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Abstract. It is well known that the ancient Egyptians represented each fraction as a sum of unit
fractions – i.e., fractions with unit numerators; this is how they, e.g., divided loaves of bread. What
is not clear is why they used this representation. In this paper, we propose a new explanation:
crudely speaking, that the main idea behind the Egyptian fractions provides an optimal way of
dividing the loaves. We also analyze the related properties of fractions.

Keywords: Egyptian fractions, optimization, educational impact.

1. What Are Egyptian Fractions

It is known that people of ancient Egypt represented fractions as sums of unit fractions

– i.e., fractions of the type
1
n

. This representation is described, in detail, in the Rhind

(Ahmes) Papyrus, the most extensive Egyptian mathematical papyrus; see, e.g., (Boyer
and Merzbach, 1991). According to the papyrus, this was a method recommended, e.g.,
for dividing loaves of bread between several people.

For example, the number
5
6

can be represented as

5
6

=
1
2

+
1
3
.

In other words,

5 = 6 ·
(1

2
+

1
3

)
= 6 · 1

2
+ 6 · 1

3
.

So, according to the method described in the Rhind Papyrus, if we want to divide 5 loaves
between 6 people, we must:

• divide 6 · 1
2

= 3 loaves into two equal parts each, and
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• divide 6 · 1
3

= 2 loaves into three equal parts each.

As a result, we get six half-loaves and six third-loaves. Each of the six people receives
one half and one third:

2. Why Egyptian Fractions? A Question

Most algorithms with Egyptian fractions are so complicated that it is puzzling why they
were used in the first place. For example, according to (Hoffman, 1998), R. Graham
(who wrote his PhD dissertation on unit fractions) asked André Weil why, and A. Weil
answered “They took a wrong turn”.

3. Why Egyptian Fractions: A Possible Answer

Let us assume that we can only divide loaves into equal pieces. One cut divides a loaf of
bread into 2 equal pieces. In general, to divide a loaf into q equal pieces, we need q − 1
cuts.

If we want to divide 5 loaves between 6 people, to give each of them
5
6

of a loaf, then

a natural way to do it is to divide each of 5 loaves into 6 equal pieces. To divide each loaf,
we need 6 − 1 = 5 cuts, so to divide all 5 loaves, we need 5 · 5 = 25 cuts.

On the other hand, in the Egyptian fraction approach, we need to divide 3 loaves
in half (1 cut each) and 2 loaves into three equal pieces (2 cuts each), to the total of
3 + 2 · 2 = 7 � 25 cuts.

4. General Question: What is the Smallest Number of Cuts?

Suppose that we want to divide a large number of loaves in such a way that every person

gets
p

q
th of a loaf. In other words, for some large number N , we have N people, and we

want to distribute

N · p

q

loaves between these people.
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The straightforward way would be to divide each loaf into q equal parts. A more
general approach is to divide some loaves into q1 equal parts, some loaves into q2 equal
parts, etc., and some loaves into qk equal parts. Then, we give each person some pieces
from each of these divisions:

• some number of parts
1
q1

; we will denote this number by p1;

• some number of parts
1
q2

; we will denote this number by p2;

• etc.

In other words, we represent the desired ratio
p

q
as a sum

p

q
=

p1

q1
+ · · · +

pk

qk
(1)

for natural numbers pi and qi.
Each representation of this type corresponds to a possible way of cutting loaves of

bread. To find out how we can minimize the number of cuts, let us find out how many
cuts per loaf correspond to a representation (1). For N people, we need

N · p

q

loaves, out of which:

• N · p1

q1
loaves are divided into q1 equal pieces,

• N · p2

q2
loaves are divided into q2 equal pieces,

• etc.

To divide a loaf into qi pieces, we need qi − 1 cuts, so the overall number of cuts is
equal to

N · p1

q1
· (q1 − 1) + · · · + N · pk

qk
· (qk − 1)

= N · (p1 + · · · + pk) − N ·
(p1

q1
+ · · · +

pk

qk

)
.

