed any signifi-
cantly better results and students still experience the same difficulties when learning basic

Verificator: Educational Tool for Learning Programming 265

programming (Milne and Rowe, 2002; Lahtinen et al., 2005; Butler and Morgan, 2007).
Therefore we decided to develop Verificator, an environment in which students will learn
strategies they will use in solving problems and developing the necessary concepts and
skills to create computer programs.

3. Our Approach to Teaching Programming

There are several problems that we have to deal with in the process of teaching program-
ming. The most important one is a huge disproportion in the students’ foreknowledge.
Programming is an obligatory basic course that students take in the second semester.
Their previous knowledge and techniques highly depend on their previous education,
which varies from school to school. For many of them the course is their first encounter
with programming, so they do not have any experience doing it. On the other hand, there
are quite a few students with moderate, or even good programming experience. This
problem can be traced back to the organization of programming courses in primary and
secondary school. In primary school, which has the same curriculum in the whole coun-
try, informatics is not an obligatory subject, although most pupils take it. Even so, these
courses teach only the basics of computer usage, and do not deal with any program-
ming. On the other hand, best pupils take part in programming competitions and acquire
a moderate knowledge of programming techniques and programming languages Basic
and Logo. Most secondary school informatics courses are optional as well.

To make all students interested in an obligatory programming course, it is necessary
to equalize their previous knowledge as much as possible. To do that we introduced an
optional zero level programming course in which students are not awarded any ECTS
credits. It was introduced as a free of charge winter school of programming. However,
the number of attendants turned out to be a problem. Namely, more than 80% of our
students attended this winter school. As a result, owing to such a high percentage of
students interested in the preliminary programming school, we decided to change the
way of organizing it and include it in the obligatory basic course of Informatics held in
the first semester.

The second dilemma we had to solve was the choice of the programming language to
be used in the programming course. The language to be used has to be widely acknowl-
edged and used in practice, easy to learn and needs to contain all the important concepts
of programming languages. As we are talking about a basic programming course, it is
obvious that any functional or logic programming language will be excluded. These lan-
guages require an understanding and usage of advanced programming strategies, such as
recursion and backtracking method, and are therefore not appropriate for a basic course.
The three main procedural language lines nowadays are Basic-like, Pascal-like and C-
like languages. There is a significant difference between these three lines. While C-like
and Pascal-like languages are more frequently used by professionals, languages from
the Basic-like language line do not contain many important language concepts and are
more appropriate for informative level courses. Furthermore, we deliver our program-
ming course to two different types of students. The first of them are students enrolled in

266 D. Radošević, T. Orehovački, A. Lovrenčić

the undergraduate university study of information and business systems. Although there
are two distinct study programs at this level –information systems and business systems –
their first two semesters are identical, so the students in both programs have to be treated
as a single group. The second group is students enrolled in the vocational study of in-
formation technology usage in business systems. The students in the latter group have to
get only informative knowledge of programming, so Visual Basic is used in their course.
The first group is more interesting because the programming knowledge they acquire
is important for several courses they attend further on in the study. The knowledge of
programming is thus crucial for their future education as well as for their careers after
graduation. Consequently, the approach to this group of students should be more sys-
tematic and serious. Therefore, Visual Basic is not a good choice for them. In choosing
between C-like and Pascal-like languages we were guided by three different criteria:

• the popularity of the language in practice,
• the availability of all important programming concepts,
• popular OS platform support.

Unfortunately, there is no data about the usage of programming languages in Europe,
so we used U.S. data, namely, the TIOBE Programming Community Index of program-
ming language usage. A great dominance of C-like languages in current practiceis shown
in (TIOBE, 2009) and (Lovrenčić et al., 2009). Four main C-like languages (C, C++,
Java and C#) take up more than 50% of the programming code in USA. On the other
hand, three languages from the Pascal-like line of languages (Delphi, PL/SQL and Pas-
cal) accounted for less than 4%. In this situation, the C-like line of languages was an easy
choice. The narrowing of one language was a slightly harder task. It is obvious that Java,
as the most widely-used language, was a very serious candidate. On the other hand, Java
has some drawbacks that make it inappropriate for the course. The first problem with
Java is the fact that it requires Java Virtual Machine. It is an advanced concept that makes
Java the most portable language, although it also makes the basic concepts of compiling
and interpreting of the code more difficult to explain. The second problem with Java is
garbage collection, another advanced concept that makes Java hard to understand for be-
ginners. When it comes to C#, its popularity is relatively small and decreasing, although,
with its C syntax and Pascal semantics, it would be the best choice. Another problem
with C# is its strong connection to MS Windows, and the absence of serious open-source
compilers or interpreters for it. So, C and C++ languages remain candidates. We decided
to choose C++, regardless of its smaller popularity in comparison with C, because it is
object-oriented, which makes Java concepts easier to teach in the aforementioned courses.

