Informatics in Education, 2007, Vol. 6, No. 1, 67-80 67
© 2007 Institute of Mathematics and Informatics, Vilnius

An lterative Methodology for Teaching Object
Oriented Concepts

Irit HADAR

Department of Management Information Systems, University of Haifa
Carmel Mountain, Haifa, Israel
e-mail: hadari@mis.haifa.ac.il

Ethan HADAR

Architecture and Shared Technology, HP Software
19 Shabazi Street, POB 170, Yehud 56100 Israel
e-mail: ehadar @hp.com

Received: December 2006

Abstract. Abstract thinking is a vital skill when learning computer science. Object technology and
the concepts it is based upon make this skill even more crucial. However, previous research works
show that students in top universities as well as experienced practitioners in industry encounter dif-
ficulties in thinking in abstract terms while practicing object oriented development. In this paper we
suggest an iterative teaching methodology for supporting students in learning object oriented con-
cepts. The suggested methodology is based on familiarizing students with modeling languages and
tools at the early stages of their learning and iterating between model and code. We theoretically
examine the contribution of modeling languages, in particular UML, to abstract thinking and con-
sequently to the understanding of object oriented concepts and present some observations acquired
during a trial execution of this methodology in a university course.

Key words: teaching object oriented, abstraction, visual models.

1. Introduction

Abstract thinking is a vital skill when learning computer science (CS). Object technology
makes this skill even more crucial: abstraction was identified as one of the eight main
quarks of object oriented (OO) development (Armstrong, 2006). Moreover, abstraction,
when referred to as “a mechanism that allows us to represent a complex reality in terms
of a simplified model so that irrelevant details can be suppressed in order to enhance
understanding” (Armstrong, 2006, p. 124), underlies other basic concepts of OO such as
class, object, encapsulation, inheritance and polymorphism.

However, research works in CS education have shown that students, in general, have
difficulty in practicing abstract thinking. They tend to remain at a low level of abstraction
when solving problems, caught in the details while missing the bigger picture (Aharoni
and Leron, 1997; Holmboe, 1999; Fleury, 2001; Bucci et al., 2001; Berge et al., 2003;
Hazzan and Hadar, 2005). Some of the common phenomena derived from this difficulty

68 |. Hadar, E. Hadar

are students’ tendency to focus immediately on the code rather than the design when
writing or reading a computer program; their tendency to focus on a single function or
module/class while neglecting the wider view of the system; and their tendency to avoid
using abstract classes. Moreover, a recent study (Hadar, 2004; Hadar and Leron, preprint)
examined the cognitive processes taking place in OO design (OOD) practiced by expe-
rienced software developers and identified similar phenomena of difficulties in abstract
thinking. Although these phenomena, as observed in the research on practitioners, were
somewhat less severe than in the case of students, they were still surprising by their firm
existence and extensiveness. This may imply that developing abstract thinking skills is
very challenging and difficult to achieve even after gaining education as well as practical
experience.

Observing the difficulties in thinking abstractly exhibited by both students and prac-
titioners, one may consider searching for a solution in changing the initial educational
path. Doing so may raise the following question: How can we provide abstract thinking
skills to novice students learning OO concepts?

In this paper we address this question and present an iterative methodology for teach-
ing OO utilizing both abstract representation and detailed programming experience. We
review the principles on which our teaching methodology is based (Sections 2 and 3);
present the iterative teaching methodology including practical detailed examples (Sec-
tion 4); explore some phenomena related to its execution (Section 5); and finally, con-
clude with some thoughts and questions for the future (Section 6).

2. Teaching Object Oriented Development

Many discussions have been conducted regarding the question whether to teach procedu-
ral programming first and only then OO programming (OOP), or to teach OOP from the
very start. The latter is known as the “object first” approach. However, Berge et al. (2003)
claim that even when teaching “object first”, the emphasis is put on the programming el-
ements instead of learning OO thinking as a tool for software development. They suggest
to start teaching modeling and design first, to provide students with wider perspective
of OO concepts beyond the technicalities of programming languages. Bennedsen and
Caspersen (2004) suggest a teaching approach adding conceptual modeling to the CS1
course, calling this a model-first approach; their focus is on elaborating OO concepts
using modeling, and translating the models to generic coding patterns.

