
Informatics in Education, 2007, Vol. 6, No. 2, 255–268 255
© 2007 Institute of Mathematics and Informatics, Vilnius

Investigation of Q-Learning in the Context of a
Virtual Learning Environment

Dalia BAZIUKAITĖ
Department of Computer Science, Klaipėda University
Herkaus Manto 84, 92294 Klaipėda, Lithuania
e-mail: dalia.baziukaite@ik.ku.lt

Received: July 2006

Abstract. We investigate the possibility to apply a known machine learning algorithm of Q-learning
in the domain of a Virtual Learning Environment (VLE). It is important in this problem domain to
have algorithms that learn their optimal values in a rather short time expressed in terms of the
iteration number. The problem domain is a VLE in which an agent plays a role of the teacher. With
time it moves to different states and makes decisions which regarding action to choose for moving
from current state to the next state. Some actions taken are more efficient than others. The transition
process through the set of states ends in a final (goal) state, one which provides the agent with the
largest benefit possible. The best course of action is to reach the goal state with the maximum return
available. This paper introduces a way of definition of a rewards matrix, which allows the maximum
tolerance for the changes of a discounted reward value to be achieved. It also proposes way of an
application of the Q-learning that allows a teaching policy to exist, which maps the situation in the
learning environment.

Key words: learning algorithms, reinforcement, convergence, virtual environment.

1. Introduction

A virtual learning environment (VLE) is defined as the web-based application suitable
for information exchange between teacher and learner (Hobbs, 2002), as well as between
learners themselves. There exist another subset of VLEs that differs from the previous in
the ability of sequencing the curriculum. Those VLEs are known as adaptive (Kinshuk,
2002; Weber, 1997; Iglesias, 2003; Metcalfe, 2001; Baziukaitė, 2006). The adaptivity
is implemented in the systems based on the approach used in the ELM-ART II (Weber,
1997) adaptive tutoring system that supports learning programming in LISP. Another sub-
set of VLEs is intelligent environmets. Intelligent environments use methods of Artificial
Intelligence (AI) to solve the problem of student modeling and curriculum sequencing
(Iglesias, 2003). In an intelligent VLE the role of teacher is prescribed to the agent, who
makes decisions how to teach the learner depending on the experience presented to the
agent.

Reinforcement learning is the process during which the agent improves its behavior
in the environment (Sutton, 1998; Kaelbling, 1996; Gosavi, 2004; Littman, 1996) using

256 D. Baziukaitė

the experiences it has received from interacting with an environment. The experiences
have the form of tuple 〈x, a, y, r〉, with state x, action a, resulting state y and scalar im-
mediate reward r. The Markov Decision Process (MDP) model is a way of formalizing
the reinforcement learning problem. A finite MDP is defined by the tuple 〈S, A, P, R〉,
with a finite set of states S, a finite set of actions A, a transition function P , and a reward
function R. The optimal behavior for an agent in an MDP depends on an optimallity cri-
terion. The optimality criterion could be expressed as infinit-horizon expected discounted
total-reward (Sutton, 1998; Kaelbling, 1996) or infinit-horizon expected average reward
(Gosavi, 2004). For both cases the optimal behavior can be found by identifying the op-
timal value function defined recursively by

V ∗(x) = max
a

(
R(x, a) + γ

∑
y

P (x, a, y)V ∗(y)
)
, (1)

in the case of infinit-horizon expected discounted total-reward, where 0 � γ < 1 is a dis-
count parameter that controls the degree to which future rewards are significant compared
to immediate rewards, or by

V ∗(x) = max
a

(
R(x, a) − ρ∗ +

∑
y

P (x, a, y)V ∗(y)
)
, (2)

in the case of infinit-horizon expected average reward, where ρ∗ is an average reward.
Reinforcement Learning (RL) is a type of Machine Learning (ML), and is also a

branch of AI. It allows machines and software agents to automatically determine ideal
behavior within a specific context in order to maximize its performance. Simple reward
feedback is required for the agent to learn its behavior. This feedback is called a reinforce-
ment signal. There are many different algorithms that address this issue. RL is defined
by a specific type of problem, and all its solutions are classified as Reinforcement Learn-
ing algorithms. In the problem, an agent is supposed to decide the best action to select
based on its current state. When this step is repeated, the problem is known as a Markov
Decision Process.