After choosing the programming language, we had to organize the course. In previ-
ous years the main organizational problem had been the poor connection between the
lectures giving theoretical knowledge and the laboratory exercises, which are meant to
provide ‘hands-on’ experience. The solution we devised was the 3-level organization: the
lectures that give theoretical knowledge, but also introduce concepts of C++ program-
ming language, the auditory exercises that demonstrate the usage of concepts introduced
in the lectures, and syllabus exercises in which individual work and skill sharpening is
ensured.

Verificator: Educational Tool for Learning Programming 267

Continuous learning plays a major role in a programming course. The reason for that
is the fact that the understanding of subsequent concepts that are taught largely depends
on the understanding of those previously taught and any discontinuity results in prob-
lems understanding and following the lectures. This also explains why we abandoned the
classical concept of examination through mid-term exams and final exam, and introduced
a new system of 10 blitz-tests and 10 syllabus exercises that constitute the final grade
for each student. Blitz-tests follow the concepts that are taught during the lectures, while
syllabus exercises are used for grading of practical skills that students acquire through
auditory exercises.

The main presumption of our examination system is individual work. The dilemma
that arises is whether the assignments in syllabus exercises should be disclosed to students
in advance. If the exercises are not disclosed in advance, students have to create the
concept, algorithm and program during the test. That requires assigning a less difficult
task, so it could be solved completely within 2 hours. As a result, the level of knowledge
and skills required for exercise solving is lowered, and so is the level of total knowledge
that students acquire throughout the course. Another problem with this approach is that
every syllabus group has to have a different exercise. We have about 20 syllabus groups
and creating 20 similar exercises every week is a serious organizational problem. If the
exercises are known in advance, students can make the preparation at home before the
syllabus exercises. Therefore, the exercises can be more demanding and the knowledge
that a student has to show greater. That leads to a higher level of total knowledge and
skills that student will acquire, and also encourages individual work. However, an issue
related to disclosing the exercises in advance is plagiarism, which is a serious problem
that cannot be solved easily. Owing to the large number of students and the fact that
exercises are held by more than one assistant, it is not easy to remember solutions that
students make and thus discover plagiarism. The first measure we introduced was the
11th syllabus exercise, which is not disclosed in advance, and is crucial for the final
grade. In this way the first ten exercises can be plagiarized, but students cannot get the
final grade unless they solve the 11th exercise. As mentioned earlier, the problem with
this kind of testing is that every single syllabus group has to have a different exercise.
The second measure we introduced was a specialized learning programming interface for
writing C++ programs, named Verificator, instead of standard ones. Verificator eliminates
a great part of former problems with students’ plagiarism and helps our students in their
understanding of C++ syntax and adoption of good programming habits. This software is
presented in the rest of this paper.

4. Problems Encountered by Our Students in Acquiring Programming Skills

Our students’ web-form questionnaire showed some of the most common problems in
learning programming (the survey was conducted after the 3rd computer exercise in the
course; Table 1).

Some other researches, e.g., Gomes and Mendes (2007) also show that the algorithm
for solving a problem is seen as a harder problem than the programming language syn-
tax. Does it mean that the teaching process should be oriented to algorithms only, because

268 D. Radošević, T. Orehovački, A. Lovrenčić

Table 1

Students’ problems in learning programming (Radošević et al., 2009)

% students
(2009)

lack of previous knowledge 65%

distracted by other study obligations 58%

algorithm for solving a problem 26%

using the curly brackets 17%

fear of programming 13%

C++ syntax 12%

C++ seems too hard 9%

C++ operators 9%

iterations (for, while, do-while) 9%

C++ instructions 7%

selections (if, switch) 3%

using the semicolon 2%

Fig. 1. Difficulties in learning programming.

programming syntax is ‘easy’? We cannot by any means agree with that. The multivari-
ate analysis of mutual correlations between students’ answers has revealed to us which
factors are positively – or negatively – correlated to some of the students’ main problems
in learning programming (at the level of solving exercises in the Programming 1 course;
Table 2):

• fear of programming,
• C++ seems too hard,
• lack of previous knowledge,
• algorithm for solving a problem.