While the model and design first approaches seem to emerge naturally from the prob-
lems presented, many studies in education show that the development of abstract concept
understanding is only possible after gaining vast experience and firm understanding of
the more concrete concepts (e.g., Leron, 1987; Dubinsky, 1991; Sfard, 1991; Aharoni
and Leron, 1997). Based on these reports it seems that no “shortcuts” to achieve abstract
thinking skills can exist.

Since both teaching approaches — abstract first and concrete first — have their relative
disadvantages, we seek to find a methodology utilizing the advantages of both approaches

An Iterative Methodology for Teaching Object Oriented Concepts 69

while avoiding, as much as possible, their disadvantages. Taking this into consideration
we suggest a teaching methodology that will be based on the following principles:

1. Supporting students in thinking abstractly in the earliest stages of learning OO,
with the aid of modeling languages and tools.

2. Applying an iterative teaching methodology constantly cycling between model and
code, namely high and low abstraction levels, to build a multi-aspect understanding of
the basic concepts of OO.

In the following sections we explain the nature and expected contribution of these
principles to the learning processes.

3. TheContribution of a Visual Modeling L anguage to Abstract Thinking

Modeling languages used for software design have several properties that potentially
make them useful and practical tools for supporting abstract thinking. In particular, we
examine the two following properties: abstraction barriers and visual representation.

Our demonstration utilizes the Unified Modeling Language (UML). UML has attained
the status of a de facto modeling language standard (Booch, 1999; Kobryn, 1999) and is
well known and widely used within the community of OO software development both
in industry and academia (Kobryn, 1999; Leroux and Exton, 2001). More specifically
to our context, UML was found to support the understanding of the “bigger picture”,
therefore, being an efficient means for understanding an existing software system (Hadar
and Hazzan, 2004); verifying software architecture’s fidelity and completeness (Siau et
al., 2001) and finding deficiencies in OOD (Laitenberger et al., 1999). Particularly, we
find the two aforementioned properties supporting abstract thinking to exist in UML.

3.1. Abstraction Barriers

Setting abstraction barriers is an important tool in design (Leron, 1987) and specifically
for understanding the abstract concepts of OO paradigm (e.g., class, abstract class, en-
capsulation, polymorphism, etc.). Abstraction barriers define a specific level of abstrac-
tion to be addressed at a given stage. Some design approaches are aimed at emphasizing
this particular aspect. For example, the Responsibility-Driven Approach (Wirfs-Brock
and Wilkerson, 1989) supports the increase of encapsulation during design, by focusing
first at the contractual responsibilities of a class, postponing implementation considera-
tions until a later stage.

By setting abstraction barriers, UML leads the developer to refer only to the details
appropriate to the abstraction level required at each stage or aspect of the development.
For example, when defining the system’s classes, the developer uses class diagram which
supports definitions of classes and their names, the associations among them and the dec-
larations of their properties and methods. However, there is no room in class diagram to
refer, for example, to the inner algorithmic aspects of these methods. This leads the de-
veloper to stay at the required abstraction level at this stage, referring to the relevant static

70 |. Hadar, E. Hadar

aspect of the system, without being distracted by the many details related to the imple-
mentation. As mentioned, students tend to refer to low abstraction levels at early stages
of the development, or when trying to comprehend an existing system, which leads them
to low quality results of developed artifacts or program comprehension. Applying a tool
that sets abstraction barriers (i.e., guides users to avoid relating to details not necessary for
the current stage) may lead to better understanding and performance in OO development
tasks.

3.2. Visual Representation

The syntax of UML is based on diagrams, thus functioning as a visual representation
of the system. A visual model is a simplified representation of a phenomenon, used to
support scientific exploration or explanation of the phenomenon (Gilbert et al., 2000).
In mathematics and natural sciences, and lately in CS as well, the importance of visual
models such as graphs and diagrams is well acknowledged for the understanding of ab-
stract terms and phenomena. While dealing with abstract concepts in CS, the use of visual
models, either mental or on paper, lowers the effort and abstract thinking skills needed to
understand it (Aharoni, 2000). Hendrix et al. (2000) empirically demonstrated that visual
models have a measurable contribution to understanding concepts and principles in CS.

