
Informatics in Education, 2009, Vol. 8, No. 1, 3–16 3
© 2009 Institute of Mathematics and Informatics, Vilnius

Connectivity between Abstraction Layers in
Declarative ADT-Based Problem-Solving
Processes

Bruria HABERMAN
Department of Computer Science, Holon Institute of Technology
52 Golomb St., P.O.B 305, Holon 58102, Israel
Davidson Institute of Science Education, The Weizmann Institute of Science
Rehovot 76100 Israel
e-mail: bruria.haberman@weizmann.ac.il

Zahava SCHERZ
Department of Science Teaching, The Weizmann Institute of Science
Rehovot 76100 Israel
e-mail: zahava.scherz@weizmann.ac.il

Received: December 2008

Abstract. For over a decade, a declarative approach to problem solving based on the use of ab-
stract data types (ADTs) has been taught to high-school students as part of the logic programming
instructional unit. We conducted a study aimed at assessing students’ problem-solving processes
when utilizing ADTs. The findings indicated that students’ strategies that diverged from the con-
ceptual model often cause the students to develop incorrect programs. Specifically, students have
difficulties in establishing correct mapping between the problem and its abstract model - the cor-
responding ADT, and in establishing proper connectivity between layers of abstraction related to
different stages of the problem-solving processes (e.g., between distinct programming modules).
These difficulties are apparently associated with general difficulties that novices encounter when
learning programming, and with the cognitive load encountered when dealing with high levels of
abstraction. With the intention to reduce student difficulties, we suggest using an instructional ap-
proach designed to gradually educate the students toward attaining proficiency as “problem solvers”
through the use of integrative knowledge and autonomous problem-solving techniques. This ap-
proach should be further evaluated regarding its feasibility and applicability to reducing students’
difficulties in dealing with abstraction processes.

Keywords: logic programming, abstraction, abstract data types, problem solving.

1. Introduction

We developed a two-stage “Logic Programming” (LP) course that was especially de-
signed for high-school students who major in computer science (CS). One main goal of
the course was to expose students to different aspects of logic programming and to en-
hance their problem-solving and design skills in the context of the LP paradigm. The



4 B. Haberman, Z. Scherz

90-hour basic module covers the following topics: introduction to propositional logic and
predicate logic implemented in Prolog, data base programming, compound data struc-
tures, recursion, lists, introduction to abstract data types (ADTs), and basic methods of
problem solving and knowledge representation. The 60-hour advanced module introduces
advanced methods of problem solving and knowledge representation, advanced generic
abstract data types, and advanced programming techniques (Haberman et al., 2002).
Logic programming enables programmers to focus on the declarative and abstract aspects
of problem solving, and usually liberates them from dealing with the procedural details
of the computational process (Sterling and Shapiro, 1994). Abstract data types are con-
sidered as useful tools for CS problem solving and knowledge representation (Aho and
Ullman, 1992). Since in LP the compound data structures are manipulated by hiding the
procedural aspects and details of their implementation (Ben-Ari, 1995), it is convenient
for implementing and utilizing abstract data types. Hence, it is a suitable programming
environment for teaching the use of ADTs (Haberman et al., 2002).

The concept of abstract data types, which is discussed in both modules of the LP
course as a recurrent CS concept, is introduced to students as a mathematical model
with a set of operations (Aho and Ullman, 1992). Specification of an ADT is achieved
by formally and verbally defining its use as a model as well as defining its operations.
Implementation of an ADT in LP is achieved by formulating rules to define general pred-
icates for each of the specified ADT operations. The actual implementation of an ADT
is achieved by creating a black box. The use of an ADT for problem solving is achieved
by defining problem predicates using transparently general predicates that are predefined
and encapsulated in the ADT black box (Resnick et al., 2000).

We developed an instructional approach to gradually introduce ADTs as flexible
problem-solving and programming tools by using evolving programming boxes (Haber-
man and Scherz, 2005). We employed our instructional approach to teach problem-
solving strategies and knowledge representation methods based on our ADT-based
problem-solving conceptual model. We conducted an ongoing study aimed at assessing
various aspects of students’ use of ADTs in the Prolog environment (Haberman et al.,
2002; Haberman and Scherz, 2003; Haberman and Scherz, 2005). In this paper we fo-
cused on a particular facet of students’ difficulties in utilizing ADTs, specifically related
to the connectivity between distinct programming modules including ADT black boxes.