The correlations (although occasional in places and too small to prove the cause/effect
association) indicate that problems with programming language syntax are the most com-
mon in connection to other problems in learning programming. On the other hand, writing
a lot of small programs may be good practice aimed at eliminating the most common syn-

Verificator: Educational Tool for Learning Programming 269

Table 2

Correlations between some of students’ main problems in learning programming

Correlation Problem

Fear of program-
ming

C++ seems too hard Lack of previous
knowledge

Algorithm for solv-
ing problem

Positive – while loop (0.26)

– lack of previous
knowledge (0.25)

– do-while loop
(0.20)

– curly brackets
(0.16)

– C++ seems too hard
(0.15)

– do-while loop (0.21)

– C++ instructions
(0.19)

– while loop (0.17)

– C++ operators
(0.16)

– fear of
programming (0.15)

– fear of
programming (0.25)

– did not pass the
Informatics 1
course (0.18)

– C++ operators
(0.15)

– poor knowledge of
another
programming
language (0.15)

– C++ operators (0.27)

– C++ instructions
(0.20)

– distracted by other
study obligations
(0.16)

– fear of
programming (0.13)

– using the semicolon
sign (0.13)

Negative – want programming
in their future job
(−0.26)

– often write
programs of up to
1000 lines (−0.24)

– knowledge of
computer networks
(−0.21)

– knowledge of
HTML (−0.20)

– knowledge of
spreadsheets
(−0.18)

– knowledge of
computer hardware
(−0.21)

– often write
programs of up to
1000 lines (−0.17)

– usage of a sound
processing tool
(−0.17)

– knowledge of
computer networks
(−0.12)

– usage of a video
processing tool
(−0.11)

– often write
programs of up to
1000 lines (−0.51)

– knowledge of
HTML (−0.34)

– knowledge of C
programming
language (−0.32)

– usage of more than
1 programming
language (−0.30)

– writing of programs
larger than 1000
lines (−0.24)∗

– usage of more than
1 programming
language (−0.17)

– usage of more than
1 programming
language (−0.17)

– knowledge of
HTML (−0.16)

– knowledge of
Pascal (−0.13)

– usage of a
video-processing
tool (−0.12)

– control term
(−0.10)∗∗

∗ Only 4% of respondents
∗∗ Cheat term as a term important for Informatics history (indicates the overvaluation of knowledge)

tax problems, although it is probably not so effective when problems with algorithms are
concerned. The problem could be represented by Fig. 1.

To conclude, there is a gap in the interconnection between the programming language
syntax and algorithms for solving problems. Our approach to dealing with that problem
is to offer our students a lot of practice and a software tool, Verificator, which helps them
with the programming language syntax and the adoption of good programming habits.

5. Verificator

Verificator is a kind of learning programming interface which includes a programming
editor, debugger, and tools for syntax analysis of C++ program code. It is connected to a
standard C++ compiler, like gcc. The main purpose of Verificator is to help our students in

270 D. Radošević, T. Orehovački, A. Lovrenčić

acquiring good programming habits and to avoid the bad ones. During years of teaching
experience we have had the opportunity to see many such bad habits developed by our
students, e.g.:

• trying to copy program solutions from colleagues,
• learning large program blocks by rote without any understanding,
• writing programs without any syntax and logical check.

The main purpose of Verificator is to push students to make control points during
program development, so they cannot continue writing their program until its syntax is
correct (i.e., until it can be compiled without errors). This means that all program struc-
tures have to be closed and regular according to syntax. Furthermore, programs cannot
be imported (e.g., by copy/paste operation or loading from a file) into Verificator, and
have to be written manually, with the exception of libraries. Together with a periodical
syntax check, it is now much harder to copy programs from colleagues, especially with-
out understanding of program structure and functionality. Programs written in Verificator
are personalized because the authors’ data are included in form of comments, together
with the MD5 checksum which guarantees the program is really written in Verificator.
To help our students with the syntax, Verificator includes some tools which enable stu-
dents to easily find unclosed program structures and parentheses which do not match.
The debugger includes marking erroneous code in red and putting a breakpoint into the
program.

5.1. Getting Started with Verificator

We use Verificator in combination with the DevC++ freeware C++ integrated develop-
ment environment. After DevC++ is installed, Verificator can be plugged in. Students use
Verificator in their computer exercises, but they can also download it for home practice.
The work with Verificator starts by filling in the starting form. The data entered in the
form are later finished in C++ source code in the form of comments, together with some
other metadata, like times and MD5 checksum, e.g.:

// MD5:YlUYrh/NBhdmhoh7La2h0Q==
// Verificator
// Program:Example 1
// Description:First learning example.
// Author:Danijel Rado\v{s}evi\’{c}
// Start time:24.6.2009 20:39:19
// Final time:24.6.2009 20:40:44
// IP: (340)
// \#:\#include<iostream>,
// Successful/unsuccessful compilings:2/0
\#include<iostream>
using namespace std;
int main()
{

int a;
cout << ’’Hello world from Verificator!’’ << endl;
cin >> a;

}

Verificator: Educational Tool for Learning Programming 271

The default target for source code is the Desktop folder (to be visible in computer
exercises). The file name also contains the data entered in the form (in the example above:
Radosevic_Danijel_Example 1.cpp).

