Informatics in Education, 2009, Vol. 8, No. 1, 85-100 85
© 2009 Institute of Mathematics and Informatics, Vilnius

Teaching Artificial Intelligence and Logic
Programming in a Competitive Environment

Pedro RIBEIRO

CRACS & INESC-Porto LA

DCC — Faculdade de Ciéncias, Universidade do Porto
R. Campo Alegre, 102171055, 4169-007 Porto, Portugal
e-mail: pribeiro@dcc.fc.up.pt

Hugo SIMOES

LIACC - Artificial Intelligence and Computer Science Laboratory
DCC - Faculdade de Ciéncias, Universidade do Porto

R. Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

e-mail: hrsimoes@dcc.fc.up.pt

Michel FERREIRA

Instituto de Telecomunicagoes

DCC — Faculdade de Ciéncias, Universidade do Porto
R. Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
e-mail: michel@dcc.fc.up.pt

Received: October 2008

Abstract. Motivation plays a key role in the learning process. This paper describes an experience in
the context of undergraduate teaching of Artificial Intelligence at the Computer Science Department
of the Faculty of Sciences in the University of Porto. A sophisticated competition framework,
which involved Prolog programmed contenders and game servers, including an appealing GUI,
was developed to motivate students on the deepening of the topics covered in class. We report on
the impact that such a competitive setup caused on students’ commitment, which surpassed our
most optimistic expectations.

Keywords: education, artificial intelligence, logic programming, teaching frameworks, competiti-
ve learning.

1. Introduction

Teaching Logic Programming (LP), and its favourite application subject of Artificial In-
telligence (Al), has a strong tradition at the Computer Science Department of the Faculty
of Sciences in the University of Porto (DCC-FCUP). The department was created by
early users of the LP paradigm, in areas such as natural language processing (Porto and
Filgueiras, 1984; Filgueiras, 1987), and pioneer implementors of LP systems, such as
EMAS Prolog and C-Prolog (Roy, 1994). This tradition lead to the development of one

86 P. Ribeiro, H. Simoes, M. Ferreira

of the most efficient and widely used Prolog systems, Yap Prolog (Costa, 2008), and
established at University of Porto a very strong research group on LP.

Motivation plays a very important role in the process of learning (Bergin and Reilly,
2005). Teaching LP is no exception and one needs precisely to motivate the students. One
way of doing that is to use competition to promote the desire of being better (Wallace
and Margolis, 2007). There is an enduring relationship between Al and games, which
make these a very good vehicle to teach the subject. That has been done for example
in (Hingston et al., 2006), but also in the context of another computer science disci-
pline (Lawrence, 2004).

Using a similar line of thought, this paper describes an experience in the context of
the undergraduate teaching of Al, when the three co-authors of this paper were jointly
involved in the lecturing of the subject at DCC-FCUP. We developed a sophisticated
competition framework, which involved Prolog programmed contenders, game servers
and code obfuscators, and an appealing Java graphical user interface (GUI), with the goal
of improving students motivation on the deepening of the topics covered in class. At the
beginning of the course we presented students a practical assignment which consisted
in programming an intelligent player of a particular board game. The assignment grade
was a substantial component of the overall grade for the Al course. More importantly,
the assignment grade was to be determined by the ranking obtained in an all-against-all
competition among student programs, where we would also include our own programs,
some working as level definers, and one representing our best effort in trying to program
an unbeatable player.

The response obtained from students was impressive, surpassing our most optimistic
expectations. Suddenly, we had students searching and reading literature covering much
more advanced topics than what was covered in class. We had students worried in being
able to test their programs against its competitors, while protecting their code “copy-
right”, a concern usually associated with teachers rather than with students. The level of
enthusiasm was such that we were asked to improve the GUI, which animated the com-
petition, to include the customization of the pieces “skins”, which would be supplied by
the students, as the simple red and blue pieces were considered inappropriate for such
highly competitive programs, proudly named as Black Knight, Khan or Owl!

The remainder of this paper is organized as follows. Section 2 presents the game that
inspired the competition. Section 3 describes the competition framework, presenting the
game server, the graphical user interface and the Prolog code encryptor. Section 4 presents
the actual competition between the participating programs, its qualifying premises and
competitive evaluation criteria, and summarizes the results of the competition. Section 5
describes the winning programs, focusing on the overall winner, while also describing the
interesting strategies implemented by notable programs. Section 6 reports on the feedback
we received from the students. Finally, Section 7 concludes.

2. The Ataxx Game

For our educational experience, we wanted to use a game that would provide simplicity of
rules, but at the same time give plenty of opportunities to solve the problem in interesting

Teaching Al and LP in a Competitive Environment 87

ways. It was also our goal to choose a game that would not be one of the “classical” ones
(like chess), in order to provide a fresh start to everyone and equal chances of thinking
the strategies to play it. We decided to use Ataxx, a board game, and we will now explain
its origins and rules.