2. The ADT Conceptual Model

Abstraction is a major recurring concept in computer science and is considered an im-
portant tool in software development. It is the process of generalizing by reducing the
information content of a concept, typically in order to retain only information that is rele-
vant for a particular purpose. Abstraction is associated with (1) generalization of specific
examples; (2) identification, extraction, and isolation of essential components; and (3) ig-
noring or holding back irrelevant details. In the context of problem solving, we refer to
different abstraction levels that are associated with various stages of problem-solving pro-
cesses. Studies show that experts and novices differ in their abstracting and generalizing



Connectivity between Abstraction Layers 5

abilities (Haberman, 2004; Machanick, 1998; Ye and Salvendy, 1996). Gaining expertise
in problem solving means being able to identify which abstraction level is suitable for
a particular stage, with regard to problem analysis, solution design, and implementation
(Haberman and Muller, 2008).

Use of abstract data types in problem solving and knowledge representation is a dom-
inant component of our curriculum (Haberman et al., 2002). Our conceptual model of
utilizing ADTs in problem-solving processes and in developing computer programs is
compatible with the formal definition of ADT as a formal CS concept (Aho and Ullman,
1992). The model is presented in the context of the LP declarative paradigm, but it may
be generalized and adapted to different programming paradigms. The model includes dis-
tinct stages that relate to various levels of abstraction in problem-solving processes, and
it actually entails transitions between abstraction levels:

(a) Conceptualization: (1) Comprehending the given problem; (2) identifying the main
ideas, concepts, entities, and the relations among them; and (3) defining the main
goals to be solved and queries to be addressed.

(b) Generalization: Distinguishing between the general definition of a problem and
its concrete specific cases. Choosing problem-predicates that describe the general
relations within the problem and the data-predicates that specify concrete cases of
the problem.

(c) Abstraction: Expressing the concepts and relations in terms of abstract data types;
deciding on a suitable ADT that characterizes of the general problem by choosing:
(1) an appropriate formal model to describe the collection of objects defined by
the problem, and (2) general ADT-predicates that represent operations defined in
the formal model that are suitable to represent the relations between the objects, as
defined in the problem. In this stage, one ignores the content of the general problem
and relates to its abstract form.

(d) Formalization: Representing the concepts and the relations that were identified in
the problem as a program; describing the general problem in terms of formal ter-
minology by using ADT black boxes that were chosen to describe the problem. At
this stage the problem-predicates are defined in the main program by transparently
invoking general ADT-predicates (predefined in ADT black boxes).

(e) Concretization: Representing the concrete data (input) in terms of data-predicates.
This can be done in the main program or in a distinct file. The concrete case
of the problem is described by defining the problem-predicates in terms of data-
predicates.

(f) Testing: Executing and debugging the developed program; assessing the program
according to the specified requirements.

The ADT-based problem-solving process involves treating the problem at different
levels of abstraction. The first three stages: conceptualization, generalization, and ab-
straction relate to comprehending and analyzing the problem; the three next stages: for-
malization, concretization, and testing relate to implementing the results of the analysis,
and are aimed at achieving a correct working program that provides a suitable solution
for the given problem.



6 B. Haberman, Z. Scherz

The ADT-based problem-solving conceptual model relates to different phases of a
problem: Initially, we relate to the given problem at its concrete level; next, we relate
to the general problem, which is a generalization of the given problem, distinguishing
between the specific data that related to the given problem and its general character-
istics. Next, we map from the general problem to a completely context-free abstract
model (ADT) that captures the logical interrelationships among the problem’s entities.
This stage involves the highest level of abstraction in the problem-solving process. From
that point, we return to deal with the lower levels of abstraction related to the problem:
first to the general problem to formalize the general features of the problem in terms
of programming statements, and then to the concrete problem by linking up the general
features with concrete specific data.

The conceptual problem-solving model described above may be used by the students
both for solving small-scale problems during the course and for developing projects.