5.2. Writing Program Code

The programming interface contains a semaphore in the form of a traffic light (Fig. 2).
Each time a programmer types the semicolon sign or starts a new line, the value on
the semaphore increases by one. Values 0–5 are in the green area and mean ‘You are
free to continue typing’. Values 6–10 (yellow light) mean ‘It’s time to close the open
structure and compile the program’. If the value exceeds 10 (red light on the semaphore),
the program cannot be compiled until the programmer reduces the code, after which the
semaphore value falls into the yellow or green area. Of course, successful compilation of
the program resets the semaphore to zero.

It is important that the comments (marked by ’//’ or ’/* */’) are not counted, so stu-
dents can avoid the red light by commenting on the code and then compile the program.
By uncommenting the code it becomes countable, so hiding the code into the comment
is not a way to deceive the semaphore.

The idea of a semaphore is to push students to make control points during the develop-
ment of their programs. So the correctness of the program syntax is checked at different
stages of program development. That could not be achieved by sequential retyping of
the program, because some structures are too big to be written as a whole before the
semaphore goes red. As a result, in the process of writing the program, students need to
adhere to its structure.

Fig. 2. Programming interface with the semaphore.

272 D. Radošević, T. Orehovački, A. Lovrenčić

Fig. 3. Program development with control points.

5.2.1. Control points in writing programs
Writing a full program before testing it leads to many syntax (and logical) errors and it
is hard to help students correct them when they occur in computer exercises. Therefore
it is important to follow a logical order in the development of a program. The Verificator
semaphore mechanism pushes students to make control points in the development of their
programs (Fig. 3).

That means that programming always starts with the easiest possible program, which
contains correct syntax only. In C++, that could be the following program:

int main(){
return 0;

}

After checking it, the program is ready to be enlarged:

#include<iostream> // 1.
using namespace std; // 2.
int main(){

cout « ”Hello world!” « endl; // 3.
return 0;

}

It is important to notice that the new program, after adding a few new lines, will hardly
contain a large number of errors, except in case where its structure is badly undermined.
So, writing a program using Verificator includes two basic steps necessary for acquiring
good programming habits:

• step 1: setting the structure and
• step 2: filling the structure with content (instructions and new structures).

In case of the aforementioned program, we can, for example, enlarge it by a loop. Set-
ting the structure includes a loop heading and curly brackets. In some cases, the structure
is connected to some data, like the control variable:

int i; // 1.data connected to structure
for (i=1;i<=10;i++) // 2.heading
{ // 3.{ - block beginning

// structure content (later!)
} // 4.} - block end

Verificator: Educational Tool for Learning Programming 273

The loop heading in the example depends on a control variable, so it should be de-
clared firstly. Apart from setting the structures before its content, Verificator also pushes
its users to take care of the dependencies in the program, e.g.:

• variables cannot be used before their declaration,
• subroutines cannot be called before being set (structure first and content next); this

also applies to user defined types like structs, classes and enumerations,
• dynamic structures depend on their allocation in memory,
• using external resources depends on the importing of appropriate libraries.

In addition to helping develop good programming habits, Verificator helps students in
learning of programming language syntax by insisting on its correctness at every program
development stage.

5.3. Tools for Syntax Analysis and Debugging

Verificator includes tools for easier finding of syntax and logical errors in programs. There
is a huge emphasis on the teaching approach, because Verificator is aimed at helping our
students to find, understand and correct errors in their programs.

5.3.1. Marking errors in red
Instead of simply showing the compilers’ output, Verificator colors the erroneous code in
red. That makes finding errors in program easier.

5.3.2. Tutor for suggesting solutions
Error messages received from the compiler are not always intuitive enough, especially
for students at the beginners’ level of programming, so they often do not understand
them, or cannot connect them to real problems in their programs. For example, a miss-
ing semicolon could be reported as an error in the next program line, possibly without
mentioning any semicolon. Furthermore, is possible that some syntactically correct but
logically senseless expressions, e.g.:

if (a=b) // assignment
will not be reported from the compiler as an error, although it is very probable that the
programmer’s real intention was

if (a==b) // comparison
The tutor appears in the Errors list window as an electric bulb each time there is a

suggestion to be made (Fig. 4.).
In the example above, the tutor suggests solutions in the following situations:

• forgotten program elements (e.g., basic libraries and namespaces, main),
• unpaired brackets (curly and round) and quotation marks,
• some syntax errors (e.g., usage of semicolon),
• warning about possible problems when the syntax is correct (e.g., usage of ’=’

instead of ’==’, variable declarations inside loop headings).

