Informatics in Education, 2009, Vol. 8, No. 1, 17-34 17
© 2009 Institute of Mathematics and Informatics, Vilnius

Effects, Experiences and Feedback from Studies of
a Program Visualization Tool

Erkki KAILA, Teemu RAJALA, Mikko-Jussi LAAKSO,

Tapio SALAKOSKI

TUCS, Turku Centre for Computer Science, University of Turku
Joukahaisenkatu 3—-5 B, 6th floor, FI-20520 Turku, Finland
e-mail: {ertaka, temira, milaak, sala} @utu.fi

Received: December 2008

Abstract. Program visualization (PV) is potentially a useful method for teaching programming
basics to novice programmers. However, there are very few studies on the effects of PV. We have
developed a PV tool called VIiLLE at the University of Turku. In this paper, multiple studies on the
effects of the tool are presented. In addition, new qualitative data about students’ feedback of using
the tool is presented. Both, the results of our studies and the feedback indicate that ViLLE can be
used effectively in teaching basic programming concepts to novice programmers.

Keywords: program visualization, programming, education, effects,experiences, student feedback.

1. Introduction

Programming is one of the main objectives in computer science studies. However, ac-
cording to several studies (see, e.g., McCracken ef al. (2001) and Ala-Mutka (2005))
students have significant problems in learning the very basics of programming. Because
of scarce teaching resources and large group sizes students often get inadequate personal
instruction. Thus, there is clearly a need for instructional tools that support students’ in-
dependent learning.

Visualization systems use various graphical means in concretizing abstract program-
ming and algorithmic problems. According to Wiggins (1998), the purpose of visualiza-
tion is to help the user understand what a program does, why it does it, how it works,
and what the end result is. Hence, visualization systems can supposedly help students to
understand programs better, thus improving the learning results. There are several studies
on the effects of different algorithm visualization systems (see, e.g., Hundhausen et al.
(2002) and Laakso et al. (2008a)), but very few on program visualization.

We have developed a program visualization tool called VILLE at the University of
Turku, Finland. The purpose of developing the tool was to find out if program visual-
ization can indeed help students in learning to program. ViLLE has been tested with
different kind of setups taking student competence levels and backgrounds into account.
In this paper we describe the tool itself for both in teacher’s and student’s point of view
and present the results of our studies on the effects of ViLLE so far. Moreover, we present

18 E. Kaila et al.

new quantitative results, based on the student feedback about using the tool. Finally, the
future of VIiLLE is discussed.

2. ViLLE

ViLLE is a program visualization tool, developed at the University of Turku. Its main
purpose is to illustrate the changes in the programs states during the execution with var-
ious graphical and textual means. ViLLE supports multiple programming languages and
has built-in editors for defining and editing syntaxes, examples and questions. With the
export function the defined examples can be published as an independent collection, dis-
tributable in web or other media. By using the TRAKLA server (see Malmi et al. (2004)),
ViLLE’s automatically assessed exercises can be easily integrated as a part of a program-
ming course.

2.1. Teacher’s Point of View

From a teacher’s point of view, the suitability for different kinds of courses can be seen as
the number one feature of ViLLE. Programming languages, examples and questions are
all customizable with the built-in editors. Hence, it should be relatively easy to integrate

B ViLLE - visual learning tool
File Edit View Settings

EIEX

Translate new program
h' Java

public static void main(String[] args){ =

| Description |

["Pseuno | OITpm (

Python | javascript PHP | Cer

for (int i=2; i<=11; i++){
if (prime(i)){
System.out.printin(i + "
3
¥
}
public static hoolean prime (int x){
if (x ==2){
return true;
¥
for (int i=2; i<x; i++){
if (x % 1== 0)¢(
return false;
}
¥
return true;

i

is a prime!"):

def main():
for i in range(2,12,1):
if prime(i):
print i,"is a prime!"

def prime(x):
if x ==2:
return true

for i in range(2,x,1):

if x % 1 == 0:
return false

return true

() open ‘

) Translate ‘ ‘

Save iing example

Example name(fin): |Alkuluku

Example name(eng): |Prime number

Choose category: | Methods (Subprograms)

kS

Fig. 1. Example editor in VILLE.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 19

ViILLE into almost any programming course. Moreover, the flexibility gives teachers a
chance to fulfil their own teaching philosophy, without a need to adjust to tool’s limita-
tions.

2.1.1. Example Editor

Examples are divided into categories. Teacher can create new examples and edit the ex-
isting ones by using the built-in example editor (see Fig. 1). The examples are written
in Java, and ViLLE automatically translates the program code to all defined languages.
Moreover, the visualizations of examples are automatically generated, as well as explana-
tions on each program line. The list of supported Java features is limited, mainly, because
all the programs should be easily translatable to other defined languages, and because the
tool is directed for novice programmers. Furthermore, the visualization of more complex
features (e.g., GUI components) can get quite tricky.