2.1. Communicating with ADT Black Boxes

In this section we focus on a particular facet of utilizing ADTs in problem solving and in
developing programs (implemented in the Prolog language) – how the developed program
should communicate with ADT black boxes. We demonstrate communication methods
that are compatible with the ADT-based problem-solving conceptual model. In Section 3
we present students’ strategies that diverge from the conceptual model and might cause
students to develop incorrect programs.

Communication between the main program and an ADT black box is performed by
establishing proper links in the following channels: (a) between specific data and data-
predicates, (b) between problem-predicates and data predicates, and (c) between problem
predicates and the corresponding ADT-predicates. The communication should be accom-
plished through the interfaces of the relevant modules/programs/ADT boxes.

2.1.1. Linking by Casting into a Pattern
The traditional way of formalizing the ADT formal model (i.e., the entities and the asso-
ciated basic relationships among them) in a black box can be used to present the specific
concrete data (the input) of a given problem. Students frequently described this method
as “casting into a pattern” – a terminology that we adopted.

Linking to the List ADT: The linking is done by writing the specific data into a
Prolog-style list data structure. For example, a list of students’ names in a class will
be presented in the following way:

% students_in_class (Class, List_of_students)
students_in_class (class_A, [’Abraham’, ’Dan’, ’Tamar’, ’Ben’]).

Linking to the Tree/Graph ADT: The linking is done by presenting the data in terms
of general predicates that describe the nodes and the edges of a tree/graph. The specific
data is added to the corresponding predicates’ arguments. For example, data about clas-
sifying animals will be presented in the following way:



Connectivity between Abstraction Layers 7

% edge (From, To)
edge (animal, mammal). edge (mammal, cat).
edge (mammal, lion).
% node (Node)
node(animal). node(mammal). node(lion). node(cat).

2.1.2. Linking by Conversion
Presenting specific data in this case is performed in terms of the data-predicates that are
associated with the given problem and are syntactically different from the general ADT-
predicates. The linkage is performed by defining a suitable rule that converts the problem-
associated data presentation to an abstract ADT-based presentation, as illustrated in the
following examples.

Linking to the List ADT: Here we demonstrate two alternative methods of list con-
version.

(a) Linking by converting a presentation of a single-element to a presentation of
a list-of-elements. This can be done by using the findall/3 general predicate, which adds
to a list the values of a specific variable (entity) that satisfies a given goal. For example,
given facts related to each of the students in a class: student(Class, Student_in_class),
we create a list of all the students that belong to that class:

% students_in_class (Class, List_of_students)
students_in_class(Class, List_of_students):-

class(Class),
findall(Student, student(Class, Student), List_of_students).

(b) Linking by converting a presentation of successor-pairs to a presentation of
a list-of-elements. This can be done by a recursive path-based accumulation of the list’s
elements. For example, given facts about children born in a familly born_after(Familly,
Child, Next_Born_Child), we create an ordered-by-birth list of children in the familly,
starting with a specific child:

% children_in_family (Familly,Child, List_of_children)
children_in_family (Familly,Child, [Child, Next_Born_Child]):-

born_after(Familly, Child, Next_Born_Child).

children_in_family(Familly,Child, [Child|Rest]):-
born_after(Familly, Child, Next_Born_Child),
children_in_family(Familly, Next_Born_Child, Rest).

Linking to the tree/graph ADT: The linking is obtained by defining conversion rules
aimed at formalizing the general-predicates node/1 and edge/2 in terms of the correspond-
ing data-predicates. For example, suppose that the data about the animals’ classification
will be presented by the data-predicate as follows:



8 B. Haberman, Z. Scherz

% includes (Group1, Group1)
includes (animal, mammal). includes (mammal, cat).
includes(mammal, lion).

% animal_type(Animal_Type)
animal_type(animal). animal_type(mammal).
animal_type(lion). animal_type(cat).

The converting rules will be defined as follows:

node (Node):- animal_type(Node).
edge (Group1, Group2):- includes(Group1, Group2).

2.2. An example – Biblical Genealogy

The following example shows an ADT-based problem-solving process that is compatible
with the previously described conceptual model.

The problem: Given the biblical genealogy, we are interested in retrieving all the
male ancestors of a specific person (e.g., Jacob).

The problem-solving process: Here we demonstrate the analysis, reasoning, and de-
cisions that are employed in each stage of the problem-solving process.