274 D. Radošević, T. Orehovački, A. Lovrenčić

Fig. 4. Typical use of the tutor (the number next to the bulb shows the actual number of suggestions).

5.3.3. Program analysis
Problems using curly brackets are very common at the beginners’ level of programming.
Verificator has a tool for analyzing curly brackets which enables finding opened but un-
closed program structures. It’s also possible to list all program structures. The information
that some of the structures are not referenced can sometimes be useful in finding logical
errors.

The debugger enables inserting of breakpoints into program. Breakpoints should be
enabled by checking the Breakpoints control in Verificator’s main window. After that,
breakpoints could be inserted into the program in form of comments, e.g.:

//Break: b a
means that the execution of the program will stop to show the current values of variables
a and b.

5.4. Other Verificator Features

In addition to the features described, Verificator includes some additional features:

• controls for stimulating good programming habits:

◦ it is not allowed to put more than one semicolon per line (except for loop and
break),

◦ it is not allowed to leave more than five continuous empty rows in a program,
◦ periodical warnings (messages) if the number on the semaphore exceeds 18

(which would complicate further writing);

• protection from hacking:

◦ queries and answers. Students put queries (in form of a comment) into their
programs. The answer (which is displayed as a picture below the semaphore)

Verificator: Educational Tool for Learning Programming 275

depends on the path Verificator is started from, number in the query and bi-
nary content of the Verificator program file.

◦ time and file size control. It is important that Verificator runs the exact pro-
gram file made from the source code present in Verificator. For this purpose
Verificator remembers the time of creation and size of the compiled program
file.

6. Our First Teaching Experiences

Our first teaching experiences can be divided into the following categories:

• effects on the teaching process:

◦ it is easier to control students’ performance in computer exercises and exami-
nations because Verificator prevents copying programs and writing programs
without knowing their structure. So students can use the Internet for finding
help,

◦ it is easier to help students because Verificator does not allow their errors to
become rooted,

◦ there is no need for other prohibitions, except for those embedded in Verifi-
cator (e.g., prevents copying programs, have to check their programs in the
process of writing the code), so students can now use the Internet in doing
their exercises for finding help,

◦ students have to be better prepared for doing exercises than before;

• positive reactions by students:

◦ ‘Now it’s much easier to find an error and understand the exercise.’
◦ ‘If it weren’t for Verificator, I would never learn programming!’
◦ ‘If we had used Verificator last year, I’m sure that I would have passed the

exam and wouldn’t have to enroll the course again!’
◦ students’ suggestions on how to improve Verificator, e.g., by adding some

new features and repairing the bugs;

• negative reactions by students:

◦ the limitation of 10 lines before compilation seems too strict,
◦ frequent compilation takes too much time,
◦ some bugs in starting versions (usually problems with the editor and the

semaphore).

At the end of the semester, we conducted the second students’ web questionnaire on a
population of 55 respondents (the same respondents as in the first questionnaire; unfortu-
nately, it was hard to gather the same number of respondents as in the first questionnaire
because the lectures had finished and participation was voluntary). Nevertheless, some
correlations obtained might be interesting (Table 3).

It seems that students have solved the majority of their initial problems with basic
programming language syntax. However, when they learned some new concepts (e.g.,

276 D. Radošević, T. Orehovački, A. Lovrenčić

Table 3

Correlations between some of students’ main problems in learning programming (at the end of the semester)

Correlation Problem

Fear of program-
ming (11% respon-
dents)

C++ seems too hard
(11% respondents)

Lack of previous
knowledge (53%
respondents)

Algorithm for solv-
ing problem in ma-
jority of exercises
(23% respondents)

Positive – no interest in
programming (0.47)

– exercises seem too
hard (0.41)

– exercises seem too
hard (0.41)

– problem solving
algorithm in
majority of
exercises (0.37)

– lack of previous
knowledge (0.37)

– usage of semicolon
(0.51)

– C++ operators
(0.47)

– programming seems
too hard (0.46)

– curly brackets
(−0.37)

– fields (0.36)

– distracted by other
study obligations
(0.49)

– exercises seem too
hard (0.42)

– problem solving
algorithm in
majority of
exercises (0.42)

– programming seems
too hard (0.37)

– fear of
programming (0.33)

– fields (0.45)

– functions (0.44)

– lack of previous
knowledge (0.42)