2.1.2. Question Editor

To further engage the learners to visualization, teacher can create questions about the
example programs. Currently multiple choice questions and graphical array questions are
supported. The questions are attached to program execution with a built-in question editor
(see Fig. 2), and are automatically launched when desired point of program is reached.

B ViLLE - visual learning tool ==E3
File Edit View Settings
AL R RIS | Callstack | Variable states |
KRNI [
main 1
1
Execution speed Programming language P fibo(G)
fibo(5) - 1
}
fibo(4) |

recursive fibonacci fibo(3) =

1 public static void main{String[] args){
public int fibo{int nj{ -
2 System.out.printin(fibo(6)); .
—N il if (n<3)(L
4 public int fibo(int n){ L it (n==2){ L
" return 1;
5 if (n<3)(A
6 if (n==2){ = ’1 | [
7 return 1; i L else{ =
8 3 - i Localvariables
9 else(- int n =3
10 return n;
1 ¥ .
2 —
13 else(=
1 return £ibo(n-1) + £ibo(n-2);
15 Shared memory
16)
Program line explanation Program output
Conditional statement:
condition (n<3), or (3 < 3) > is false
The block is not executed.
o)

K3

Fig. 2. Question editor.

20 E. Kaila et al.

The TRAKLAZ2 server can be used with ViLLE to keep the score of answered questions
and correct answers.

2.1.3. Syntax Editor

Teacher can add or edit syntaxes with the built-in syntax editor (Fig. 3). The editable
syntax is presented on the right hand side of the window, and the correspondent Java
syntax on the left hand side. Additionally, an explanation of the edited syntax line is
presented in the bottom window. All defined syntaxes must have matching lines with the
Java syntax to ensure the flow of execution and the consistency of questions.

2.2. Student’s Point of View

VIiLLE’s key features from the student’s point of view can be divided into following
categories:

Visualizing the program execution: The execution of the example program is visu-
alized line by line (see Fig. 4). Currently and previously executed lines are highlighted,
and the variable values, program line explanation and the output of the program are pre-
sented in their own frames. All subprograms, and their return values, are presented in the
call order in their own frames in the call stack. Moreover, all global variables (namely
arrays) are presented graphically in their own area.

B ViLLE - visual learning tool EI@@J
File Edit View Settings

Java syntax: Editable syntax: |Py[hun ‘vH save H [New syntax H [E® Remove syntax ‘

1 } a =)
2 for (B0 = @1; B0 >= @2; @0--){ 3 for B0 in range(@1,B2-1,-1):

3 3 3

4: for (80 = Bl; BO <= B2; B0+ { 4: |for B0 in range(@l,82+1,1):

50 5

6 for (@0 = Bl; @0 > B2; @0--){ 6 for @0 in range(Bl,B2,-1): =
= 7

8: for (B0 = Bl: B0 < B2; B0+ { 8: |for B0 in range(Bl,62,1):

9: 3 9:

10: for (B0 = Bl; B0 >= B2; @0 = BO-B3){ 10: |for B0 in range(Rl,B2-1,-83):

a 11

12: for (B0 = Bl; @0 <= @2; @0 = BO+@3){ 12: |for R0 in Ianqe(El,BZ*—l,BQ:‘

13:) 13

14: for (B0 = Bl; G0 > B2; GO = BO-G3){ 14: |for @0 in range(Rl,B2,-B3):

15 3 15

16: for (B0 = B1:; B0 < @2; B0 = Q0+@3){ 16: |for @0 in range(@1,82,03):

17) 17:

18: while (@0){ 18: [while BO:

19:)} while (B0); 19: |while B0

20: do { 20: |do:

21:) 21:

22: else if (R0){ 22: |elif @0:

23:) 23:

24: if (BO){ 24: |if @O:

25:) 25:

26: else(26: |else:

27) 27

28: public static void main(String[] args){ 28: |def main():

29:) 29:

30: public static void @0(R1){ 30: |def BO(@1):

i a1y

32: private static void BO{BL){ 32: |def BO(RL): =
< i Dl

IIl Explanation syntax of the editable line: Initializing increasing for-loop using variable @0 from value @1 to value @2

Fig. 3. Syntax editor.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 21

B ViLLE - visual learning tool 9 (=13}
File Edit View Settings
Animation controls | Call stack | Variable states |
ka0 []|EEE B
main 1
Execution speed Programming language e fibo(S) i 1
ot .

recursive fibonacci T ibo) =

1 public static void main(String[] args)(
s public int fibo{int n){ =

2 Ssysten.out.println{fibo(6)); - —
ol o if (n<3)(L
4 public int fibo(int n){ " if (n==2){ [

- return 1;
5 if (ne3)(i
6 if (n==2){ - ’1 [
7 return 1: il slaed ~
8 } = il Localvariables
9 else{ - int n = 3
10 return n;
1 } .
2 —
13 else{ =
1 return fibo(n-1) + fibo(n-2);
15) Shared memory
16) =
Program line explanation Program output
Conditional statement:
condition (n<3), or (3 < 3) -> is false
The block is not executed.