(a) Conceptualization: The entities identified in the problem are persons. There are
father_of /,2 and mother_of / 2 basic relationships between persons. We are sup-
posed to retrieve the list of all the ancestors of a given person, starting with the first
ancestor (the dominating father).

(b) Generalization: The following basic relationships: person(X) (X is the name of a
person who belongs to the family), and father_of(X,Y) and mother_of(X,Y) (X is a
parent of Y ) are used to present concrete data, and explicitly distinguish between
the biblical family and other families; hence, they are classified as data-predicates.
In contrast, the definition of ancestors(X,Y) (Y is a list of the male ancestors of
X) is general and is suitable for any family, and is independent of specific data;
hence, ancestor should be classified as a general problem-predicate. The identified
predicates should be declared in the interface of the intended program.

(c) Abstraction: the graph ADT is an appropriate formal model used to describe the
collection of objects (i.e., persons) defined by the problem, and the path(R,X,Y)
and root(R) graph-predicates are suitable for defining the ancestors(X,Y) problem-
predicate in the following manner: Y is the list of male ancestors of X , if R is a
root of the genealogy, and Y is the list of nodes starting from R and ending in X .



Connectivity between Abstraction Layers 9

(d) Formalization: The problem-predicate ancestors(X,Y) is defined in terms of the
path(X,Y,Z) and root(X) graph-predicates that are predefined in the graph black
box. The general ADT-predicates should be transparently invoked:

ancestors(X, Y ) : −root(R), path(R, X, Y ).

(e) Concretization: In this stage we present the concrete data in terms of data-
predicates person(X), father_of(X,Y) and mother_of(X,Y) as facts in a Prolog pro-
gram. The concrete case of the problem is described by defining the problem-
predicates in terms of data-predicates. In this example this is done implicitly by
linking between the main program and the black box. Here the linkage is done
between the person(X) and father_of(X,Y) data-predicates and the corresponding
general graph-predicates node (Node) and edge(From_Node, To_Node) based on
the following assertions: X is a node if it is a person; there is an edge from X to Y

if X is the father of Y .

Queries (goals)
?- ancestors(‘Jacob’, List_of_Ancestors).

A program that describes the problem
The Interface

Data Predicates
% person(Person)
% father_of(Father, Child)
% mother_of(Mother, Child)
General Problem Predicates
% ancestors(X,Y)

Formalization
Data Predicates
% person(Person)
person(‘Abraham’). person(‘Sarah’). person(‘Issac’). person(‘Jacob’).
% father_of(Father, Child)
father_of(‘Abraham’, ‘Issac’).
% mother_of(Mother, Child)
mother_of(‘Sarah’, ‘Issac’).

General Problem Predicates
% ancestors(X,Y)
ancestors(X,Y):- root(R) , path(R,X,Y).

Communicating with the black box

node(Node):- person(Node).
edge(From_Node, To_Node):- father_of(From_Node, To_Node).



10 B. Haberman, Z. Scherz

3. Students’ Difficulties

Students attending the LP course were introduced to the ADT-based problem-solving
conceptual model (described in Section 2). We conducted an ongoing study aimed at as-
sessing various aspects of students’ use of ADTs in the Prolog environment (Haberman
et al., 2002; Haberman and Scherz, 2003; Haberman and Scherz, 2005). We found that
students adopted various strategies for using ADTs, some of which were compatible with
the ADT-based problem-solving conceptual model. Other students improvised alterna-
tive strategies, which indicated that their conception of ADT did not match the formal
CS definition. Nevertheless, the use of ADTs for problem solving and knowledge repre-
sentation helped many students develop correct programs regardless of the strategies they
used (Haberman et al., 2002).

Here we discuss students’ difficulties related to incorrect linking between the prod-
uct’s components, in various stages of the problem-solving process, which might cause
the students to develop incorrect/non-working programs.

Our study revealed that most novices prefer linking by casting to a pattern, but a few
students managed to successfully perform linking by conversion.