– exercises seem too
hard (0.41)

– fear of
programming (0.37)

Negative – want programming
in their future job
(−0.32)

– often write
programs of up to
1000 lines (−0.22)

– curly brackets
(−0.17)∗

– problem solving
algorithm in only 1
or 2 exercises
(−0.15)

– knowledge of
HTML (−0.15)

– want programming
in their future job
(−0.25)

– frequent usage of
E-learning course
materials (−0.23)

– often write
programs of up to
1000 lines (−0.20)

– using the help of
colleagues in the
same year of study
(−0.18)

– often write
programs of up to
1000 lines (−0.43)

– problem solving
algorithm in only 1
or 2 exercises
(−0.35)

– want programming
in their future job
(−0.28)

– knowledge of C
(−0.22)

– knowledge of
Pascal (−0.22)

– often write
programs of up to
1000 lines (−0.28)

– usage of other
learning materials
besides those
proposed (−0.18)

– knowledge of C
(−0.18)

– want programming
in their future job
(−0.16)

– programming in
Pascal or Java
(−0.11)

∗ Those who have problem using curly brackets have less fear from programming (contrary to the
results in the first questionnaire).

structures, functions, etc.), some new problems with syntax appeared (e.g., problems with
C++ operators and usage of semicolon). At the end of semester, problems with algorithms
are predominantly related with usage of arrays and functions whereas at the beginning
of the semester, problems were related with basic syntax. Furthermore, instead of any
particular problem with syntax or algorithms, many students reported some ”generic”
problems, like being distracted by other study obligations or not having enough interest
to achieve programming skills. Finally, the ”medicine” for majority of problems stays the
same: practicing by writing lots of small programs gives the best results.

Verificator: Educational Tool for Learning Programming 277

7. Conclusion and Future Work

Over the years, while teaching programming at the University of Zagreb, Faculty of Or-
ganization and Informatics in Varaždin, Croatia, we have faced some problems inherent
in the teaching itself as well as those related to the organization of the teaching process.
Students’ problems in learning programming range from the most common problems,
like a lack of foreknowledge and being distracted by other duties in the study to less
common, but even harder problems, like the fear of programming and the perception of
programming as being too hard. Students occasionally try to find easy ways to pass the
exam, which can lead to bad programming habits. Some of these are learning programs or
their parts by rote, without any understanding, or trying to write large programs without
any syntax and logical test before they are finished. On the other hand, it is hard to help
students once their errors are rooted and they are completely discouraged from learning
programming.

Our students’ web questionnaire and its results show that the majority of problems
they encounter in learning programming arise from the gap between the understanding
of programming language syntax and problem solving algorithms. Our approach to deal-
ing with that problem is to offer our students a lot of programming practice and our
software tool, Verificator, which helps them use the programming language syntax and
adopt good programming habits. Verificator prevents students from copying programs
from colleagues and pushes them to make control points during the development of their
programs with syntax and logical checks. Writing programs using Verificator includes
two basic steps, which are necessary for acquiring good programming habits:

• step 1: setting the structure and
• step 2: filling the structure with content (instructions and new structures)

In addition to setting the structure before its contents, Verificator pushes its users to
take care of the dependencies in the program, e.g.:

• variables cannot be used before their declaration,
• subroutines cannot be called before being set (structure first and content next). this

also applies to user defined types like structs, classes and enumerations,
• dynamic structures depend on their allocation in memory,
• using external resources depends on the importing of appropriate libraries.

Verificator has tools for syntax analysis and debugging, including finding opened but
unclosed program structures, finding unreferenced structures and inserting breakpoints
into a program.

In our future work, we intend to further develop the tutor for suggesting solutions for
common syntax and logical problems, and add some new features like uploading pro-
grams to a web server. We also intend to create a similar learning programming interface
for Java.

278 D. Radošević, T. Orehovački, A. Lovrenčić

References

Atanasova, G., Hristova, P. (2003). Flowchart interpreter: An environment for software animation representa-
tion. In: Proceedings of the 4th International Conference on Computer Systems and Technologies. Sofia,
Bulgaria, 453–458.

Bergin, J., Stehlik, M., Roberts, J., Pattis, R. (1997). Karel++, A Gentle Introduction to the Art of Object-
Oriented Programming. Wiley & Sons, New York.

Ben-Ari, M. (1998). Constructivism in computer science education. In: Proceedings of the 29th SIGCSE Tech-
nical Symposium on CS Education. Atlanta, Georgia, United States, 257–261.

Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P. (2000). An extended experiment with Jeliot 2000. In: Proceedings
of the First International Program Visualization Workshop. Porvoo, Finland, 131–140.