=

KX

Fig. 4. Visualization view.

Language independency: The visualization of the execution works similarly, regard-
less of the chosen programming language. Programming language can be changed any-
time during the visualization. In addition, VILLE has a parallel mode (see Fig. 5) where
execution can be viewed in two different languages simultaneously.

Visualization controls: Controls are flexible — the user can move one step at a time,
both forwards and backwards in the execution of a program. In addition, the program can
be executed continuously in adjustable speed. The execution slider at the bottom of the
window can be used to move directly to a desired state of execution. The slider also has a
secondary function: the number of steps can be used to determine the complexity of the
program, and with suitable examples to compare the complexities of algorithms.

Interaction: Besides answering questions (see Fig. 6) the students can edit the pro-
gram code in the visualization view. The changes in program code can be visualized
instantly. However, since the editing must be done in Java, the feature can’t naturally be
utilized in all courses.

2.3. Automatic Assessment of Exercises
Examples made with VILLE can be transferred to a collection in a web (see Fig. 7) by

using the TRAKLA?2 server. The server keeps score on students’ logins and submissions,
and makes it possible to set opening and expiration dates for example rounds. Individual

22

I ViLLE - visual learning tool
File Edit View Settings

E. Kaila et al.

EIEX

Animation controls

W[[m|EE
Execution speed Programming language Programming language
PHP . 4
Table Table
1 public static void main(String[] args){ <2php
2 int[] a = {1,2,3,4,5}; sa = (1,2,3,4,5);
B int[] b = {6,7,8,9); $b = (6,7,8,9);
4 output(b); output(§b);
5 b =a; §b = §a;
6 a[0] = 10; $a[0] = 10;
7 output(b) ; output (§b) ;
8)

9 public static void output(int[] t){ public static function output{§t){
10 for (int i=0; i<t.length: i++)({ for (§i = 0; §1 < count(§t); §i+H){
1 System.out.printin(t[i]); echo §t[§il;

2)

LERN } =

Program line explanation Program output
Initializing variable i with value 0

For-loop rotates.

Condition (i<t.length), or (0 < 4) -> is true

Execution continues inside the block.

Il C

Fig. 5. Parallel view.

examples can be retaken an unlimited number of times. Additionally, the teacher can set
the minimum number of points required for each round to pass the course. Web-based
ViLLE exercises are nowadays in use in most universities in Finland, and the student
feedback (see Subsection 3.4) has been mostly positive: it seems that ViLLE has a positive
role in enhancing the reading and tracing skills of novice programmers.

3. The Studies on ViLLE
3.1. The Effectiveness of VILLE

The effectiveness of ViLLE was studied at the University of Turku, Finland, in a course
called “Introduction to information technology”. There were 72 students participating in
the study. We tried to find the answer to two research questions: 1) “Is ViLLE useful in
learning basic programming concepts?” and 2) “Is there any difference in learning results
when earlier programming experience is taken into account?”. The null-hypotheses were
that VILLE is not useful in learning to program, and that the effect is same for both
novices and more experienced students. No programming was taught before the study,
taking place in the third week of the course. However, a lecture was arranged before
the study where the programming language and the tool used were introduced. A link

Effects, Experiences and Feedback from Studies of a Program Visualization Tool

Edit View Settings

Animation controls

Callstack | Variable states |

k| a > » om

B8 | & |

Execution speed Programming language

pul reverse(b)

int 3 = x.length - 1;
int tap = 0;

| Reverse table cell order

for (int i=0; i< 3; i+H){

1 public static void main(String[] args){
2 int[] b = {1,2,3,4,5,6):

3 reverse(b);

4 for (int i=0; i<b.length; i++){

5 System. out.println(b[i]);

6
7

8 public static void reverse(int[] x){
9 int j = x.length - 1;

10 int tup = 0;

A1 for (imt i=0; i < 3; i+H){

12 twp = x[1];
13 x[1] = x[3]:
14 x[3] = tap;
15 3=-:

%)

1w

tup = x[i]:
x[1] = x[3];
L x[3] = tap:
i} Localvariables

int[] x = §001
int 3 = 8

int tmp = 1
int i =0

Question

El Insert correct value to array x.
01 2

x = 2 [22|22 !

Program line explanation

Array x cell 0 value changed to 6

Program output

Fig. 6. Array question in visualization view.