Often, even though students correctly identify the appropriate ADT for a given prob-
lem, they fail to correctly use the corresponding ADT-black box; more specifically, they
fail to establish proper links between various components at the abstract level (the space
problem and the corresponding ADT operations), or at the programming level (i.e., con-
nectivity between specific data, data-predicates, problem-predicates, and the correspond-
ing ADT-predicates). Specifically, we identified the following students’ difficulties (and
linked the difficulties to corresponding stages of the ADT conceptual model):

1. Incomplete abstraction. This refers to missing mapping between problem pred-
icates and the corresponding ADT-predicates (a stage related to the conceptual
model: (c)).

2. Missing linkage to an ADT-black box. Students avoided linkage between the
data-predicate and the corresponding ADT-predicates. Interviews with students re-



Connectivity between Abstraction Layers 11

vealed that they sometimes misleadingly assume that somehow the connection be-
tween the predicates automatically occurs owing to loading both files of the main
program and the ADT-black box (a stage related to the conceptual model: (d)).

3. Linking to an incorrect ADT-black box. Sometimes the students use general-
predicates of a specific ADT-black box, but they perform linking to another black
box. For example, students use set-predicates, but perform linking to a list-black
box (stages related to the conceptual model: (c), (d)).

4. Incorrect linking. Sometimes, even though the students refer to the suitable ADT-
black box and try to perform a link to that black box, they fail to do it correctly.
They often believe that the casting of specific data (input) into data-predicates guar-
antees accessibility to the data when posing a query, and therefore they might skip
linking to the black-box, or to the problem-predicates. Another incorrect linking
occurs when students perform seemingly (but incorrect) casting directly to the in-
voked ADT-predicate using a functional-based syntax (stages related to the con-
ceptual model: (d), (e)).

5. Difficulties owing to dealing simultaneously with several levels of abstraction.
Generally, students experience difficulties in moving between abstraction levels
during a problem-solving process. Sometimes they avoid mapping from the prob-
lem directly to a generic ADT, and they define a mediator-problem-based ADT
aimed at describing the general problem (difficulties of this type relate to stages
(b), (c), (d), and (e) of the conceptual model).

For example, correct formalization of the problem-predicate number_of_ students
_in_class/2 according to this approach will consist of a three-level linking:

Linking by casting into a pattern - to the List ADT
% students_in_class (Class, List_of_students)
students_in_class (class_A, [’Abraham’, ’Dan’, ’Roy’, ’Ben’]).
Linking between a problem-predicate, a data-predicate, and a
mediator-problem-based ADT-predicate
% number_of_ students_in_class (Class, Num_of_students)
number_of_students_in_class (Class, Num_of_students):-

students_in_class (Class, List_of_students),
num_of_students_in_a_list(Num_of_students, List_of_students).

Linking between a mediator-problem-based ADT-predicate and
a generic ADT-predicate
% num_of_ students_in_a_list (Num_of_students, List_of_students)
num_of_students_in_list (Num_of_students, List_of_students):-

num_of_items_in_a_list(Num_of_students, List_of_students).

For some students this might cause problems in linking between the specific data and
the problem-predicates. For example, students correctly perform the linkage only when
posing queries regarding the program, and avoid performing links in the program. This
results in a program in which the generality of the problem’s solution is usually reduced.



12 B. Haberman, Z. Scherz

The results previously described indicate that students have difficulties in establishing
correct mapping between the problem and its abstract (context-free) model–the corre-
sponding ADT, and in establishing proper communication between specific correspond-
ing programming modules. These difficulties are apparently associated with difficul-
ties often encountered by a novice in learning to program in Prolog (Resnick et al.,
2000; Scherz and Haberman, 2005), and with the cognitive load required to write a pro-
gram (Pain and Bundy, 1985) especially when dealing with high levels of abstractions
(Haberman and Scherz, 2005).

4. The Instructional Approach

Studies show that experts and novices differ in their abstracting, and generalizing abilities
(Haberman, 2004; Machanick, 1998; Ye and Salvendy, 1996). Gaining expertise in prob-
lem solving means being able, for example, to identify which abstraction level is suitable
for a particular stage, with regard to problem analysis, solution design, and implementa-
tion. Hence, it is important that instructional design be oriented towards constructing an
integrative, coherent perception of abstraction. Students need to develop proficiency in
choosing the most suitable abstraction tool for solving a given problem and, furthermore,
in identifying which tasks should be performed when dealing with different abstraction
layers during various stages of solving a problem (Haberman and Muller, 2008). The
teaching-learning process should be designed to gradually educate the students toward
attaining proficiency as “problem solvers” through the use of integrated knowledge and
autonomous problem-solving strategies.