The Ataxx game was invented in 1988, in England, by David Crummack and Craig
Galley, with the original name of Infection (Beyrand, 2005). They wanted to make a
game that would work better on a computer than on a traditional board and they got their
inspiration from other known games such as Reversi. It was initially programmed for
Amiga, Commodore 64 and Atari ST platforms. Although this particular implementation
was never commercially released, its concept was so interesting that its company quickly
decided to use it on PC (with the name Spot), and on arcade games (with the name Ataxx).
The game was popularized in 1992 when it was featured as one of the most difficult
puzzles in the 7th Guest game, with the name Microscope or Show of Infection (7th
Guest was a huge success on its time). After that, the game had many versions, with
many names (such as SlimeWar or Frog Cloning) and variations, but its most common
name became Ataxx, which was derived from the word attack.

Ataxx is played in a 7 x 7 grid board by two opponents that take turns to play, each
one playing with pieces of a different color. At the start of the game, there are two pieces
of each player, situated on opposite corners of the board.

In its turn, a player must move one of its pieces to an empty square. He can move
the piece to one of its adjacent squares, and the piece is replicated, in the sense that a
new one appears in the new position. In alternative, he can make a piece jump to a free
position that is at a distance of two squares from the original one (with no replication).
Fig. 1 shows the possibilities for a piece move.

After a move, all the opponent pieces that are neighbors of the destination square
swap their color to match the piece that moved. See Fig. 2 for an example of two different
moves and their respective consequences.

If a player does not have any possibility for moving, it has to pass its turn to the
other player. A game ends when the board is full, when a player has no pieces or when a
board configuration is repeated three times by the same player. The player with the higher
number of pieces at the end wins the game.

There exist several variations on these rules (boards with different sizes or shapes,
blocked squares, etc), but these are the original and basic ones, which we decided to use
on our experiment.

Fig. 1. Ataxx possibilities for a move. The piece in the centre can replicate itself to the 1-squares, and it can
jump to the 2-squares.

88 P. Ribeiro, H. Simoes, M. Ferreira

GbDUﬁg U 9 Dl DDD%
1O DL | [9 O | 1©

CHENCCEE
@

e
)
)) o o
D) D) @ DD @ e
Replication Move Jump Move

Fig. 2. Two examples of Ataxx possible moves.

Although with very simple rules, Ataxx provides a rich and interesting environment
for gameplay. Note that on a single move, the score can change in a very large way, be-
cause eight new pieces can be added to the player that moved, and these same eight new
pieces also “disappear” from the other player’s score. This makes the game very unpre-
dictable and completely dynamic, with lots of changes. Typically, the last few moves are
really important and decisive.

3. Competition Framework

Our main goal was of course to teach Al and LP in Prolog but we wanted to do it in a
way that would really motivate the students. Having chosen a specific game, we needed
to present it an attractive and usable way. We wanted to create a completely functional
framework for playing the game, both as a human and as an artificial agent. However, we
could not forget to do that in an efficient way, since as you will see on Section 4 we will
have to make a large number of games.

We decided to use a modular approach, that also permitted us to divide the program-
ming effort among us, to present the students with the fully functioning framework. We
have an Ataxx server component, that is responsible for implementing the rules and inter-
acting with the programs, and we also have a graphical user interface that the students can
use to visualize and play the games, although they can choose to directly use the server
in a textual way. Fig. 3 gives an overview of the architecture we used, and we proceed
describing each of the components of the architecture in more detail. All of the tools can
be downloaded and experimented in (Ribeiro et al., 2008).

Graphical User Interface

Player 1 (in Java)

Program \ A(t_ax; Selwe)r Visual commands
in Prolog

Player 2 / Y " Text commands

Program

Fig. 3. Our Ataxx framework general architecture.

Teaching Al and LP in a Competitive Environment 89

3.1. The Ataxx Server

The Ataxx server is the main component of all the framework. It is responsible for imple-
menting the rules and for providing an interface to interact with the students’ programs.
Since the whole idea was to make the agents in Prolog, we also opted to write this server
in the same language.

Basically, the server functions in a textual way, interacting with the user using textual
input and output. The user can start, run and stop a game. The server offers a limited text
depiction of the board and more importantly it provides a way to run the game in batch
(unattended) mode, giving an automatic and fast way to play a game. The server is also
responsible for implementing the Ataxx rules, making sure that all moves are valid and
determining when the game is finished. Besides all this, the server also has embedded a
random agent, that we can use to have a very basic opponent to test our programs.

To run a game, the server needs to have access to the two agents’ Prolog files. Is was
established that those agents should always have a top level predicate with the format
main (+Board, +Timeleft, -Move), which will be called by the server. The board
is given as a list of lists representing a matrix, with the characters ‘x’ for the current
player pieces, ‘o’ for the opponent pieces and ‘-’ for empty squares. The server is
responsible for changing the pieces in order for the current player to always have 'x’ as
his pieces. This was made to facilitate the students’ task. Timeleft is an integer repre-
senting the total milliseconds left for all the agent’s remaining moves. Move is the output
of the program representing a move, and it should be an atom of the form ' ABCD’, where
(A, B) are the coordinates of the piece’s original position and (C, D) is the destination
square.

Note that the agents do not have access to any kind of memory between moves. Each
time they are called again as if they were in the start of the game, but with the new modi-
fied board. The server guarantees that the programs only use at maximum the remaining
available time.