Due to (1), we conclude that the for N persons, the overall number of cuts is equal to

N · (p1 + · · · + pk) − N · p

q
.

Thus, the average number of cuts per person is equal to

p1 + · · · + pk − p

q
.

So, the average number of cuts is the smallest if and only if the sum p1 + · · · + pk of the
numerators in the representation (1) attains the smallest possible value.
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DEFINITION 1. For every positive rational number

r =
p

q
,

let us denote, by ‖r‖, the smallest possible sum p1 + · · · + pk among all representations
of type (1).

In these terms, the smallest possible number of cuts per person is equal to ‖r‖ − r.
What are the properties of this function ‖r‖?

PROPOSITION 1.
1. For every rational number, we have

‖r‖ � r.

2. For every integer n, we have

‖n‖ = n.

3. For every rational number r and for every integer n, we have

∥∥∥ r

n

∥∥∥ � ‖r‖.

4. For every two rational numbers r and r′, we have

‖r + r′ ‖ � ‖r‖ + ‖r′ ‖

and

‖r · r′ ‖ � ‖r‖ · ‖r′ ‖.

Proof. Since ‖r‖ − r is the average number of cuts, i.e., a non-negative number, we have
‖r‖ � r. The first property is proven.

For integers n, we do not need any cuts, so ‖n‖ − n = 0 and ‖n‖ = n. Thus, the
second property is proven as well.

Let us prove the third property. Let

r =
p1

q1
+ · · · +

pk

qk

be a representation corresponding to ‖r‖, i.e., representations for which

‖r‖ = p1 + · · · + pk.
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Then,

r

n
=

p1

n · q1
+ · · · +

pk

n · qk
.

For this representation of
r

n
, the sum of the numerators is the same, i.e., it is equal to ‖r‖.

Thus, the smallest possible sum ‖ r

n
‖ of the numerators in the representation of

r

n
cannot

exceed ‖r‖. The third property is proven.
Let us prove the fourth property. Let

r =
p1

q1
+ · · · +

pk

qk

and

r′ =
p′
1

q′
1

+ · · · +
p′

k′

q′
k′

be representations corresponding to ‖r‖ and ‖r′ ‖, i.e., representations for which

‖r‖ = p1 + · · · + pk

and

‖r′ ‖ = p′
1 + · · · + p′

k′ .

Then, for the sum of these representations, we get

r + r′ =
p1

q1
+ · · · +

pk

qk
+

p′
1

q′
1

+ · · · +
p′

k′

q′
k′

with

p1 + · · · + pk + p′
1 + · · · + p′

k′ = ‖r‖ + ‖r′ ‖.

Thus, the smallest possible sum ‖r + r′ ‖ of the numerators in the representation of r + r′

cannot exceed ‖r‖ + ‖r′ ‖.
Similarly, for the product

r · r′ =
(p1

q1
+ · · · +

pk

qk

)
·
(p′

1

q′
1

+ · · · +
p′

k′

q′
k′

)
=

∑
i,j

pi · p′
j

qi · q′
j

,

the sum of the numerators is equal to

∑
i,j

(pi · p′
j) =

∑
i

pi ·
∑

j

p′
j = ‖r‖ · ‖r′ ‖,
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so ‖r · r′ ‖ � ‖r‖ · ‖r′ ‖.
The fourth property is proven, so the proposition is proven.

REMARK 1. We can thus say that ‖ · ‖ is an integer-valued additive and multiplicative
norm on the set of all positive rational numbers.

5. Computing the Smallest Number of Cuts: Formulation of the Problem

How can we actually compute the smallest number of cuts, i.e., the norm ‖ · ‖? This
problem is not trivial, because, from the Egyptian papyri, it is known that even for small
q, we often need large numbers qk.

We will show that an algorithm for computing ‖r‖ is possible.