RL allows the machine or software agent to learn its behavior based on feedback from
the environment. This behavior can be learned once and for all, or keep adapting as time
goes on. If the problem is modeled with care, some RL algorithms can converge to the
global optimum. This is the ideal behavior that maximizes the reward. This automated
learning scheme implies that there is little need for a human expert who knows about the
domain of application. As mentioned, there are many different solutions to the problem.
The most popular allow the software agent to select an action that will maximize the
reward in the long term, and not only in the immediate future. Such algorithms are know
to have infinite horizon. In practice, this is done by learning to estimate the value of a
particular state. This estimate is adjusted over time by propagating part of the next state’s
reward. If all the states and all the actions are tried a sufficient amount of times, this will
allow an optimal policy to be defined. The action that maximizes the value of the next
state is selected (Gosavi, 2004; Littman, 1996).

Q-Learning in the Context of a VLE 257

The next section shortly describes value iteration and policy iteration algorithms that
are used to solve the MDP problem. Section 3 will explain the Q-learning algorithm,
which is being investigated in the following sections. Section 4 presents a general sce-
nario depicting how the algorithm can serve in finding a policy for teaching a given
learner. Section 5 brings up results of the investigation and explains a discovered way
of convenient definition of a rewards matrix. Finally, we will conclude by summarizing
the achieved results and giving possible guidance to future work.

2. Markov Decision Processes

Eqs. 1, 2 are called Bellman’s equations for discounted reward and average reward case
correspondingly. In the rest of the paper we will concentrate on the case of the infinit-
horizon expected discounted reward. Bellman’s equation formalizes the overall goal of
the Markov Decision Process. The goal is to find a function, called a policy, which
specifies which action to take in each state, so as to maximize some function of the
sequence of rewards (Gosavi, 2004; Littman, 1996). Markov Decision Process is de-
fined by a set of possible states of the agent X = {x1, x2, . . . , xn}, a set of actions
A = {a1, a2, . . . , am}, a set of rewards R = {r1, r2, . . . , rn} and a transition probability
function P k

ij = Pr{xt+1 = y|xt, at}, where i, j = 1..n, i �= j, and k = 1..m. Here
the MDP serves as a way to solve the Reinforcement-learning problem. Reinforcement-
learning is the problem of getting an agent to act in the world (environment) so as to
maximize its rewards. The environment is modeled as a stochastic finite state machine
with inputs and outputs (Murphy, 2002). Bellman’s equation for defined MDP can be
solved using value iteration or policy iteration algorithms.

We rewrite the Eq. 1 in the form of recursive iterations as follows

V n+1(xi) = max
a

(
ri + γ

n∑
j=1

P k
ijV

n(xj)
)
. (3)

The value iteration algorithm solves the given MDP by computing V n(xi) for all i until
converged. The algorithm has converged when

max
i

∣∣V n+1(xi) − V n(xi)
∣∣ < ε.

The optimal policy is then defined as

arg max
a

(
R(x, a) + γ

∑
y

P (x, a, y)V ∗(y)
)
. (4)

258 D. Baziukaitė

Using policy iteration algorithm the π(xi) defines an action selected in the i’th state and
is called a policy. Then the algorithm solves the given MDP computing V n(xi) for all i

using π(xi) and finding

πk(xi) = arg max
a

(
ri + γ

∑
j

P k
ijV

n(xj)
)
. (5)

The algorithm keeps computing until πk = πk+1. If this condition holds the optimal
policy has been found. The algorithms of value iteration and policy iteration require an
explicit aproximation of R and P . Unlike those two algorithms, the Q-learning algorithm
allows an optimal policy to be found without explicitly aproximating R and P (Kaelbling,
1996; Gosavi, 2004). The Q-learning algorithm estimates the optimal Q function

Q∗(x, a) = R(x, a) + γ
∑

y

P (x, a, y)V ∗(y). (6)

Knowing the Q∗(x, a) the optimal value function is found from V ∗(x) = maxa Q∗(x, a).
Given the experience at step t 〈xt, at, yt, rt〉 and the current estimate Qt(x, a) the Q-
learning updates to the next step

Qt+1(xt, at) :=
(
1−αt(xt, at)

)
Qt(xt, at)+αt(xt, at)

(
rt+γ max

a
Qt(yt, a)

)
. (7)

Littman and Szepesvari (Littman, 1996) have shown that the Q-learning algorithm
converges to the optimal Q function with probability 1 over X × A.