1 [Ve Cormmt et
2 sgl:egssm Dec. 2009 00:00:00 GMT+0200 fiz50Foints el
3 | GO e 2000 bhuntn otz el | Selimlslans
These examples illustrate how loop structures wark

1: For statement 0/50 1

2: For statement 2 0/50 o

3: While statement 25150 1

4: While statement 2 33/80 1

5: Do-while statement 0/50 1

B: For and while statements 50750 1

7: Conditional and loop statements 33/80 1

8: Loop and conditional statements 2 0/50 1

9: Nested conditional statements 0/50 o

10: Nested loop statements 2 0/50 o

11: Break statement 0/50 o

12: continue statement 0/50 o

13: Fibonacci number 0/50 o

14: Greatest common divider 0450 o

15: Reverse string 0450 o

16: Reverse string 2 0450 a

17: Substrings 2 0750 o

Fig.

7. VILLE exercises in TRAKLA?2 environment.

24 E. Kaila et al.

to ViLLE was added to course homepage in the second week so that the students could
familiarize themselves with the tool before the study.

The students were randomly divided into two groups: there were 32 (N = 32) stu-
dents in the freatment group and 40 (N = 40) in the control group. At the beginning
of the two hour session students first took a pre-test that lasted for 15 minutes. The pre-
test included three program reading exercises where students were asked to write down
the output of each program. After the pre-test, students rehearsed programming concepts
presented in the test with a web-based tutorial for 45 minutes. The treatment group could
also visualize the program code examples presented in the tutorial with the VILLE tool.
After the tutorial session students had 30 minutes to answer to a post-test. The post-test
had the same three questions as the pre-test with two more demanding questions, in which
the students had to write a program implementing a given task, and write down the output
of a recursive program.

Pre- and post-test exercises were analyzed in the scale of zero to ten. Thus, the maxi-
mum points of the pre- and post-test were 30 and 50. Table 1 presents the pre-test scores
for both groups, including point averages, standard deviations (in parentheses) and p-
values calculated with a two-tailed t-test.

No statistically significant differences were found in any of the questions. In absolute
scale the treatment group performed better in questions Q2 and Q3, and the control group
in question Q1.

The scores from the post-test are presented in Table 2. Corresponding questions from
the pre-test are shown in square brackets beside the post-test question names. Total points
averages are presented both for the shared questions (questions that were the same in the
pre- and post-test) and for all questions. Additionally, the point difference between the
shared questions in the pre- and post-test is shown.

The comparison between the shared questions shows that the control group performed
better in question PQ1 and the treatment group in questions PQ2 and PQ3. One reason
for the smaller difference in the scores of the treatment group in PQI is the relatively
high scores they got from the pre-test. In any case, the differences are so small that the
null-hypothesis can not be rejected.

Table 3 displays a comparison between the pre- and post-test scores inside the groups.

As seen in the table, both groups performed statistically significantly better in the
post-test than in the pre-test (p-value < 0.01). Based on this, it seems that it is possible

Table 1

Pre-test scores

Question Control Group (N = 40) Treatment Group (N = 32) p-value

Q1 5.20 (2.67) 6.19 (2.46) 0.111
Q2 2.70 (3.53) 2.13(3.53) 0.494
Q3 2.68 (4.15) 2.09 (3.88) 0.546

Total 10.58 (8.64) 10.41 (7.18) 0.930

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 25

Table 2

Post-test scores

Question Control group (N = 40) Treatment Group (N = 32) p-value
PQ1 [Q1] 6.30 (2.81) 6.13 (2.69) 0.790
PQ2 [Q2] 5.10 (4.35) 5.50 (4.50) 0.704
PQ3 6.28 (3.75) 5.88 (3.75) 0.654
PQ4[Q3] 6.15 (4.56) 6.50 (4.42) 0.744
PQ5 7.05 (3.78) 6.69 (4.08) 0.698
Total (shared) 17.55(9.08) 18.13 (8.81) 0.788
Total (all) 30.88 (15.20) 30.69 (15.08) 0.959
Difference PQ1 - QI 1.10 (2.60) — 0.06 (2.81) 0.073
Difference PQ2 — Q2 2.40 (3.30) 3.38 (4.02) 0.262
Difference PQ4 — Q3 3.48 (4.81) 441 (4.53) 0.405
Total difference 6.98 (6.81) 7.72 (6.76) 0.646

Table 3

Pre- and post-test scores

Scores Control Group Treatment Group
Pre-test 10.58 10.41
Post-test 17.55 18.13
Total difference 6.98 7.72
p-value 0.000 0.000

to efficiently study basic programming concepts independently in these kinds of tutorial
sessions.

The other research problem was the effect of earlier programming experience on
learning results. When the results were analyzed, both groups were divided into two:
students with no earlier programming experience (NPE) and students with some earlier
programming experience (SPE). The pre-test scores with earlier programming experience
taken into account are presented in Table 4.

The figures in the table show that students with some earlier programming experience
got statistically significantly better scores in both groups. The corresponding results from
the post-test are presented in Table 5.