3.2. Graphical User Interface

Since we wanted an attractive way to present the game, we decided to create a complete
GUI for our Ataxx experience. This interface is modular, and can be optionally attached
to the server, since it is independent from the game itself. We used Java Swing (Swing) for
the widgets and we included a clickable interface to be used by humans playing the game.
In this way, it is possible to have computer vs. computer, human vs. computer and human
vs. human matches, which can be used by the students to become more familiar with the
game and devise the strategies that they will implement. Fig. 4 shows a screenshot of
the GUL

The GUI includes animations for the piece captures and provides ways to automati-
cally run a full game, advance turn by turn and undo or redo moves. It also implements
another possibility that was deemed very useful for the students: the use of game logs.
Students can save and load entire or partial games. For example, they can run games

90 P. Ribeiro, H. Simoes, M. Ferreira

coeecor e
@ e Q @ Q Q
e, @ @ @ @

_Human . Random 's Program

[Browse |Ic—chenlsfu,\eve\l.\aﬂ

~Red Player

00000 R
eleelciect -
Q Q Q Q O Q @ mmAtaxx GUI 0.5.2

ClOICICICIOR o [

Rt >>Redi12 | | rwegme |
Lef: 233658ms Turn 53/53 Left:
Spent 6342ms Spent Dms | Play Game Until End I

| cputime:122ms move(2242)

Fig. 4. A screenshot of our Ataxx graphical user interface.

in batch mode and then check how the games were by loading the logs. And since the
log format we choose was a readable textual one, they could even prepare special board
positions to evaluate their programs.

3.3. The Prolog Code Obfuscator

It soon became clear for all teams that testing agents against the embedded random agent
or against their own previous agents was not enough to have an estimate on how an agent
would perform against other agents in the official competition. Furthermore, students
wanted to protect their code from being copied or readily understood by some other team
(including teachers). In order to solve this problem, we decided to develop another tool:
a Prolog code obfuscator.

Fig. 5b shows the result of obfuscating the QuickSort program of Fig. 5a using our
ProTuP (Prolog To unreadable Prolog) obfuscator.

Regardless of whether it is possible to protect an obfuscated code from being un-
derstood, we just needed to make such attempt difficult enough to be discouraging, in
addition to preventing the original source from being retrieved through the obfuscated
code.

ProTuP changes a given Prolog source by stripping comments, renaming variables,
removing unnecessary syntax, renaming user-defined predicates (except *main’) and ran-
domly sorting the position of these predicates.

The first three types of changes can be done automatically using Prolog ISO predicate
read/1", resulting in variables getting renamed to tokens of the form _n, where n is a
natural number. To further reduce readability, the user-defined predicates are renamed to
tokens of the form " "/ _n’ ' ’.

!For extra control we have actually used Prolog ISO predicate read_term/2.

Teaching Al and LP in a Competitive Environment 91

partition([], _, [1, [1). >0 022 ([1,ID.
partition([X|Xs], Pivot, Smalls, Bigs) :- 22 _0°22([_3505|_3506],_3507) :-

(X @< Pivot -> 22> _122(_3506,_3505,_3511,_3512),
Smalls = [X|Rest], ’22_0°°2(_3511,_3518),
partition(Xs, Pivot, Rest, Bigs) 22> _0°2°(_3512,_3522),

; Bigs = [X|Rest], append(_3518, [_3505| _3522] ,_3507) .
partition(Xs, Pivot, Smalls, Rest)

). »20 _1220([1,.1359,[1,[1).

220 1220 ([_1727]_1728],_1729,_1730,_1731) : -
quicksort([], [1). _17270<_1729->
quicksort ([X|Xs], Ascending) :- _1730=[_1727]_1742],

partition(Xs, X, SmallerO, Bigger0), 220 _1222(_1728,_1729,_1742,_1731);

quicksort(Smaller0O, Smaller), _1731=[_1727]|_1742],

quicksort(Bigger0, Bigger), 220 _1222(_1728,_1729,_1730,_1742) .

append(Smaller, [X|Bigger], Ascending).

a) Non-obfuscated b) Obfuscated

Fig. 5. QuickSort in Prolog.

When comparing Fig. 5a and Fig. 5b notice that the order in which the predicates
are defined is inverted and also that the parentheses surrounding the body of the second
partition clause have been removed.

Imagining the result of obfuscating the code of Fig. 5a together with a few dozens of
other user-defined predicates, we believe ProTup met its goals.

4. Course Assignment and Competition

The Ataxx assignment was integrated in an one semester Al course, taught in the third
year of a Computer Science undergraduate degree. Before entering it, students already
have solid groundwork on Computer Science foundations as a whole. They are already
exposed to imperative and functional programming paradigms, covering all steps in de-
veloping a program, from data abstraction to algorithm design. The course is however
their first introduction to LP. Although some Al related techniques may have already
been approached, this course is also their first real organized approach to the Al field,
surveying the main concepts and methods used.