3. Q-Learning Algorithm

Q-learning is value-iteration based on RL. An RL model consists of an environment, a
learning agent, a set of actions and a response from the environment. The knowledge base
of an agent is made up from Q-factors for each state-action pair. We can view numerical
values of Q-factors in terms of costs or rewards. In the first case the algorithm tends to
minimize Q-factors for each state-action pair, and in the second case it tends to maximize
them. Our case of application will be based on maximization of Q-factors.

Before learning begins, the values Q(x, a) for all states x and all actions a are set
to the same value. When the system is in a decision-making state x, the learning agent
examines the Q-factors for all actions in state x and selects the action x

′
with the mini-

mum Q-factor (if values are in terms of cost). This leads the system along a path untill
the system encounters another decision-making state (y). While traveling over this path,
i.e. a state-transition from x to y, which is simulated in the simulator, the agent gathers
information from the environment about the immediate costs incurred and the time spent
during the statechange. This information is used by the agent with the help of its learning
algorithm to update the factor Q(x, y). A poor action results in an increase of this value
while a good action that results in low cost causes the value to be decreased (or increased

Q-Learning in the Context of a VLE 259

if the value is in terms of rewards). Of course the exact change is determined by the al-
gorithm which is developed from the Bellman equation (Eq. 1, Eq. 2). In other words,
the performance of an action in a state serves as an experience for the agent which is
used to update it knowledge base. Thus every piece of experience makes the agent a trifle
smarter in its perception of the environment than it was before. As all state-action pairs
are encountered (theoretically an infinite number of times), the agent learns the optimal
actions in each state (Gosavi, 2004; Szepesvari, 1997; Jaakkola, 1994; Littman, 1996).

Now we come to a precise formulation of an algorithm. We will provide a version of
the learning algorithm for the infinit-horizon expected discounted total reward (Gosavi,
2004). This actually is a value-iteration for Eq. 1.

Algorithm. Q-learning for infinit-horizon expected discounted total reward.

For all states x and actions a

set Q(x, a) = 0.
Let iteration count k = 0.
Set discount factor γ to some value (0 � γ < 1).

While k < ITERMAXa do
1. Compute αk

b = NStateV isit

k

c
.

2. With probability 1
|A(x)| select action a in state x that maximizes the Q-

factor Q(x, a); otherwise choose a random (exploratory) action from
the set {A(x)\a}.

3. Simulate the chosen action. Let the next state be denoted by y and
r(x, a, y) denote the transition reward.

4. Update Q(x, a) by
Q(x, a) ← (1 − αk)Q(x, a) + αk(r(x, a, y) + γQmax(y, a)).

5. Set current state x to new state y; and increase k by k ← k + 1.
For each state x declare the action a, for which Q-factor is maximum

to be the optimal action.

Output: optimal policy.

a ITERMAX should be a large integer.
b αk is a learning rate.
c NStateV isit is the number of times the given state x is visited.

The Q-learning algorithm can be viewed as a stochastic process to which techniques
of stochastic approximation are generally applicable. The proof of the convergence of
Q-learning is available in (Jaakkola, 1994).

260 D. Baziukaitė

4. General Scenario for an Application

To solve the issue of training an agent to apply the optimal policy in order to teach a stu-
dent with the view of the largest benefit we apply the Q-learning algorithm. For that, we
need to describe our system in terms of Markov Decision Process (MDP). We introduce
four possible states of a Teacher agent.