In this section we briefly describe an instructional approach that we developed for
the purpose of gradually introducing ADTs as flexible problem-solving and program-
ming tools using evolving programming boxes (a detailed discussion of the instructional
approach and its implications appears in (Haberman and Scherz, 2005).

We recommend that the ADT concept be gradually presented in the following con-
secutive stages (Haberman and Scherz, 2005):

Stage 1 – Acquaintance with given specifications of ADTs: Initially students be-
come acquainted with the specification of abstract data types (e.g., lists, sets, trees, and
graphs). Suitable examples of concrete problems should be used to illustrate the pre-
sented ADTs.

Stage 2 – Use of ADTs to solve a given problem: Next, students should practice
how to choose ADTs to solve a given problem. For example, students should be able to
determine that the tree-ADT is the most suitable one to present the family parenthood
relationships between the females (or males), whereas the graph-ADT should be used
to present relationships between all the family members (without referring to a specific
gender).

Stage 3 – Use of ADT black boxes in programming: At this stage students should
practice using predefined ADT black boxes to write computer programs that solve given
problems. Specifically, students are taught to define problem predicates by transparently



Connectivity between Abstraction Layers 13

invoking predefined general ADT-predicates. We emphasize the following aspects: (a)

use of a black box is independent of its implementation and therefore it does not require

becoming acquainted with the implementation details; (b) use of a black box binds to its

interface.

Stage 4 – Specification of new ADTs: At this stage the student plays the role of a

consumer who specifies and orders a new ADT black box from his teacher. The teacher

implements the required ADT according to the student’s specifications in terms of a black

box, which is then used by the student to write his program.

Stage 5 – Acquaintance with the implementation of predefined ADT boxes: After

students became familiar with the specifications and the use of ADTs, we suggest that

they gradually learn how to implement an ADT according to its specifications. Initially,

students become acquainted with the implementation of familiar ADTs. At this point the

black boxes that have been transparently used in the previous stage become unfolded, i.e.,

the code within the black box is no longer hidden. Actually, at this point the black box

becomes visible, however, only as read-only boxes, and the students perform operations

such as reading the code, running the code, and following up its execution in order to

understand “how it works”.

Stage 6 – Manipulation of predefined ADT boxes: At this stage the read-only boxes

becomes “more” accessible in the sense that their code can also be modified. Here stu-

dents learn advanced programming techniques and efficiency aspects, and practice code

debugging, code modification, and writing new code from scratch.

Stage 7 – Implementation of new ADTs: After becoming acquainted with the im-

plementation of predefined ADT boxes, the students learn how to implement new ADT

boxes according to a defined specification. At this stage they eventually become indepen-

dent of the teacher in terms of supplying built-in programming tools.

Stage 8 – Knowledge integration and autonomous problem solving: At this stage

students make a significant step toward attaining proficiency, and they practice solving

advanced and complex problems. The students employ ADTs to solve a given problem

in the following process: They try to determine familiar ADTs suited for the given prob-

lem and use the relevant predefined ADT black boxes. When the predefined ADTs do

not suit their needs, they specify new ADTs from scratch or modify the specification of

other ADTs, implement them in terms of black boxes, and then use them to develop their

programs. Moreover, the students start acting like autonomous developers, by reusing

their own tools, but on the other hand, they experience sharing tools with peers and reuse

others’ tools.

Such instructional approaches that gradually introduce abstract data types as flexible

problem-solving tools may reduce students’ difficulties in their transition between ab-

straction layers when solving problems, and in constructing appropriate linking between

programming modules.



14 B. Haberman, Z. Scherz

5. Concluding Remarks

Students need to develop proficiency in choosing the most suitable abstraction tool for
solving a given problem and, furthermore, in identifying which tasks should be performed
when dealing with different abstraction layers during various stages of solving a problem.
Adequate learning of abstraction by novices may enhance their problem-solving abilities
(Haberman and Muller, 2008). For example, reflection on the process, estimation of the
product’s quality, and reusability in future tasks need to be part of the routine of learning
when utilizing abstraction tools (Hazzan and Kramer, 2006).