Each week of the Al course was composed of 3.5h of theoretical classes and an 1h
practical class on a computer lab. A total of 135 students frequented the course and each
practical lab had an average of 17 students. The Ataxx assignment in itself accounted
for 20% of the final grade in the course. In the previous years this Al course had no
extensive practical assignment (only 1h in class Prolog programing evaluations). The
amount of students that effectively succeeded in the course was reduced and one of the
main complaints present on the surveys made was that no real practical experience on Al
was obtained. Our main goal was therefore to motivate the students, both in LP and Al,
giving them an hands on competitive approach on a practical Al task. We felt that this
could give a decisive positive contribution on the learning experience, improving both the
results obtained and the effective material learned.

92 P. Ribeiro, H. Simoes, M. Ferreira

Several theoretic and practical classes were dedicated to the the assignment and the
students had a time span of about two months to build their agents. Some Ataxx related
predicates that could potentially be used on the agent were made available for automatic
evaluation using Mooshak system (Leal and Silva, 2003). Basically a set of inputs was
given to the students code and the system would automatically tell them if the output
produced was correct. Students could submit their code as many times as they wish.
An example predicate available on Mooshak was to process an Ataxx move, effectively
producing the obtained game board after it.

The Ataxx agent was to be developed by groups of two or three students. The re-
quirements were very simple: the programs should be implemented in Prolog, having a
top-level predicate main/3 which would be invoked by the Ataxx server, and should
complete every game using 4 minutes of CPU time. Taking longer than this would imme-
diately result in the loss of the game, by the maximal margin, 0—49. Invalid moves passed
to the server also result in losses by the same maximal margin. There was no restriction
on the size of the programs.

The competition would be run on AMD Sempron(tm) 2800+ machines, with 1Gb of
RAM, featuring 3964.92 Bogomips, present in the Department labs.

We had a total of 46 programs submitted to evaluation, amounting to a total of 104
students. This means that a very significant amount of 77% of the total number of students
enrolled in the course responded to the assignment. All these 46 programs participated
in a preliminary qualification round where they would play a total of 18 games against
three level defining programs, named Random, Greedy and Levell. The Random player
implemented what the name suggests, randomly selecting a valid move, without any strat-
egy. Interestingly, one group of students, RPR, succeeded in developing a validly playing
program that was able to lose 5 of the 6 games played against Random, an effort requir-
ing some engineering, but unfortunately in the wrong direction. Greedy implemented a
greedy strategy, choosing a move that maximized the instant difference between its pieces
and the opponent pieces. This program was non-deterministic, in the sense that equally
maximizing moves were arbitrarily chosen, with the single condition that non-jumping
moves were always preferred. Levell implemented a minimax algorithm of depth 1, i.e.
one level more than the Greedy program, choosing the move that minimized the opponent
maximization. In this qualification round each students’ program played 6 games against
each of the Random, Greedy and Levell, 3 as first player and 3 as second player. This
qualification round determines the distribution of the students’ programs in three groups,
as follows:

— Premier League, consisting of the programs that do not lose in the overall confront

against each of the 3 level defining programs.

— League of Honor, consisting of the programs that did not qualify for the Premier

League but win more games than lose in the qualification round.

— Ungqualified, consisting of all the other programs.

Programs in the Premier and Honor leagues play against all the programs in their
leagues, a total of four times with each opponent, two as first player and two as second
player. The grades are determined by the final ranking after the competition, and are

Teaching Al and LP in a Competitive Environment 93

Table 1

Qualification round results

Total Random Greedy Levell e
Program W-L Goal Avg. (W-L) (W-L) (W-L) Qualification
genocide 18 -00 +594 6-0 6-0 6-0 Premier League
Toninja 18-00 +510 6-0 6-0 6-0 Premier League
fresco_e_fofo 18 -00 +474 6-0 6-0 6-0 Premier League
nos_os_tres 18 -00 +418 6-0 6-0 6-0 Premier League
Barbosa 17-01 +436 6-0 6-0 5-1 Premier League
Quim_Farda 17 -01 +414 6-0 6-0 5-1 Premier League
Poison 17-01 +396 6-0 6-0 5-1 Premier League
Spulit 16-02 +438 6-0 6-0 4-2 Premier League
ACP 16 -02 +402 6-0 6-0 4-2 Premier League
MaPeVa 15-03 +362 6-0 6-0 3-3 Premier League
amadeo 15-03 +332 6-0 4-2 5-1 Premier League
SrDaPedra 15-03 +290 6-0 6-0 3-3 Premier League
SimpleATaxx 15-03 +288 6-0 6-0 3-3 Premier League
casajo 15-03 +220 5-1 6-0 4-2 Premier League
Ghanima 15-03 +102 6-0 5-1 4-2 Premier League
CR_Ataxx 14 -04 +284 6-0 6-0 2-4 League of Honor
ataxx_fighters 14 -04 +250 6-0 6-0 2-4 League of Honor
MATEP 13-05 +298 6-0 5-1 2-4 League of Honor
Ataxx05 13-05 +254 6-0 5-1 2-4 League of Honor
GTG 13-05 +248 6-0 5-1 2-4 League of Honor
Nuno_Helder 13-05 4242 6-0 6-0 1-5 League of Honor
VA 13-05 +210 6-0 6-0 1-5 League of Honor
JPT 13-05 +118 6-0 5-1 2-4 League of Honor
MariJuAna 13-05 +118 6-0 5-1 2-4 League of Honor
nuno 12-06 4298 6-0 4-2 2-4 League of Honor
Nevermore 12-06 +248 6-0 4-2 2-4 League of Honor
Nos 12-06 +222 6-0 5-1 1-5 League of Honor
Trio_Marabilha 12-06 +102 6-0 4-2 2-4 League of Honor
jac 11-07 +238 6-0 3-3 2-4 League of Honor
DN 11-07 +166 6-0 5-1 0-6 League of Honor
afodanielus 11-07 +158 6-0 4-2 1-5 League of Honor
YAA 11-07 +154 6-0 5-1 0-6 League of Honor
BLACK_KNIGHT 10-08 +044 6-0 4-2 0-6 League of Honor
Khan 10-08 +036 6-0 4-2 0-6 League of Honor
Owl 09 -09 4098 6-0 3-3 0-6 Unqualified
OMIIAO05 08-10 +160 6-0 2-4 0-6 Unqualified
semGrupo 07-11 +070 6-0 1-5 0-6 Unqualified
GrimEater 07-11 -198 6-0 1-5 0-6 Unqualified
Mataxx 06-12 -94 5-1 1-5 0-6 Unqualified
BIM 0612 -160 6-0 0-6 0-6 Unqualified
Whilel 06-12 -168 6-0 0-6 0-6 Unqualified
CVS 0612 -170 4-2 2-4 0-6 Unqualified
MEandMe 02-16 —430 0-6 2-4 0-6 Unqualified
RPR 01-17 -484 1-5 0-6 0-6 Unqualified
SmallAtaxx 00-18 -882 0-6 0-6 0-6 Unqualified
tex 00-18 -882 0-6 0-6 0-6 Unqualified