Brown, M.H., Sedgewick, R. (1984). A system for algorithm animation. Computer Graphics, 18(3), 177–186.
Butler, M., Morgan, M. (2007). Learning challenges faced by novice programming students studying high level

and low feedback concepts. In: Proceedings of Ascilite. Singapore, 99–107.
Cardellini, L. (2002). An Interview with Richard M. Felder. Journal of Science Education, 3(2), 62–65.
Carlisle, M., Wilson, T., Humphries, J., Hadfield, M. (2004). RAPTOR: Introducing programming to non-

majors with flowcharts. Journal of Computing Sciences in Colleges, 19(4), 52–60.
Costelloe, E. (2004). Teaching Programming The State of the Art. CRITE Technical Report, Department of

Computing, Institute of Technology Tallaght, Dublin, Ireland.
https://www.cs.tcd.ie/crite/publications/sources/programmingv1.pdf

Crews, T. (2001). Using a Flowchart Simulator in an Introductory Programming Course. Computer Science
Teaching Centre Digital Library, Western Kentucky University, USA.
http://www.citidel.org/bitstream/10117/119/2/Visual.pdf

Elkner, J. (2004). The Guido van Robot Programming Language. Sourceforge.net.
http://gvr.sourceforge.net/

Fowler, L., Allen, M., Armarego, J., Mackenzie, J. (2000). Learning styles and CASE tools in software en-
gineering. In: Proceedings of the 9th Annual Teaching Learning Forum. Curtin University of Technology,
Perth, Australia.
http://lsn.curtin.edu.au/tlf/tlf2000/fowler.html

Garner, S. (2003). Learning resources and tools to aid novices learn programming. In: Proceedings of Informing
Science & Information Technology Education Joint Conference. Pori, Finland, 213–222.

Gomes, A., Mendes, A.J. (2007). Learning to program – difficulties and solutions. In: Proceedings of the Inter-
national Conference on Engineering Education. Coimbra, Portugal.
http://icee2007.dei.uc.pt/proceedings/papers/411.pdf

Grissom, S., McNally, M., Naps, T. (2003). Algorithm visualization in CS education: Comparing levels of stu-
dent engagement. In: Proceedings of the ACM Symposium on Software Visualization. San Diego, California,
USA, 87–94.

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Teräsvirta, T., Vanninen, P. (1997). Animation of user al-
gorithms on the Web. In: Proceedings of 1997 IEEE Symposium on Visual Languages. Isle of Capri, Italy,
360–367.

Hundhausen, C.D., Douglas, S.A., Stasko, J.D. (2002). A Meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing, 13(3), 259–290.

Kaila, E., Rajala, T., Laakso, M.-J., Salakoski, T. (2009). Effects, experiences and feedback from studies of a
program visualization tool. Informatics in Education, 8(1), 17–33.

Kannusmäki, O., Moreno, A., Myller, N., Sutinen, E. (2004). What a novice wants: students using program
visualization in distance programming course. In: Proceedings of the Third Program Visualization Workshop.
Warwick, UK, 126–133.

Kölling, M., Quig, B., Patterson, A., Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal of
Computer Science Education, 13(4), 249–268.

Korhonen, A., Malmi, L., Silvasti, P. (2003). TRAKLA2: a framework for automatically assessed visual algo-
rithm simulation exercises. In: Proceedings of the Third Finnish/Baltic Sea Conference on Computer Science
Education. Koli, Finland, 48–56.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., Malmi, L. (2005). Multi-perspective study of
novice learners adopting the visual algorithm simulation exercise system TRAKLA2. Informatics in Educa-
tion, 4(1), 49–68.

Verificator: Educational Tool for Learning Programming 279

Lahtinen, E., Ala-Mutka, K., Järvinen, H-M. (2005). A study of the difficulties of novice programmers. In:
Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education. Caparica, Portugal, 14–18.

Lattu, M., Tarhio, J., Meisalo V. (2000). How a visualization tool can be used: Evaluating a tool in a research
and development project. In: Proceedings of the 12th Workshop of the Psychology of Programming Interest
Group. Corenza, Italy, 19–32.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E.,
Sanders, K., Seppälä, O., Simon, B., Thomas, L. (2004). A multi-national study of reading and tracing skills
in novice programmers. ACM SIGCSE Bulletin, 36(4), 119–150.

Lovrenčić, A., Konecki, M., Orehovački, T. (2009). 1957–2007: 50 years of higher order programming lan-
guages. Journal of Information and Organizational Sciences, 33(1), 79–150.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L.,
Utting, I., Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming skills
of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125–180.