The first possible state we entitle Beginner; the second, Preintermediate; the third, In-
termediate; and the fourth, Advanced, with the meaning that the agent knows the learner
has beginner, preintermediate, intermediate, and advanced knowledge levels in the de-
fined Curricullum (Baziukaitė, 2002; Baziukaitė, 2003; Baziukaitė, 2006). Actions that
the agent could take in each state are enumerated as follows: the first, give self-test with
feedback showing correct answers (A1); the second, give self-test with feedback (A2);
the third, give self-test without feedback (A3). The rewards that the agent gets after tran-
sition to the corresponding state are primarily defined as 0, 5, 10 and 20. The probabilistic
set of possible states of the agent is depicted in Fig. 1. Our goal is to find an optimal pol-
icy for the teacher in the terms of reinforcement learning, which will show the actions
of the teacher that are best to apply as a teaching method in order to maximize the fu-
ture rewards and to reach the goal state as quick as possible. In this case the goal state
is the fourth possible state of the teacher agent. Solving the given problem we apply the
Q-learning algorithm. After iterative computation the matrix of Q-factors is computed.

Fig. 1 shows the situation in transition between possible states. Transitions between
these states map the Markov property, which can be referenced in subsection 3.5 of (Sut-
ton, 1998). The probabilities shown on the arrows are only needed if the problem would
be solved using value iteration (see Eq. 3) or policy iteration (see Eq. 4) algorithms. In
order to solve this problem by applying Q-learning we have to specify rewards, discount

Fig. 1. The probabilistic set of possible states of the Teacher agent.

Q-Learning in the Context of a VLE 261

factor and compute the matrix of Q-factors. This matrix has a number of rows equal to
the number of the possible states of the agent and a number of columns equal to the num-
ber of actions available. In our case this is an 4 × 3 matrix. An action to take first in the
learning phase of the algorithm is defined stochastically by generating a random value.
This means that values of Q-factors in the matrix Q may vary in the different runs of the
algorithm. For example, after the routine run of the algorithm we got the following matrix
of Q-factors:

Q =

⎛
⎜⎜⎝

162.9087 0.0000 0.0000
0.0000 0.0000 176.9087
0.0000 186.9087 0.0000
0.0000 0.0000 186.9087

⎞
⎟⎟⎠ . (8)

There exist a set of parameters that controls the performance of the algorithm. This
set is defined by three elements

ParSet = {R, γ, α},

where R is a matrix of rewards the agent receives in each state, γ is a discount factor and α

is a learning rate. The given matrix of Q-factors was computed when R = {0, 5, 10, 20},
γ = 0.9 and ITERMAX = 30.

From this matrix we find the optimal value function V ∗(x), which defines the optimal
policy for our agent. Optimal value function selects the maximum Q-factors in each row
of the given matrix. The maximum Q-factor has a meaning that corresponding action
(the number of the column) is the best in the corresponding state (the number of the
row). According to the given Q-matrix the optimal policy for the agent is defined by the
mapping from states to actions π(x): X → A as is shown bellow.

π(x): X → A

1 (Beginner) 1(A1)
2 (PreIntermediate) 3(A3)
3 (Intermediate) 2(A2)
4 (Advanced) 3(A3)

(9)

5. Investigation and Results

Some routine procedures were performed in order to scrutinize the impact of given pa-
rameters to the convergence of the algorithm and provide some resulting conclusions.

Having in mind the domain of an application it might become important that algo-
rithm reaches the optimal values for each possible state in a small number of iterations
independently from a value assigned to the γ, when 0 � γ < 1.

Next, we present the results achieved by describing two interrelated experiments.
Experiment 1. How does the definition of matrix R impact the behavior of the algo-

rithm?

262 D. Baziukaitė

Fig. 2. γ = 0.2, R as defined in Eq. 10. Fig. 3. γ = 0.2, R = {0, 5, 10, 20}.

Fig. 4. γ = 0.4, R as defined in Eq. 10. Fig. 5. γ = 0.4, R = {0, 5, 10, 20}.

The rewards matrix R can be defined in two ways. It could be defined as a vector,
showing the reward value for each possible state, or as m × n × m dimension matrix,
where m is a number of possible states and n is a number of possible actions.