94 P. Ribeiro, H. Simoes, M. Ferreira

higher than 75% for programs in the Premier League, and between 60% and 75% for
programs in the League of Honor. Unqualified programs are individually evaluated and
are always graded lower than 60%.

In the Premier League, the best program developed by the teachers enters the compe-
tition and influences the ranking, which, in turn, influences the grades. The grades after
the all-against-all competitions are determined as follows:

Grade = 75 + (25 * Wins / Winner Wins) for Premier League;

Grade = 60 + (15 * Wins / Winner Wins) for League of Honor.

Table 1 presents the results of the preliminary qualification round. We show the num-
ber of wins and losses against each opponent (W-L). We also included the goal average
of each program, i.e. the total sum of its pieces minus the total sum of the opponent
pieces. A total of 15 programs qualified for the Premier League, while 19 programs qual-
ified for the League of Honor. The remaining 12 programs did not qualify, unable to have
a higher number of wins on the confront against Random, Greedy and Levell.

We then proceeded to an all-against-all competition. Regarding the league competi-
tions, we only present results for the highly competitive Premier League, where a program
developed by the first author of this paper, named Harkonnen, joined the 15 qualified
programs from the students. This competition involved a total of 480 matches. Table 2
summarizes the results of this competition. Complete results of this and other leagues,
including loadable game logs can be seen on (Ribeiro et al., 2008).

Harkonnen, our own program, was able not to lose a single game against the students
programs, while playing as first player. However, as second player it lost 4 games, which

Table 2

Premier League results

Total 1st Player 2nd Player
Program Grade
Win Loss G.A. Win Loss G.A. Win Loss G.A.
1 Harkonnen 56 04 +566 30 00 +328 26 04 +238 100.0
2 Toninja 50 10 4878 26 04 4352 24 06 4526 975
3 fresco_e_fofo 46 14 +436 22 08 +122 24 06 4314 955
4 genocide 46 14 +362 24 06 +128 22 08 4234 955
5 Quim_Farda 37 23 —72 16 14 4062 21 09 —134 915
6 Barbosa 36 24 +168 18 12 4064 18 12 4104 91.0
7 Poison 35 25 45% 15 15 +182 20 10 +412 90.5
8 nos_os_tres 29 31 —-76 13 17 4002 16 14 —-78 88.0
9 casajo 26 34 —366 17 13 —122 09 21 —244 865
10 ACP 25 35 +150 12 18 4188 13 17 —38 86.0
11 MaPeVa 25 35 —664 15 15 =222 10 20 —442 86.0
12 Spulit 21 39 +032 10 20 +084 11 19 —52 845
13 Ghanima 15 45 264 07 23 —182 08 22 —82 815
14 SrDaPedra 15 45 —400 09 21 —136 06 24 264 815
15 amadeo 12 48 812 08 22 —420 04 26 —392 805
16 SimpleATaxx 06 54 532 02 28 344 04 26 —188 715

Teaching Al and LP in a Competitive Environment 95

is quite revealing of the effort developed by students to produce their programs, given the
level of sophistication put in the optimization of Harkonnen.

5. The Winning Programs

Since Ataxx is not a very well known game, there exists almost no literature on it. How-
ever, Ataxx is a zero-sum, perfect information game. Therefore, the classical and logical
approach to it involves basically the well known minimax algorithm (Shannon, 1950),
and its variations or optimizations, like the alpha-beta pruning (Knuth and Moore, 1975).
We encouraged the students to use this approach as a starting point, and this strategy con-
cepts were taught on the theorical classes. However there were no imposed boundaries
on what they could use, besides the fact that they should create a pure Prolog program.