As we can see from the table, statistically significant difference between NPE and
SPE remained in the post-test in the control group. However, the difference vanished in
the treatment group (p-values 0.212 and 0.151). Thus, it seems that ViLLE is especially
useful for novice programmers. Because of the relatively short exposure to the tool, the
result can be seen as significant. Cronbach alpha-values calculated for pre- and post-test
questions (pre-test « = 0.667 and post-test « = 0.831) indicate high reliability. This
study is presented in more detail in (Rajala et al., 2008).

26 E. Kaila et al.

Table 4

The effect of earlier programming experience on pre-test scores

Control Group Treatment Group
Question
NPE (N =23) SPE(N =17) p-value NPE (N =20) SPE(N =12) p-value
Ql 4.17 (2.33) 6.59 (2.53) 0.003 5.60 (2.11) 7.17 (2.76) 0.107
Q2 1.22 (1.78) 4.71 (4.31) 0.005 1.00 (2.22) 4.00 (4.51) 0.049
Q3 1.00 (2.86) 4.94 (4.62) 0.005 1.65 (3.62) 2.83 (4.34) 0.414
Total 6.39 (4.68) 16.24 (9.63) 0.001 8.25 (5.44) 14.00 (8.48) 0.051
Table 5
The effect of earlier programming experience on post-test scores
Control Group Treatment Group
Question
NPE (N = 23) SPE (NN = 17) p-value NPE (N = 20) SPE (N = 12) p-value
PQI1 [Q1] 5.74 (2.78) 7.06 (2.75) 0.144 5.90 (2.86) 6.50 (2.43) 0.533
PQ2 [Q2] 3.39 (3.97) 7.41 (3.81) 0.003 4.70 (4.58) 6.83 (422) 0.199
PQ3 5.30 (4.06) 7.59 (2.90) 0.045 5.05 (3.65) 7.25(3.65) 0.109
PQ4 [Q3] 5.22 (4.83) 7.41(3.94) 0.122 6.00 (4.71) 7.33(3.94) 0418
PQ5 6.09 (4.09) 8.35(2.96) 0.049 6.05 (4.20) 7.75 (3.82) 0.261
Total (shared) 14.35(8.27) 21.88(8.51) 0.008 16.60 (9.29) 20.67 (7.64) 0.212
Total (all) 25.74 (14.44) 37.82(13.68) 0.011 27.70 (15.49) 35.67 (13.53) 0.151

Difference PQ1 — Q1 1.57 (2.48) 0.47(2.70) 0.198 0.30(2.62) —0.67(3.11) 0.354
Difference PQ2-Q2 2.17 (3.07) 2.71 (3.65) 0.620 3.70 (4.38) 2.83(3.46) 0.564
Difference PQ4 - Q3 4.22 (4.73) 247 (4.87) 0.261 4.35(4.73) 4.50 (4.38) 0.929
Total difference 7.96 (5.80) 5.65(7.98) 0.295 8.35(7.98) 6.67 (4.14) 0.439

3.2. The Effect of Engagement on Learning

Naps et al. (2002) presented a taxonomy of learner engagement with a visualization tool.
The taxonomy defines six levels of engagement:

1. No Viewing: There is no visualization tool in use.

2. Viewing: User follows the visualization passively. Despite of its name, all forms of
observation belong to this level. The user can control the flow of the visualization
but is not allowed to actively participate in any way.

3. Responding: User answers questions presented during the visualization.

4. Changing: User changes the visualization, for example by modifying the program
code or algorithm used in the visualization.

5. Constructing: User actively participates in the construction of visualization, for
example by writing program code.

6. Presenting: User presents the visualization and evaluates it together with the audi-
ence.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 27

The study presented in Subsection 3.1 was extended so that a third group was formed
which used VILLE in a lower level of the engagement taxonomy. Hence, there were
three groups: no viewing (N = 40), viewing (N = 65) and responding (N = 32).
The questions were removed from the version of VILLE used by the viewing group. The
purpose of the setup was to confirm the hypothesis of Naps ef al. (2002), which states that
visualizations can have an effect on learning only if they are used in engagement level
three or higher.

Statistical differences between the groups in the pre- and post-test were calculated
with one-way ANOVA-test, and are presented in Table 6.

As seen in the table, there were no statistically significant differences between the
groups. Students in the viewing group also improved their results statistically significantly
during the session (the p-value of pre- and post-test difference inside the group < 0.01).

The differences in learning results between the novices and more experienced pro-
grammers inside the groups were examined next. The results are shown in Table 7.