Experiment 2. How does the γ impact the convergence of the algorithm?
During this experiment we investigate the γ parameter value to the algorithm in the

given application. We compare results obtained by changing γ = [0.1, . . . 0.9].
Description of the experiments. We will compare results of the algorithm obtained

after the matrix R was defined in two ways we have just described. Let us remember the
possible actions that could be taken by the agent in each state. By A1 we denote action
in which agent initiates self-test with feedback showing correct answers, by A2 – self-
test with feedback and by A3 – selftest without feedback. The possible states of being
Beginner, Preintermidiate, Intermidiate and Advanced, for more simplicity, we define as
S1, S2, S3 and S4 accordingly. Then the defined matrix R4×3×4 will have a meaning as
is shown in Tables 1 and 2.

The tables should be read for example, if the learner is in a state Beginner and action
A1 is taken after which the learner moves to the state Beginner, then give a reward −1.
According to the Table 1, the rewards matrix R we define as is shown in Eq. 10.

Such a definition of R allows individual reward to be given depending on what had
happened after an action was taken. This way of definition looks more complex in com-
parison with a method with value vector, but, as the investigation will show, it allows
wanted properties to be achieved according to the rate of algorithm convergence.

Q-Learning in the Context of a VLE 263

Table 1

Definition of rewards matrix for current states S1 and S2

Resulting State Current State S1 Current State S2

Beginner (S1) action A1 reward −1 action A1 reward −2

action A2 reward 0 action A2 reward −1

action A3 reward 0 action A3 reward 0

Preintermediate (S2) action A1 reward 1 action A1 reward −1

action A2 reward 2 action A2 reward 0

action A3 reward 3 action A3 reward 0

Intermediate (S3) action A1 reward 2 action A1 reward 1

action A2 reward 3 action A2 reward 2

action A3 reward 4 action A3 reward 3

Advanced (S4) action A1 reward 3 action A1 reward 2

action A2 reward 4 action A2 reward 3

action A3 reward 5 action A3 reward 4

Table 2

Definition of rewards matrix for current states S3 and S4

Resulting State Current State S3 Current State S4

Beginner (S1) action A1 reward −3 action A1 reward −4

action A2 reward −2 action A2 reward −3

action A3 reward −1 action A3 reward −2

Preintermediate (S2) action A1 reward −2 action A1 reward −3

action A2 reward −1 action A2 reward −2

action A3 reward 0 action A3 reward −1

Intermediate (S3) action A1 reward −1 action A1 reward −2

action A2 reward 0 action A2 reward −1

action A3 reward 0 action A3 reward 0

Advanced (S4) action A1 reward 1 action A1 reward −1

action A2 reward 2 action A2 reward 0

action A3 reward 3 action A3 reward 0

Results of a routine investigation are presented in Figs. 2–9, where x axis is the it-
eration number and y axis represents the value of the Q-factor. We sign R∗ the rewards
matrix defined as R = {0, 5, 10, 20} and R the rewards matrix defined as is in Eq. 10.

Figs. 2–9 graphically depict the behavior of Q-factors curves for each possible state
when different γ values are taken. From these figures we can clearly see that if rewards
matrix is defined as R∗, then γ value becomes very important to the convergence rate of
the algorithm. For example, in Figs. 3–5 γ has small value (γ � 0.5), the Q-factor value
reaches its optimal value for each state approximatly in the 12th iteration. In the case
when γ > 0.5 (Figs. 7–9) it reaches those values only in the iteration with a very high

264 D. Baziukaitė

Fig. 6. γ = 0.7, R as defined in Eq. 10. Fig. 7. γ = 0.7, R = {0, 5, 10, 20}.

Fig. 8. γ = 0.9, R as defined in Eq. 10. Fig. 9. γ = 0.9, R = {0, 5, 10, 20}.

number (∼ 70 and higher).
The situation is completely different if rewards matrix is defined as R. In this case

the γ value no longer has such a big inpact to the convergence rate of the algorithm. This
allows the algorithm to learn optimal Q values in a small number of iterations in a given
problem domain, even having high γ values.