Milne, I., Rowe, G. (2002). Difficulties in learning and teaching programming – views of students and tutors.
Education and Information Technologies, 7(1), 55–66.

Mulholland, P. (1998). A principled approach to the evaluation of SV: a case study in Prolog. In: Stasko,
J., Domingue, J., Brown, M.H., Price, B.A. (Eds.), Software Visualization. Programming as a Multimedia
Experience. The MIT Press, 439–451.

Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., Mc-
Nally, M., Rodger, S., Velázquez-Iturbide, J.Á. (2002). Exploring the role of visualization and engagement
in computer science education. ACM SIGCSE Bulletin, 35(2), 131–152.

Pattis, R.E. (1981). Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons,
New York.

Pausch, R., Burnette, T, Capeheart, A.C., Conway, M., Cosgrove, D. DeLine, R., Durbin, J., Gossweiler, R.,
Koga, S., White, J. (1995). Alice: Rapid prototyping system for virtual reality. IEEE Computer Graphics
and Applications, 15(3), 8–11.

Radošević, D., Orehovački, T., Lovrenčić, A. (2009). New approaches and tools in teaching programming.
In: Proceedings of Central European Conference on Information and Intelligent Systems (Ceciis 2009).
Varaždin, Croatia, 49–57.

Scott, A., Eyres, D., Watkins, M. (2006). Animated flowcharts as an aid to learning programming. In: Pro-
ceedings of the 10th Java in the Internet Curriculum Conference. North Campus, London Metropolitan
University, UK, 12–16.

Spohrer, J.C., Soloway, E. (1986). Novice mistakes: are the folk wisdoms correct? Communications of the ACM,
29(7), 624–632.

Stasko, J.T. (1990). Tango: A framework and system for algorithm animation. IEEE Computer, 23(9), 27–39.
Stasko, J., Kraemer, E. (1993). A methodology for building application-specific visualizations of parallel pro-

grams. Journal of Parallel and Distributed Computing, 18(2), 258–264.
Thomas, L., Ratcliffe, M., Woodbury, J., Jarman, E. (2002). Learning styles and performance in the introductory

programming sequence. In: Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education. Cincinnati, Kentucky, USA, 33–42.

TIOBE (2009). TIOBE Programming Community Index for June 2009.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Tudoreanu, M.E. (2003). Designing effective program visualization tools for reducing user’s cognitive effort.
In: Proceedings of the 2003 ACM Symposium on Software Visualization. San Diego, California, 105–114.

280 D. Radošević, T. Orehovački, A. Lovrenčić

D. Radošević, PhD, is an assistant professor at University of Zagreb, Faculty of Organiza-
tion and Informatics. He teaches at different programming courses. His research focuses
on programming languages, generative programming and educational software.

T. Orehovački is a PhD student and teaching assistant at Faculty of Organization and
Informatics, University of Zagreb. His research interests include programming education,
web technologies, security of web applications and users, knowledge management and
generative programming.

A. Lovrenčić, PhD, is an associate professor at University of Zagreb, Faculty of Orga-
nization and Informatics. His research is focused on algorithms, programming and data
structures.

Verificator: mokomoji priemonė programavimui mokytis

Danijel RADOŠEVIĆ, Tihomir OREHOVAČKI, Alen LOVRENČIĆ

Straipsnyje nagrinėjama mokomoji programavimo s ↪asaja “Verificator”, specialiai skirta univer-
siteto studentams pradedantiems mokytis C++ programavimo kalbos. Mokant programavimo reikia
atsižvelgti ↪i tam tikras problemas, susijusias su pačiu mokymu, ir taip pat ↪i mokymo organizavimo
eig ↪a. Viena iš didžiausi ↪u problem ↪u yra ta, kad studentai, norėdami kuo greičiau atlikti užduotis,
susiformuoja kai kuriuos netinkamus programavimo ↪ipročius, pavyzdžiui, bando rašyti progra-
mas netikrindami nei sintaksės, nei veiksm ↪u logikos. ↪Igytus netinkamo programavimo ↪igūdžius
yra gana sunku vėliau ištaisyti. Išnagrinėjus student ↪u užpildyt ↪a internete klausimyn ↪a, buvo nusta-
tyta, kad mokantis programavimo, dauguma problem ↪u kyla dėl programavimo kalbos sintaksės ir
užduoties algoritmo supratimo. Sukurtoji kompiuterinė mokomoji priemonė “Verificator” padeda
studentams ↪iveikti daugel↪i programavimo klaid ↪u, talkina jiems perprantant programavimo kalbos
sintaksės konstrukcijas, sudaro prielaidas geriems programavimo ↪igūdžiams ↪igyti.