There was a statistically significant difference in all groups between the NPE and SPE.
As discovered in the previous section, the difference in the responding group vanished in
the post-test. However, the difference remained in the viewing group (p-value < 0.001).
Thus we can conclude that for the VILLE to be useful, it should be used in an engagement
level higher than viewing. To confirm the result, a post-hoc Student-Newman-Keuls test

Table 6

Statistical differences between the groups

No viewing (N = 40) Viewing (N = 65) Responding (N = 32) p-value

Pre-test total 10.58 (8.64) 10.85 (8.89) 10.41 (7.18) 0.968

Post-test total (shared) 17.55 (9.08) 17.94 (9.53) 18.13 (8.81) 0.963

Total difference 6.97 (6.81) 7.09 (6.63) 7.72 (6.76) 0.881
Table 7

The effect of previous programming experience on pre- and post-test score

No viewing Viewing Responding
NPE SPE p-value NPE SPE p-value NPE SPE p-value
(N =23)(N=17) (N = 36) (N =29) (N =20) (N =12)

Pre-test total 6.39 16.24 0.001 6.81 15.86 0.000 8.25 1400 0.051

Post-test
total (shared) 14.35 21.88 0.008 13.72 23.17 0.000 16.60 20.67 0.212

Total
difference 7.96 5.65 0.320 6.92 731 0.812 8.35 6.67 0.439

Post-test
total (all) 25.74 37.82 0011 24.72 39.90 0.000 27.70 35.67 0.151

28 E. Kaila et al.

Table 8

Pre-test scores divided into homogenous subsets

Group N Subset for alpha = 0.05
1 2

No Viewing NPE 23 6.39

Viewing NPE 36 6.81

Responding NPE 20 8.25

Responding SPE 12 14.00
Viewing SPE 29 15.86
No Viewing SPE 17 16.24

Table 9

Post-test scores divided into homogenous subsets

Group N Subset for alpha = 0.05
1 2

Viewing NPE 36 13.72

No viewing NPE 23 14.35

Responding NPE 20 16.60 16.60
Responding SPE 12 20.67
No viewing SPE 17 21.88
Viewing SPE 29 23.17

was used. The analysis forms two homogenous subsets from the pre-test scores so that
the novices and more experience programmers belong to different subsets (Table 8).
When the post-test scores were analyzed similarly, the results show that the novices
in the responding group caught up all the SPE groups (Table 9).
The analysis confirms the previous finding that VILLE is especially useful for novices
learning programming basics, but only if used in higher levels of engagement. Similar
learning results are not achieved if visualizations are viewed passively.

3.3. The Impact of Prior Experience on Learning

We also wanted to study what kind of effects prior experience on using a visualization
tool has on the learning results. Presumably, students who have familiarized themselves
with the usage of a tool can focus better on the subject taught because the cognitive
load of using the tool is lighter. The study was organized in two instances of a high
school programming course. The only difference between the courses was that in the
latter course students were familiarized with the use of ViILLE and its features. A session
similar to the ones presented in previous sections was arranged, although the questions in
pre- and post-test were partly modified (for example recursion was thought to be concept

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 29

Table 10
Math and CS grades (scale 4...10)

Group Math CS
Control Group 6.75 (1.60) 7.94 (1.09)
Treatment Group 7.67 (2.25) 8.57 (1.62)

Table 11

Pre- and post-test scores

Pre-test total ~ Post-test total (shared) Post-test total (all)

Control Group (N = 17) 7.12 12.59 16.94
Treatment Group (N = 7) 9.43 19.57 26.43
p-value 0.515 0.047 0.046

too complex for high school students). Students who hadn’t used ViLLE before belonged
to control group (N = 17) while students with prior experience on ViLLE formed the
treatment group (/N = 7). Though the groups were quite small, results were statistically
significant.

To confirm the equality of the groups, participants’ earlier math and CS grades were
analyzed. The averages and standard deviations are presented in Table 10.

There were no statistically significant differences in grades between the groups. The
absolute differences are less than one point.

Pre- and post-test scores are presented in Table 11.

There was no statistically significant difference between the groups in the pre-test
scores, but there is a difference in the post-test. The statistically significant difference
can be found both in the shared (same questions in pre- and post-test) questions and all
questions. Based on the results we can conclude that prior knowledge of VIiLLE clearly
improves learning results. Furthermore the results support our earlier findings that VILLE
is useful in learning basic programming skills: both groups got statistically significantly
better results from the post-test in comparison to the pre-test. The results are presented in
more detail in (Laakso et al., 2008b).

3.4. Student Feedback

In addition to quantitative tests we wanted to find out what students think about the tool.
The opinions were gathered from students participating in a course called ‘Introduction
to Information Technology’ at the University of Turku. VILLE was an integral part of the
course as all the assignments were done with it. 114 students answered to the question-
naire consisting of three parts: general questions about the tool, how useful the system is
when learning new programming concepts, and opinions about the features of the tool.