In this section we will start by describing the program that obtained the first place in
the tournament and then proceed to reveal some of the most interesting ways the students
used to attack the Ataxx problem.

5.1. The Harkonnen Agent

The agent’s name, Harkonnen, was inspired by Frank Hebert’s Dune, one of the most
influential sci-fi novels of all time, and first published in 1965. The Harkonnen are a race
known by its aggressive nature, always wanting to attack, a strategy that fitted the purpose
of the agent.

The first approach was to apply the alpha-beta pruning (ABP). In this algorithm, the
heuristic function is very important, since non ending positions must be evaluated and
measured by a single number, that obviously could induce errors. Several heuristics func-
tions were tried, but in the end the best behaviour was obtained with the most simple
function h(board) = number_of our_pieces — number_of _their_pieces. All other
functions (which evaluated things like positional gain or stability) introduced a overhead
in the computation (reducing the searchable depth) and did not provide a significative
increase of accuracy.

Given this, the greatest limitation of the program lied precisely on the fact that it had
to be programmed in Prolog, which does not have a comparable performance to more
low-level languages like C (even using Yap). Note that Ataxx has a very large branching
factor (the average is about 60) and that a typical game takes more than 70 moves. If we
add the fact that almost all combinations of pieces in the board can be reached (remember
the instability of a board position), the game complexity grows even further. In fact, the
total number of different games that can be played is bigger than 108°°. Our approach to
this fact was to apply several optimizations to the Prolog program.

The first one was to modify the internal representation of the board. Instead of using
lists, a numerical representation was used. The board is divided in two parts (first four
lines and last three lines) and each one is represented by two integers, where the first
one indicates if the correspondent positions are empty or with a piece, and the second
one represents the type of piece that is on that position. The numbers are binary encoded

96 P. Ribeiro, H. Simoes, M. Ferreira

(where (/1 indicate an empty/filled square or our/opponent piece), and that is why we had
to divide the board in two parts (to make the numbers fit in a normal native 32-bit integer).
With this, we can use simple bit operations for our calculations, which are native to the
processor. For example, knowing if a determined square is empty can be easily verified by
a single bitwise conjunction. And swapping a piece can be made by a bitwise disjunction.
This originated a huge boost on the program speed.

Besides keeping the four numbers that depict the board, the representation used also
keeps the number of pieces in each side. With this, the heuristic function can be easily
applied by doing a single subtraction. Maintaining the representation correct can be done
by simply changing the past piece quantities, in order to reflect the move that was made
and the actual squares that changed (not needing to do a fresh recount of all the pieces).

A single number representation was also used for each possible move, and equivalent
moves were not evaluated. For example, if we add a new piece on a determined square, it
does not matter if the original piece was its bottom or upper neighbour, because the board
that it creates is the same. Hence, there are 529 possible moves, distributed by 49 “add”
moves and 480 “jump” moves.

Given all this, the fact that Yap Prolog used indexing on the first predicate argument
was exploited and specific predicates for each possible move were made. These hundreds
of predicates were stored on an auxiliary file and they were automatically generated by
another program.

Other small optimization was to pre-calculate the initial moves with a longer depth,
and store them. In this way, the first two moves of Harkonnen were always instantaneous,
and very accurate.

One problem was still open. How to cope with the time constraints? Remember that
the program has only 4 minutes available for all the moves. The most basic solution is
to introduce a limit in the depth used in the ABP. However, the time it takes to search to
a specified depth is largely dependent on the board itself. Open positions have a larger
branching factor. Besides, when we approach the end of a game, it is even more crucial
to search to larger depths, since that can have a decisive impact on winning the game. To
solve that problem, an iterative deepening strategy was used, that could dynamically adapt
to each game. It can be seen that each new level of depth introduces a bigger magnitude
of time in the search, that is, searching all the depths until IV is only a small fraction
of depth N + 1. Harkonnen uses a fixed maximum amount of time for each move, and
tries to go as deep as it can go without surpassing the allotted time limit. More than that,
the previous searches of smaller depths are used to sort the moves, in order to increase
the probability of cutting tree branches with the ABP. Harkonnen also uses different time
limits and different initial depths for the iterative deepening, based on the state of the
game. These variables were manually tuned to better fit the constraints for this particular
tournament, but its general design permits the agent to adapt to different circumstances.

Other possibilities for the agent were considered, like the negascout (Reinefeld, 1989)
or MTD(f) (Plaat et al., 1995) algorithms, as well as minor modifications such as aspi-
ration windows, transposition tables, killer moves or quiescence search. However these
were not applicable to Ataxx (for example, quiescence search does not make sense since

Teaching Al and LP in a Competitive Environment 97

all board positions are chaotic) or they did not provide enough speed gains that would
compensate its greater instability (like it was the case in using negascout). Furthermore,
maintaining the simple alpha-beta pruning algorithm would add to the simplicity and
elegance of the algorithm.