In this paper we demonstrated how evolving ADT boxes can be employed to teach an
ADT-based problem-solving approach in the logic programming paradigm. We believe
that the suggested instructional approach can be adopted to enhance problem-solving
techniques in any programming paradigm, and that it can also be used to guide the stu-
dents toward achieving proficiency in programming based on abstraction and reuse of
code.

We recommend that the instructional approach be employed while the students are
provided with an appropriate learning environment that promotes learning processes. Ex-
amples that provide scaffolding should be used to present the activities associated with
each stage of the model. Moreover, appropriate exercises as well as activities that support
the approach should be developed to motivate students to use black boxes transparently,
reuse code provided by others, modify code, and use appropriate ADTs to solve given
problems. In order to reduce students’ difficulties, teachers should be aware of specific
difficulties that occur at each stage of the learning process; specifically, they should iden-
tify the “weak links” and the “missing links” in the students’ problem-solving strategies,
such as the ones presented here. In addition, learning and instructional activities should be
organized in such a manner as to minimize the cognitive load imposed upon the students
when they are required to develop a program. One way that this can be achieved is to
coach the students to organize their programs hierarchically and modularly (Scherz and
Haberman, 2005; Sterling and Shapiro, 1994). In order to foster integrative knowledge,
we recommend that students continue, at each stage of learning, to practice and mean-
ingfully utilize the tools and the methods that they have previously acquired (Haberman
and Scherz, 2005). Moreover, encouraging students to reflect on problem-solving pro-
cesses, such as moving between abstraction layers, may be highly beneficial (Haberman
and Muller, 2008).

The instructional approach presented here should be further evaluated regarding its
feasibility and applicability to reducing students’ difficulties when dealing with different
abstraction layers during problem-solving processes.

References

Aho, A.V. and Ullman, J.D. (1992). Foundations of Computer Science. W.H. Freeman and Company.
Ben-Ari, M. (1995). Understanding Programming Languages. John Wiley.
Haberman, B., Shapiro, E. and Scherz, Z. (2002). Are black boxes transparent? – High school students’ strate-

gies of using abstract data types. Journal of Educational Computing Research, 27(4), 411–236.



Connectivity between Abstraction Layers 15

Haberman, B. and Scherz, Z. (2003). Abstract data types as tools for project development – High school stu-
dents’ views. Journal of Computer Science Education, online, January 2003. Available:
http://iste.org/sigcs/community/jcseonline/

Haberman, B. (2004). High-school students’ attitudes regarding procedural abstraction. Education and Infor-
mation Technologies, Special issue devoted to recent research projects of secondary informatics education,
9(2), 131–145.

Haberman, B. and Scherz, Z. (2005). Evolving boxes as flexible tools for teaching high-school students declar-
ative and procedural aspects of logic programming. In R. Mittermeir (Ed.), Lecture Notes in Computer
Science, Vol. 3422, 156–165.

Haberman, B. and Muller, O. (2008). Teaching abstraction to novices in the course of pattern-based and ADT-
based problem solving processes. In Proc. of 2008 Frontiers in Education Conf., Saratoga Springs, New
York, USA, T1A [1-6].

Hazzan, O. and Kramer, J. (2006). Abstraction in computer science & software engineering: A pedagogical per-
spective. http://edu.technion.ac.il/Faculty/OritH/HomePage/FrontierColumns
/OritHazzan_SystemDesigFrontier_Column5.pdf [accessed October 15, 2007].

Kiczales, G. (1994). Why are black boxes so hard to reuse? Invited talk. In OOPSLA’94. Available:
http://www.parc.xerox.com/spl/projects/oi/towards-talk/transcript.html

Machanick, P. (1998). The abstraction-first approach to data abstraction and algorithms. Computers & Educa-
tion, 31, 135–150.