30 E. Kaila et al.

In the first section six statements about system were presented, and students were
asked to evaluate those in a scale of one to seven (1: completely disagree, 7: completely
agree). Based on the answers, the students seem to think that the tool is quite suitable for
teaching programming (average of all answers 5.64), that it is fairly easy to use (avg. 5.49)
and that it helps in understanding the basic programming concepts (avg. 5.41).

In the second section the students were asked to evaluate the usefulness of VILLE in
different areas related to programming (see Table 12). Based on the answers, the students
found ViLLE as an useful tool for teaching all the basic concepts — arrays were the only
concept which got an average less than five (avg. 4.73). Based on students’ comments,
this is probably because of the usability issues in answering the array questions.

In the third section the students were asked to evaluate the usefulness of different fea-
tures of VILLE (see Table 13). All features — except the visualization of programs in dif-
ferent languages — got an average of five or higher. The features the students found most
useful were the visualization of variable states and the automatic assessment of exercises
(averages 5.90 and 5.80). The worse average in “visualization in multiple languages” is
probably due to a fact, that the students didn’t use the feature. For that matter, the feature
can be found most useful when the students already know a programming language, and
a different language is taught.

Table 12

Usefulness of VILLE in understanding programming concepts

How useful did you find ViLLE in understanding the following concepts? (scale 1-7)

Variables and assignments 5.41(1.37)
Conditional statements 5.52 (1.15)
Loops 5.61 (1.19)
Boolean statements 5.38 (1.23)
Subprogram definitions 5.38 (1.25)
Subprogram calls 5.34(1.32)
Subprogram parameters 5.24 (1.33)
Arrays 4.73 (1.58)
Table 13

Usefulness of VILLE’s individual features

How useful did you find the following features in ViLLE (scale 1-7)?

Visualization of programs in different languages 4.93 (1.46)
Visualization of subprograms with call stack 5.35(1.24)
Visualization of variable states 5.90 (1.17)
Explanation of program code line 5.40 (1.49)
Questions about program execution 5.50 (1.24)

Automatic assessment of exercises 5.80 (1.28)

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 31

Additionally, the students were asked to evaluate the number of ViLLE exercises in
the course and the number of questions in the exercises in the scale of one to seven (1 —
too few, 7 — too many). Based on the answers, the amounts were quite suitable (exercises
avg. 4.48 and questions avg. 4.13).

Moreover, the students had a possibility to give additional comments about the tool.
Most of the feedback was quite positive. However, some criticism and thoughts about
improving the tool were also given. Some of the positive things mentioned were:

— “In my opinion, ViILLE exercises were more effective than lectures.”

— “I found ViLLE really useful: because of the VILLE exercises, I didn’t practically
need the lecture handouts at all to learn programming.”

— “With VILLE I was able to pick up programming far better than with lectures.”

— “There were a lot of different exercises and it was easy to do them wherever and
whenever I felt like it.”

The negative comments were mostly related to the functionality of the user interface:

— “VIiLLE is great when it functions properly; however, the GUI needs some im-
provement: e.g., handling arrays is illogical and difficult.”

— “It would be handy if you could see the execution history when answering the
questions:”

— “All the essential things won’t fit on the screen simultaneously. Why do you need
to login to VILLE?”

— “It’s irritating that you can’t scroll the window when the question appears.”

Moreover, some of the students would like to have more conventional teaching, in-
stead or alongside ViLLE exercises:

— “I’d rather attend the traditional computer lab sessions, where there would be some
kind of help available on request.”

— “VILLE was a good tool for studying; however, more training in small groups
would be highly appreciated.”

— “ViLLE is ok for learning the basics, but personally I learned more during the
lectures.”

All in all, the students seemed to have quite positive image about ViLLE’s usefulness,
though some improvements were also wished for. In conclusion, the students would pre-
fer a course, where ViLLE exercises are integrated with more traditional teaching meth-
ods. The reported problems related to the user interface will be taken into account in the
further development of the tool — e.g., the answering to array questions should nowadays
work more logically than in the version, which the opinions were gathered about.

4. The Future of the Tool

VILLE is nowadays in use in basic programming courses in most universities in Finland,
and in addition, it will be mobilized at least in Australia during this spring. In future,
we plan to develop the tool further based on the user opinions and experiences, and fur-
ther research the effects of the tool when used in programming teaching. Our goal is to

32 E. Kaila et al.

add more features to support the higher levels of engagement taxonomy. Moreover, exer-
cise templates are developed to enable the randomization of the exercise parameters (i.e.,
variable types and values etc.); this makes redoing the exercises more meaningful. Addi-
tionally, different kinds of exercise types are under development, including code sorting
exercises, where program code lines are randomly shuffled and the students are supposed
to sort them in an order which implements the given task or algorithm.

5. Conclusions

Based on the presented results, experiences and feedback we can conclude the following:

— By using VIiLLE the novices can improve their learning results significantly, even
when the tool is used quite briefly. . .