5.2. Interesting Strategies

Almost all the students opted to go in the direction we pointed, that is, they opted for
the ABP, and they all ended in using the same simple heuristic function of Harkonnen.
However, there were some interesting variations.

The first three student programs opted for creating a large number of specific predi-
cates for things like moves or board access, using the first argument indexing property of
Yap, similarly to Harkonnen. They typically generated clauses using another imperative
program (for example in C). The Toninja agent used move ordering to guide the search,
pre-calculation of some initial moves, an optimized search for possible moves and a for-
mula based on the number of free squares and the available time to calculate to depth of
the search. The Fresco_e_Fofo agent used negascout (with a reported increase of 20 % in
its speed) and iterative deepening, and it also pre-calculates the initial moves. Genocide
opted for the MTD(f) algorithm (they reported a 40% gain in its speed in relation to their
initial ABP implementation) and a strategy comparable to iterative deepening.

The other agents were similar, and their main variation was in the way they managed
time (some had a static depth, others had formulas similar to Toninja), the level of op-
timization and the correctness of their ABP implementation. Another interesting aspect
is that almost all the programs were deterministic, giving the same moves for a deter-
mined board position. Only one agent (Ghanima) used randomness in its strategy, in such
a strong way that playing against the same deterministic opponent it would sometimes
wins and sometimes lose.

6. Feedback from Students

In order to better understand the students’ reaction to our teaching approach, we promoted
a survey, which was only made more than two years after the actual experience. We had
37 responses out of about 100 students that took the course and made an agent (we sent
an email). We used the 5 point agree-disagree scale. Table 3 summarizes the responses
obtained.

We can see that clearly our overall approach was liked by the students. The motivation
factor with the most impact was using a game. The competitive factor was also deemed
as very positive, although it was not unanimous. In what concerns to really using the
results of the competition has the only grading system, we can see that students are more
cautious, and a significative portion of them has a neutral stand on the subject. It should
be noted however that given it is a completely objective evaluation, there was not a single
student who disagreed with that method for grading. Generally, students also thought that

98 P. Ribeiro, H. Simoes, M. Ferreira

Table 3

Feedback from all students

Question Strongly Agree Neutral Disagree St.rongly
Agree Disagree
Using a game as the development
platform has motivated me 72.97% 24.32% 2.70% 0% 0%
The competitive aspect of the as-
signment has motivated me 56.76% 32.43% 5.41% 0% 5.41%
Evaluate using performance on the
tournament is fair 25.00% 52.77% 22.22% 0% 0%
The assignment helped me to better
understand Prolog 47.22% 47.22% 0% 2.77% 2.77%
This teaching strategy should be
adopted in other courses 70.27% 18.92% 8.11% 0% 2.70%
Table 4
Feedback from students who were repeating the course
Question Strongly Agree Neutral Disagree St'rongly
Agree Disagree

Compared to past years, I preferred
this teaching strategy 60% 24% 12% 0% 4%
Compared to past years, I learned
Prolog better 52% 32% 4% 8% 4%

the assignment was useful in learning Prolog and they were very assertive in stating that
they would like something like this experience to be used on other courses.

We prepared also two more questions for the student who were repeating the course,
which was the case for 25 of them, and the results are summarized in Table 4. The general
opinion shows that our learning approach compares well to the more classical teaching
paradigm.

We gave the students the opportunity to detail more their feedback by using custom
messages, and we were pleasantly surprised to see that there were a lot of them who still
had fond memories of this experience. Even with so much time in between, there was
even the case of two students from different top teams that are now working on the same
company and ended up discussing the assignment, because both liked it very much. Out
of all responses, the competitive factor emerged has the strongest motivational aspect.

7. Conclusions

This paper described the work developed in the context of the undergraduate teaching
of AI at DCC-FCUP. The main goal of the paper was to report on the impact that the

Teaching Al and LP in a Competitive Environment 99

competitive setup caused on students’ commitment, which surpassed our most optimistic
expectations. The level of participation was outstanding and the depth of the Al concepts
students employed showed that students went beyond what they learned in the classes,
taking the initiative to use other sources to improve their knowledge on the subject. We
also conducted a survey which shows that we were able to really increase the motivation,
and in doing it effectively improving the learning experience.

Regarding the declarative nature of the LP contenders submitted by students, the re-
sults were also interesting. As said, the Al subject is taught on the third year of our
Computer Science course. Hence, students have already an important amount of expe-
rience with lower-level programming languages, compilation technology and computer
architecture, which the top contenders clearly explored to make their programs more effi-
cient. As a result, the teaching of LP itself, its high-level and declarative nature bastions,
cannot be evaluated by looking at the source Prolog code of the top contenders. This
source code resembles much more assembly code than high-level and readable Prolog
code, as top students have written programs in other languages, such as C, to produce
the assembly-like Prolog code. This further emphasizes the level of commitment that the
competition framework described in this paper was able to create in students, although it
also shows that competition can be a pitfall in making the students produce declarative
Prolog programs.

Concluding, this is certainly a teaching strategy that we would consider to use in
the future. The positive points we identified surpass the negative ones and makes the
competitive game an approach that provides a very nice learning environment both for
the students and the teachers.