6. Reduction to an Auxiliary Algorithm

In order to compute ‖r‖, we will first design a sequence of auxiliary algorithms.
Specifically, for every integer n, we will design an algorithm An that checks whether

‖r‖ � n. By definition of ‖r‖, this means that this algorithm An checks whether there
exists a representation of a given fraction r as a sum of

p1 + · · · + pk � n

unit fractions
1
qi

.

For every fraction r, the value ‖r‖ is a positive integer. Thus, once we have designed
the auxiliary algorithms An, we can compute ‖r‖ as follows:

• First, we use the algorithm A1 to check whether ‖r‖ � 1.

– If the algorithm A1 concludes that ‖r‖ � 1, then, since ‖r‖ is a positive
integer, we have ‖r‖ = 1. In this case, we return the value ‖r‖ = 1 and stop
the computations.

– If the algorithm A1 concludes that ‖r‖ > 1, then we continue.

• Next, we apply the algorithm A2 to check whether ‖r‖ � 2.

– If the algorithm A2 concludes that ‖r‖ � 2, then, since we already know that
‖r‖ > 1, we have ‖r‖ = 2. In this case, we return the value ‖r‖ = 2 and stop
the computations.

– If the algorithm A2 concludes that ‖r‖ > 2, then we continue.

• After that, we apply the algorithm A3 to check whether ‖r‖ � 3.

– If the algorithm A3 concludes that ‖r‖ � 3, then, since we already know that
‖r‖ > 2, we have ‖r‖ = 3. In this case, we return the value ‖r‖ = 3 and stop
the computations.

– If the algorithm A3 concludes that ‖r‖ > 3, then we continue.

• etc.
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For every fraction r, by applying the auxiliary algorithms A1, A2, etc., we eventually
reach the smallest integer n for which ‖r‖ � n. This integer n is the desired norm ‖r‖.

To complete the construction of the desired algorithm, we therefore need to construct
the auxiliary algorithms An.

7. Designing the Auxiliary Algorithms An

We will build the algorithms An by induction over n.
For n = 1, the algorithm A1 follows from the fact that the only way to get

p1 + · · · + pk = ‖r‖ = 1

is to have p1 = 1 and k = 1. So, only fractions of the type
1
n

have ‖r‖ = 1. Thus, to

check whether ‖r‖ = 1, it is sufficient to check whether r is a unit fraction.
Let us now suppose that we have already designed an algorithm An. Let us use this

algorithm to design a new algorithm An+1 for checking whether

‖r‖ � n + 1.

To construct this new algorithm, we will use the fact that ‖r‖ � n + 1 means that the

given fraction r =
p

q
can be represented as the sum of � n + 1 unit fractions

p

q
=

1
q1

+ · · · +
1

qM

for some M � n + 1.
Without losing generality, we can assume that q1 � q2 � . . . � qM . Thus,

1
qi

� 1
q1

for all i and hence,

1
q1

� p

q
� M

q1
.

Since M � n + 1, we conclude that

1
q1

� p

q
� n + 1

q1
.

Thus,

q

p
� q1 � (n + 1) · q

p
.



42 O. Kosheleva and V. Kreinovich

There are only finitely many integers q1 in the interval

[q

p
, (n + 1) · q

p

]
.

So, to check whether ‖r‖ � n + 1, it is sufficient to try all the integers

q1 ∈
[q

p
, (n + 1) · q

p

]
,

and for each of them, check whether the corresponding difference

d(r, q1)
def=

p

q
− 1

q1

can be represented as a sum of � n unit fractions, i.e., whether

∥∥∥p

q
− 1

q1

∥∥∥ � n.

For each q1, this auxiliary checking can be done by the algorithm An. Thus, the algorithm
An+1 is designed.

REMARK 2. As we will see from the following examples, these algorithms not only com-
pute the value ‖r‖ for a given fraction r, they also produce the corresponding represen-
tation of the fraction r as the sum of ‖r‖ unit fractions.