R(:, :, 1) =

⎛
⎜⎜⎝

−1 0 0
−2 −1 0
−3 −2 −1
−4 −3 −2

⎞
⎟⎟⎠ R(:, :, 2) =

⎛
⎜⎜⎝

1 2 3
−1 0 0
−2 −1 0
−3 −2 −1

⎞
⎟⎟⎠

R(:, :, 3) =

⎛
⎜⎜⎝

2 3 4
1 2 3

−1 0 0
−2 −1 0

⎞
⎟⎟⎠ R(:, :, 4) =

⎛
⎜⎜⎝

3 4 5
2 3 4
1 2 3

−1 0 0

⎞
⎟⎟⎠

(10)

After many routine checks we conclude that:

1. The definition of rewards matrix has a strong impact to the convergence rate of the
algorithm in the case of high γ values (0.5 < γ < 1).

2. High γ values makes convergence of algorithm slower, if R is defined as a vector.
3. The convergence rate of the algorithm remains uniform in the whole interval of γ

values, if R is defined as a m × n × m dimension matrix.

Q-Learning in the Context of a VLE 265

4. Small γ values (0 < γ � 0.5) do not affect the convergence rate in both cases of
definition of R.

PROPOSITION. The best choice for the current application would be to collect informa-
tion about the quality of the activity. The quality depends on happenings after accom-
plishing it. Depending on this the reward values in matrix R must change and an agent
should be trained in some time intervals or after some amount of rewards changes. After
an agent is newly trained the rewards changes count should be reset. In such a way the
policy that maps the situation in the learning environment is found.

Algorithm. Learning the policy

INPUT: initial Rm×n×m matrix.
rcount = 0a

DO Q-learning with initialR and γ = 0.9
WHILE true

IF learner li arrives THEN
BEGIN

observe state S∗b

apply action a∗ and observe state S
′ c

END
IF learner li MOVES to state S

′
> S∗ THEN

BEGIN
increase R(S∗, a∗, S

′
)

rcount = rcount + 1
END

ELSE
BEGIN

decrease R(S∗, a∗, S
′
)

rcount = rcount + 1
END

IF rcount == 20 THEN
BEGIN

DO Q-learning with R(:, :, :) and γ = 0.9
RESET rcount

END
END
OUTPUT: policy mapping the situation in the learning environment.

arcount is the number of times of rewards changes
bS∗ is current state
cS

′
is a state a learner moves to after the action a∗ was taken

266 D. Baziukaitė

6. Conclusion

The investigations done have shown that the behavior of the tutor could be modeled
applying the agent paradigm. For that purpose possible states, actions of an agent and
rewards it receives are introduced. The task of training the agent to apply the optimal
learning strategy is formulated as the problem of RL and the Q-learning algorithm is ap-
plied for finding such a policy. Some previous results are also published in (Baziukaitė,
2004).

The investigation of Q-learning algorithm has shown that the definition of rewards
matrix plays a great role in behavior of Q-factors curve that are computed for each pos-
sible state. A way of defining a rewards matrix as m × n × m dimension matrix, where
m is a number of possible states and n is a number of possible actions, is introduced.
According to the obtained results that come out after the routine experiments with the
algorithm, the following conclusions are formulated:

1. The definition of rewards matrix has a strong impact to the convergence rate of the
algorithm in the case of high γ values (0.5 < γ < 1).

2. High γ values makes convergence of algorithm slower, if R is defined as a vector.
3. The convergence rate of the algorithm remains uniform in the whole interval of γ

values, if R is defined as a m × n × m dimension matrix.
4. Small γ values (0 < γ � 0.5) do not affect the convergence rate in both cases of

definition of R.

As well, the pseudocode describing the flow of actions that allow to train agent to find
and apply optimal policy for teaching particular learner in the learning environment is
provided. The proposed way of an application of the Q-learning allows a teaching policy
to exist, which maps the situation in the learning environment.

References

Baziukaitė, D., A.A. Bielskis, O. Ramašauskas (2002). Applying adaptive learning principles for the e-studies.
Liet. Matem. Rink., 42(spec. issue), 214–218.

Baziukaitė, D. (2003). Concept of adaptive based virtual learning environment. In D. Rutkauskienė (Ed.), Pro-
ceedings of the International Conference TELDA’03. Kaunas University of Technology, Kaunas, pp. 63–66.

Baziukaitė, D. (2004). Making virtual learning environment more intelligent: application of Markov decision
process. Liet. Matem. Rink., 44(spec. issue), 797–801.