Newell, A. and Simon, H.A. (1972). Human Problem-Solving. Prentice-Hall, New York.
Pain, H. and Bundy, A. (1985), What stories should we tell novice Prolog programmers. In R. Lawley (Ed.),

The Artificial Intelligence Programming Environments Book, John Wiley.
Resnick, M., Berg, R. and Eisenberg, M. (2000), Beyond black boxes: bringing transparency and aesthetics

back to scientific investigation. Journal of the Learning Sciences, 9(1), 7–30.
Scherz, Z., Goldberg, D. and Fund, Z. (1990). Cognitive implications of learning Prolog – mistakes and mis-

conceptions. Journal of Educational Computing Research, 6(1), 89–110.
Scherz, Z. and Haberman, B. (2005). Mini-projects development in computer science – Students’ use of orga-

nization tools. Informatics in Education, 4, 307–319.
Sterling, L. and Shapiro, E. (1994). The Art of Prolog, 2nd ed. MIT Press, Cambridge, MA.
Ye, N., and Salvendy, G. (1996). Expert-novice knowledge of computer programming at different levels of

abstraction. Ergonomics, 39(3), 461–481.

B. Haberman received her PhD degree in science teaching from the Weizmann Institute
of Science in 1999. She is currently a senior teacher in the Department of Computer Sci-
ence in the Holon Institute of Technology. She leads the “Computer Science, Academia
and Industry” educational program for talented high school students at the Davidson Insti-
tute of Science Education at the Weizmann Institute of Science, and is a leading member
of Machshava – the Israel National Center for high school computer science teachers. She
has developed learning materials for high school level in the areas of logic programming
and artificial intelligence, abstract data types and algorithmic patterns. She has devel-
oped academic programs for undergraduate level in computer science. Her research has
focused on computer science educational research, problem solving, students’ conceptu-
alization of computer science, as well as on in-service teacher education.



16 B. Haberman, Z. Scherz

Z. Scherz has a MSc in biophysics, and a PhD in science education. Her postdoctoral
research was performed at the University of Washington’s College of Education. In 1984,
she joined the staff of the Department of Science Teaching at the Weizmann Institute
of Science, where she has led the logic programming in education group, and currently
heads the chemistry and the scientific communication teams at the junior high level. She
has written many learning materials for the junior high and high school levels in the
areas of logic programming, artificial intelligence, science and technology and high order
skills. Her research has focused on student conceptualization of computer science and
scientific principles, on their learning of high order skills, as well as on the professional
development of leading teachers.

Abstrakcijos sluoksni ↪u s ↪aryšiai sprendžiant abstrakči ↪uj ↪u duomen ↪u
tip ↪u uždavinius deklaratyviais metodais

Bruria HABERMAN, Zahava SCHERZ

Jau daugiau nei dešimtmet↪i aukšt ↪uj ↪u mokykl ↪u studentai yra mokomi deklaratyvi ↪u uždavini ↪u
sprendimo metod ↪u, remiantis abstrakčiaisiais duomen ↪u tipais (ADT). Toks mokymas buvo ↪itrauktas

↪i loginio programavimo kurso turin↪i. Buvo atliktas tyrimas, kuriuo siekiama ↪ivertinti, kaip studen-
tai sprendžia uždavinius, naudodami ADT. Tyrimo rezultatai rodo, kad studentai, kuri ↪u pasirink-
tos strategijos buvo nutolusios nuo koncepcinio modelio, dažnai sukurdavo neteisingas progra-
mas. Daugiausiai sunkum ↪u studentai turėjo susiedami uždavin↪i su jo abstrakčiu modeliu ir nustaty-
dami ryš↪i tarp abstrakči ↪u sluoksni ↪u, susijusi ↪u su uždavinio sprendimo etapais (pvz., tarp atskir ↪u
programavimo moduli ↪u). Šie sunkumai yra akivaizdžiai susij ↪e su bendro pobūdžio sunkumus, su
kuriais susiduria naujokai, besimokantys programavimo, ir su pažintiniu krūviu, kylančiu dirbant
su aukšto lygio abstrakcijomis. Siekiant sumažinti studentams iškylančius sunkumus, rekomen-
duojama naudoti mokymo metodas, skirtus palaipsniui mokyti studentus siekti aukštesnės už-
davini ↪u sprendimo kvalifikacijos, naudojantis integruotomis žiniomis ir autonominiais uždavini ↪u
sprendimo būdais. Šis požiūris turėt ↪u būti toliau analizuojamas, atsižvelgus ↪i jo pagr↪istum ↪a ir
taikym ↪a siekiant sumažinti studentams iškylančius sunkumus, susijusius su abstrakcijos procesais.