8. Computing the Smallest Number of Cuts: Example

Let us illustrate this algorithm on the example of the fraction

r =
p

q
=

4
5
.

In accordance with our general algorithm, we first apply the auxiliary algorithm A1.

For the given fraction, q does not divide p, so
4
5

is not a unit fraction and thus

∥∥∥4
5

∥∥∥ > 1.

Let us now check whether ‖ 4
5

‖ � 2. According to the above algorithm A2, the integer

value q1 must satisfy the inequality

5
4

� q1 � 2 · 5
4
,
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i.e., 1.25 � q1 � 2.5. There is only one integer in the corresponding interval, namely, the
integer q1 = 2.

We must now use the algorithm A1 to check whether the difference

d(r, q1) =
p

q
− 1

q1
=

4
5

− 1
2

=
3
10

has ‖d(r, q1)‖ � 1. This difference d(r, q1) = 3
10 is not a unit fraction, so ‖d(r, q1)‖ > 1,

hence ‖ 4
5

‖ > 2.

Let us now check whether ‖ 4
5

‖ � 3. According to the above algorithm A3, the integer

value q1 must satisfy the inequality

5
4

� q1 � 3 · 5
4
,

i.e., 1.25 � q1 � 3.75. There are two integers in the corresponding interval, q1 = 2 and
q1 = 3. We must now apply the algorithm A2 to the corresponding differences

d(r, q1) =
p

q
− 1

q1
.

For q1 = 2, the corresponding difference d(r, 2) is equal to

d(r, 2) =
4
5

− 1
2

=
3
10

.

Let us apply the algorithm A2 to this difference r′ def=
3
10

.

According to the algorithm A2, we must select an integer q′
1 for which

10
3

� q′
1 � 2 · 10

3
,

i.e., we must consider q′
1 = 4, q′

1 = 5, and q′
1 = 6. Already for q′

1 = 4, the difference

d(r′, 4) =
3
10

− 1
4

=
1
20

is a unit fraction, so

∥∥∥ 3
10

∥∥∥ = 2,

with the corresponding representation

3
10

=
1
4

+
1
20

.
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Since

3
10

=
4
5

− 1
2
,

we thus conclude that

∥∥∥4
5

∥∥∥ = 3,

with

4
5

=
1
2

+
1
4

+
1
20

.

REMARK 3. This is not the only possible representation of the fraction
4
5

as a sum of

three unit fractions: for q′
1 = 5, we get an alternative representation with the same number

of unit fractions:

4
5

=
1
2

+
1
5

+
1
10

.

It is worth mentioning that, as one can check, the remaining value q′
1 = 6 (and the values

q′
1 corresponding to q1 = 3) do not lead to a sum of three fractions.

9. Discussion: Are Egyptian Fractions Optimal?

A natural question is: are actual Egyptian fraction representations – as given in the Rhind
Papyrus – optimal? Not always.

For example, the Egyptians did not allow identical unit fractions in their representa-
tions and had other unclear preferences. As a result, e.g., instead of

2
13

=
1
13

+
1
13

,

they used a representation

2
13

=
1
8

+
1
52

+
1

104
.

From the viewpoint of the smallest number of cuts, this representation does not make
sense: it replaces a representation corresponding to

p1 + · · · + pk = 2

with a representation for which

p′
1 + · · · + p′

k′ = 1 + 1 + 1 = 3 > 2,
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i.e., with a representation with more cuts.
So, we do not claim that the ancient Egyptian always had it right, what we claim is

that their general idea of reducing the sum of the numerators as much as possible seems
to be right. From this viewpoint, it will be interesting to further analyze the properties of
the norm ‖ · ‖.