References

Ataxx in Wikipedia. http://en.wikipedia.org/wiki/Ataxx

Bergin, S. and Reilly, R. (2005). The influence of motivation and comfort-level on learning to program. In
Proceedings of the 17th Workshop on Psychology of Programming — PPIG’05, 293-304.

Beyrand, A. (2005). The Pressibus Inventory of Ataxx and Hexxagon Games.
http://www.pressibus.org/ataxx/

Costa, V. (2008). YAP Prolog. http://www.dcc.fc.up.pt/ vsc/Yap/

Filgueiras, M. (1987). Generating Natural Language sentences from semantic representations. In A. Sernadas
and J.M. Neves (Eds.), Actas do Terceiro Encontro Portugués de Inteligéncia Artificial, 246-256.

Hingston, P., Combes, B. and Masek, M. (2006). Teaching an undergraduate ai course with games and simula-
tion. In Edutainment, 494-506.

Knuth, D.E. and Moore, R.W. (1975). An analysis of alpha-beta pruning. Artificial Intelligence, 6(4), 293-326.

Lawrence, R. (2004). Teaching data structures using competitive games. /EEE Transactions on Education,
47(4), 459-466.

Leal, J.P. and Silva F. (2003). Mooshak: a Web-based multi-site programming contest system. Software: Prac-
tice and Experience, 33(6), 567-581.

Martins, J.P. and Morgado, E.M. (Eds.) (1989). EPIA 89, 4th Portuguese Conference on Artificial Intelli-
gence, Lisbon, Portugal, September 26-29, 1989, Proceedings. Lecture Notes in Computer Science, Vol. 390.
Springer. http://dblp.uni-trier.de

Plaat, A., Schaeffer, J., Pijls, W. and de Bruin, A. (1995). A New Paradigm for Minimax Search. EUR-CS-95-03,
Rotterdam, Netherlands.

Porto, A. and Filgueiras, M. (1984). Natural language semantics: A logic programming approach. In SLP, 228—
232.http://dblp.uni-trier.de

100 P. Ribeiro, H. Simoes, M. Ferreira

Project Swing. http://java.sun.com/j2se/1.5.0/docs/guide/swing/

Reinefeld, A. (1989). Spielbaum-Suchverfahren. Informatik-Fachberichte, 200.

Ribeiro, P., Simdes, H. and Ferreira, M. (2008). Site with auxiliar material for the paper.
http://www.dcc.fc.up.pt/ “pribeiro/ataxx/

Roy, P.V. (1994). 1983-1993: The wonder years of sequential Prolog implementation. Journal of Logic Pro-
gramming, 19(20), 385-441.

Shannon, C.E. (1950). Programming a computer for playing chess. Philosophical Magazine, 41, 256-275.

Tomads, A.P. and Filgueiras, M. (1989). Some comments on a logic programming approach to natural language
semantics. In EPIA, 187-197. http://dblp.uni-trier.de

Wallace, S.A. and Margolis, J. (2007). Exploring the use of competetive programming: observations from the
classroom. J. Comput. Small Coll., 23(2), 33-39.

P. Ribeiro is currently a PhD student at the University of Porto, where he completed his
computer science degree with top marks. He has been involved in programming contests
(PC) since a very young age, representing its school and country in several national and
international PC. He now actively participates in the organization of PC, creating and
discussing problems, being responsible for the training campus of the portuguese team
in the International Olympiad in Informatics (IOI) and since 2005 also serving as deputy
leader for the portuguese delegation in IOI. He is currently researching parallel algorithms
for pattern mining in complex networks.

H. Simées is a computer scientist graduate of the University of Porto. Currently, he is
working towards his PhD degree on compile-time analyses for resource usage prediction
of functional programs. He is a researcher in LIACC (Artificial Intelligence and Com-
puter Science Laboratory), Portugal.

M. Ferreira is currently an assistant professor at the Computer Science Department of
the School of Sciences of University of Porto and director of the under-graduate course
in computer science, where he has been teaching courses related to artificial intelligence,
logic programming and advanced databases. His research interests evolved from the im-
plementation of logic programming systems, where he has been contributing on the de-
velopment team of the Yap Prolog System (the MYDDAS deductive database module), to
the area of logic-based spatial databases and spatial networks. He has been leading several
research projects in the areas of deductive databases, vehicular networks and advanced
spatial database systems.

Dirbtinio intelekto ir loginio programavimo mokymas
konkurencingoje aplinkoje

Pedro RIBEIRO, Hugo SIMOES, Michel FERREIRA

Motyvacija vaidina svarby vaidmenj mokymo procese. Sis straipsnis supaZindina su Porto
universiteto Gamtos moksly fakulteto Informatikos katedros patirtimi mokant baigiamojo kurso
studentus dirbtinio intelekto. Buvo sukurta sudétingos konkurencijos darbo sistema, apimanti
“Prolog” kalba suprogramuota konkurenta, Zaidimu serveri bei grafing sasaja, kuri skatinty stu-
dentus isigilinti i pateiktas uZduotis. Taip pat pateikiamas tokios konkurencijos poveikis studenty
atsidavimui, kuris atitiko pacius optimistiskiausius tyréju lukescius.