Baziukaitė, D. (2006). Approach to an adaptive and intelligent learning environment. In CISSE 2005 Proceed-
ings. Springer (accepted for publication).

Gosavi, A. (2004). Reinforcement learning for long-run average cost. European Journal of Operational Re-
search, 155, 654–674.

Hobbs, D.L. (2002). A constructivist approach to web course design: a review of the literature. International
Journal on E-Learning, April–June, 60–65.

Iglesias, A., P. Martinez and F. Fernandez (2003). An experience applying reinforcment learning in a web-based
adaptive and intelligent educational system. Informatics in Education, 2(2), 223–240.

Jaakkola, T., M.I. Jordan and S.P. Singh (1994). On the convergence of stochastic Iterative dynamic program-
ming algorithms.

Kaelbling, L.P., M.L. Littman and A.W. Moore (1998). Reinforcement learning: a survey. A Journal of Artificial
Intelligence Research, 4, 237–285.

Q-Learning in the Context of a VLE 267

Kinshuk, H.H., and A. Patel (2002). Adaptivity through the use of mobile agents in web-based student mod-
elling. International Journal on E-Learning, July–September, 55–64.

Levy, A.Y., and D.S. Weld (2000). Intelligent Internet systems. Artificial Intelligence, 118, 1–14.
Littman, M.L., and C. Szepesvari (1996). A generalized reinforcement-learning model: Convergence and ap-

plications. In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 310–318.
Metcalfe, A., M. Snitzer and J. Austin (2001). Virtual adaptive learning environment. In IEEE International

Conference on Advanced Learning Technologies (ICALT’01), Madison, Wisconsin, 06–08 August, pp. 7-10.
Murphy, K. (2002). Markov decision process toolbox for Matlab.

http://www.ai.mit.edu/ murphyk/Software/MDP/mdp.html
Szepesvari, C., and M.L. Littman (1997). Generalized Markov decision processes: Dynamic-programming and

Reinforcement-learning algorithms. Technical Report, CS-97-05, Brown University.
Sutton, R.S., and A.G. Barto (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge.
Weber, G., and M. Specht (1997). User modeling and adaptive navigation support in www-based tutoring sys-

tems. In A. Jameson, C. Paris and C. Tasso (Eds.), User Modeling: Proceedings of the Sixth International
Conference, UM97. Springer, Wien, New York, pp. 289–300.

D. Baziukaitė recieved her MCs degree in mathematics from Klaipėda University. Cur-
rently she is working towards her PhD degree in computer science and mathematics at
Klaipėda University. Her research is focused on adaptivity, intelligence, and decision
making processes in virtual learning environments. She is a member of the National As-
sociation of Distance Education and Lithuanian Society of Mathematicians.

268 D. Baziukaitė

Q-mokymosi algoritmo tyrimas virtualios mokymo(si) aplinkos
kontekste

Dalia BAZIUKAITĖ

Straipsnyje aptarta galimybė virtualios mokymo(si) aplinkos (VMA) s ↪alygomis taikyti Q-mo-
kymosi algoritm ↪a. Šioje taikym ↪u srityje svarbu turėti algoritmus, kurie apsimoko pakankamai grei-
tai, kai apsimokymo laikas yra išreikštas iteracij ↪u skaičiumi. Taikym ↪u sritis yra VMA, kurioje
programinis agentas atlieka kuratoriaus vaidmen↪i. Bėgant laikui agentas pereina skirtingas būsenas
priimdamas sprendim ↪a apie tai, koki ↪a veikl ↪a perėjimui ↪i nauj ↪a būsen ↪a reikia parinkti. Vienos veik-
los yra vertinamos geriau nei kitos. Perėjimo per būsenas procesas užsibaigia tikslo būsenoje, bu-
vimas kurioje agentui duoda geriausi ↪a sumin ↪e atlygi ↪u gr ↪až ↪a. Straipsnyje taip pat pristatytas atlygi ↪u
matricos apibrėžties būdas, kuris leidžia suteikti algoritmui aukšt ↪a tolerancijos laipsn↪i parametro
reikšmės, nusakančios atlygi ↪u nuvertėjimo ↪itak ↪a ateities būsenoms, pasikeitimui.