10. How We Can Use These Results and Ideas in Education

In elementary and middle school mathematics, the concept of fractions is one of the
most difficult concepts. To master fractions, students have to avoid and overcome nu-
merous misconceptions. Because of this difficulty, researchers in mathematics educa-
tions have developed a large number of innovative ways of teaching fractions, to increase
the students’ interest and motivation. Egyptian fractions, with their non-traditional struc-
ture and easy-to-understand techniques, are known to have led to many successful exam-
ples of such innovative activities; see, e.g., (Streefland, 1991; Kosheleva and Kreinovich,
2005; Kosheleva and Lyublinskaya, 2006; Kosheleva and Lyublinskaya, 2007a; Koshel-
eva and Lyublinskaya, 2007b; NCTM, 2009), and (Eppstein, 2009).

Since these examples work so well when teaching schoolchildren, we have taught the
corresponding activities to future teachers, in the methods courses at the University of
Texas at El Paso. Interestingly, not only the future teachers learned to use these exam-
ples, but they got very much interested in these examples themselves. Egyptian fraction
ideas helped the future teachers better understand the variety of possible ideas behind
the seemingly simple school mathematics, in particular, the multi-faceted nature of the
concept of fraction.

The interesting fact about the Egyptian approach to fractions is that, as we have seen
in this paper, this approach leads very fast from simple arithmetic to reasonably complex
algorithms – when we want not just to represent every fraction in this way, but to get
an optimal representation, with the smallest possible number of terms. When presented
with these complex algorithms, more computer-advanced students started thinking about
possible implementations of these algorithms.

The students were especially intrigued by the fact that while the resulting represen-
tation of each fraction is optimal, the algorithm itself may be not be optimal – in the
sense that no one has proved that the same representations cannot be obtained by a much
faster algorithm. Looking for a faster algorithm, investigating general property of optimal
representations – these are the tasks that students are eager to do by programming these
problems and by running these programs on different examples.

The interest that these problems raised when teaching computer-skilled future teach-
ers make us believe that this topic can also be of interest to students studying computer
science. Their interest may be further enhanced by the following relevant observation
about the hardware implementation of arithmetic operations in the modern computers.

Inside the computers, addition is usually performed by using, in effect, the same algo-
rithm that we learn at school. The main difference between our way of adding numbers
and computer implementation is that we add decimal numbers, while the computers per-
form addition on numbers represented in the binary code.
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Similarly, inside the computers, multiplication is performed in a way which is similar
to how we multiply:

• multiplying by different digits and then
• adding the results.

In contrast, in the modern computers, division is performed completely differently

from how we normally divide. Namely, the computer calculates
x

y
as the product x · 1

y
,

where

• for several basic values y, the ratios
1
y

are pre-computed and stored, and

• the ratios
1
y

for other values y are computed based on the known (stored) values.

We can summarize this implementation by saying that modern computers use unit
fractions – exactly the same ideas as the Egyptians pioneered.

This analogy can go one step further. We have mentioned that it is still not known
which algorithms for computing the Egyptian fractions representations are the fastest.
Even simple computer experiments, easily started by students, have the potential of lead-
ing to interesting observations and results. Similarly, it is not known which algorithms
for division lead to the fastest computer implementations. There is also room for com-
puter simulations and experimentations. And who knows, maybe experiments with the
millennia-old Egyptian fractions can lead to stimulating new ideas that will help make
modern computers faster?
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Dar kart ↪a apie egiptietiškas trupmenas

Olga KOSHELEVA, Vladik KREINOVICH

Žinoma, kad senovės egiptiečiai pripažino tik tokias trupmenas, kuri ↪u skaitiklyje yra viene-
tas. Trupmenas, kuri ↪u skaitiklyje buvo ne vienetas, jie išreikšdavo trupmen ↪u su vienetu skaitik-
lyje suma. Tokiu būdu jie, pavyzdžiui, dalindavo duonos kepal ↪a. Nėra aišku, kodėl jie naudojo
tok↪i vaizdavimo būd ↪a. Šiame straipsnyje pateikiamas naujas paaiškinimas: egiptietiškos trupmenos
užtikrino optimal ↪u duonos dalijimo būd ↪a. Straipsnyje taip pat analizuojamos su tuo susijusios trup-
men ↪u savybės.