— ... butonly if the tool is used in the higher level of engagement. The mere viewing
of visualization doesn’t seem to have the same effect. This supports the hypothesis
presented by Naps et al. (2002).

— Moreover, to ensure the learning results, the students must be familiarized with the
tool beforehand, hence reducing the cognitive load of learning to use the tool.

— Most of the students think that ViLLE is beneficial when learning the basic pro-
gramming skills. However, some of the students seem to think that the best way to
use such tool is to integrate it with the more conventional forms of teaching.

— VILLE gives students a chance to learn and practice the very basics of program-
ming independently. These basics can’t normally be covered on the lectures as
thoroughly as required by some students.

— The focus of VIiLLE is in program code reading and comprehension skills. How-
ever, Lopez et al. (2008) state that the tracing skills correlate with students perfor-
mance on code writing tasks.

— From a teacher’s point of view, VILLE’s key feature is the flexibility, and most
importantly the support for almost any imperative programming language.

All in all the experiences seem quite encouraging so far: the results and the students’
feedback both confirm the assumption that ViLLE can be used effectively in teaching the
basic programming skills to novices. As we all know — unless we have already forgotten
— the first steps in programming really are quite difficult. Therefore there seems to be a
demand for such system, both now and in the future.

References

Ala-Mutka, K. (2005). Ohjelmoinnin opetuksen ongelmia ja ratkaisuja. In Tekniikan opetuksen symposium,
20-21.10.2005. Helsinki University of Technology.
http://www.dipoli.tkk.fi/ok/p/reflektori/verkkojulkaisu/index.php?
p=verkkojulkaisu

Hundhausen, C.D., Douglas, S.A. and Stasko, J.D. (2002). A Meta-study of algorithm visualization effective-
ness. Journal of Visual Languages and Computing, 13, 259-290.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 33

Laakso, M.-J., Myller, N. and Korhonen, A. (2008a). Comparing learning performance of students using algo-
rithm visualizations collaboratively on different engagement levels. Journal of Educational Technology and
Society (to appear).

Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T. (2008b). The impact of prior experience in using a visual-
ization tool on learning to program. In Proceedings of CELDA 2008, Freiburg, Germany.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008). Relationships between reading, tracing and writing
skills in introductory programming. In Proceeding of the Fourth International Workshop on Computing
Education Research, September 67, 2008, Sydney, Australia, 101-112.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppild, O. and Silvasti, P. (2004). Visual algorithm
simulation exercise system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267—
288.

McCracken, M., Almstrum, V., Diaz, D., Gudzial, M., Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I. and Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming skills of
first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

Naps, T. L., RoBling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., Mc-
Nally, M., Rodger, S. and Veldzquez-Iturbide, J. A. (2002). Exploring the role of visualization and engage-
ment in computer science education. Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education, 35(2), 131-152.

Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. (2008). Effectiveness of program visualization: a case study
with the ViLLE tool. Journal of Information Technology Education: Innovations in Practice, 7, 15-32.

Wiggins, M. (1998). An overview of program visualization tools and systems. In Proceedings of the 36th Annual
Southeast Regional Conference, 194-200.

E. Kaila has written his master’s thesis on program visualization in programming learn-
ing at University of Turku. His research interests include program visualization systems
and IT education.

T. Rajala is a PhD student at University of Turku. He received his master’s degree from
the same university in 2007. His research focuses on visualization of programs and algo-
rithmic problem solving.

M.-J. Laakso is currently working as a researcher at University of Turku. He received
his MSc (computer science) in 2003. His research interest covers program and algorithm
visualization, learning environments, computer aided and automatic assessment in com-
puter science education.

T. Salakoski is a professor of computer science at University of Turku, where he received
his PhD in 1997. His main research focus has been in methodology development using
machine learning and other intelligent techniques. He is leading a multidisciplinary re-
search group studying various task domains, including problems related to human learn-
ing and computing education research.

34 E. Kaila et al.

Programu vizualizavimo priemoné: poveikis mokymui, patirtis ir
studentu atsiliepimai

Erkki KAILA, Teemu RAJALA, Mikko-Jussi LAAKSO, Tapio SALAKOSKI

Laikoma, jog pradedanciuosius mokant programavimo pagrindy naudinga taikyti programu
vizualizavimo metoda. Taciau téra labai nedaug tyrimy apie $io metodo poveiki. Turku universitete
buvo sukurta programuy vizualizavimo priemoné, pavadinta VILLE. Straipsnyje supaZindinama su
Sios priemonés poveikio tyrimais, pateikiami nauji kokybiniai duomenys: studenty, naudojusiu Sia
priemone, atsiliepimai. Ir miisy tyrimy rezultatai, ir atsiliepimai rodo, kad programos vizualizavi-
mo priemoné VIiLLE gali buti veiksmingai naudojama pradedanciuosius programuotojus mokant
pagrindiniy programavimo savoku.