We believe that using UML supports ad-hoc work at a high abstraction level as well
as the development of abstract thinking skills within this domain. This may release the
students’ thinking from “getting stuck” at the lower abstraction levels. However, we ac-
knowledge that abstract thinking needs to evolve on the basis of the understanding of the
concrete concepts. For these two aims we suggest to support students in acquiring both
concrete and abstract thinking skills using an iterative teaching methodology.

4. The lterative Teaching M ethodology

The iterative concept is based on successive sessions of abstract modeling and detailed
implementations by coding. By using a CASE tool, the lecturer initially draws the funda-
mental entities’ shapes and their associations, discusses their theoretical meaning, gen-
erates the code automatically to demonstrate the code shell (class name, methods etc.)
and concludes with inner detailed code insertion. After generating the code and viewing
abstract as well as detailed levels (diagrams and code) on the same screen, the students
are expected to absorb the equivalence of the two views and become familiar with the
simplified abstract representation.

In what follows we demonstrate the suggested strategy for teaching the OO concepts:
Responsibility, Message Passing, Encapsulation, Generalization and Functionality Ex-
pansion. For the sake of clarity, in this paper we chose to use Magic Draw 11 as our
CASE tool, and Java as the programming language.

An Iterative Methodology for Teaching Object Oriented Concepts 71

| Ouripiat | Mipseagel sriory .
 e———— -SlisgTolispesy . Shirg = Helo Vaorks
| =[anplahies smsapat , v T P

Fig. 1. Abstract representation of a responsibility division.

4.1. Teaching the Principle of Responsibility Division

The goal of teaching the principle of responsibility division between objects and their
methods of activation is targeted towards encapsulation and visibility. In this example the
responsibility is divided between the object objOutput from class Output, presenting the
graphical format of a string, and the object objMessageFactory from the class Message-
Factory, generating the string to be displayed.

The evolving maturity is iteratively presented to the students. At each cycle a new
concept is presented; the corresponding element is inserted at the UML diagram level; the
code is automatically updated with the class properties by using the CASE tool and the
internal details are manually added to the code. The two abstraction levels are presented
as interweaved environments, which later assist in conducting further detailed analysis
and design. The following example displays the abstract and concrete elements of this
iteration.

Abstract step. Drawing classes and determining their members. The abstraction bar-
rier focuses the students on the “separation of responsibility” (Fig. 1) and the concepts of
visibility (private, public) by means of structural class representation.

Concrete step. Automatically generating the equivalent representation of the static
class diagram to code:

Class Output {

public void DisplayMessage() {
)
)
Class MessageFactory {
private String StringToDisplay=“Hello World”;
public String GetString() {

}
}

The separation of responsibility is implemented in a closed UML box as well as the
parenthesis { } definition. However, the difference between the method and class scope,
while may be confusing in the programming notation, is very clear within the UML no-
tation due to separate visual representations. It is located in different boxes with relative
names, which leads to the understating of the next notion of encapsulation.

4.2. Teaching the Concepts of Message Passing, Encapsulation and Request for Service
Abstract Sep 1. Adding the “who uses who” relation to the class diagram demonstrates

the abstraction barrier of dependency relations on class diagram (Fig. 2), and illustrates
the dependency (uses) notion.

72 |. Hadar, E. Hadar

apt] [TRREEE—

| = |

Fig. 2. Abstract representation of a dependency between classes example.

Abstract Step 2. The sequence diagram’s abstraction barrier relates here to behavioral
message passing between objects. It illustrates the concept of serviceand the notion of in-
sanitation in order to provide a service (Fig. 3). This enables discussing message passing
without considering the structural decomposition of each object.

Concrete step. After the generated signature of the classes is created by the CASE
tool, the inner implementation of the DisplayMessage method is programmed by the
lecturer within the IDE (integrated development environment) tool.

public void DisplayMessage() {
MessageFactory objMessageFactory =
new MessageFactory () ;
String stringForMe=
objMessageFactory.GetString () ;
System.out.println(stringForMe) ;
}

From this point on, the lecturer can iterate between changing the default values of
the display string and adding a different implementation for the display such as creating a
graphical message box using the alert command. This example demonstrates two notions:
the code level encapsulation concept and information hiding of an abstract model. It is
important not to change the actual meaning of the diagrams in order to emphasize the
differences between the abstraction levels of model and code.

.. rerwsagrt asfon - e sapref acisy

i Ty

Ehmg Ml s
iy [| =

e ey

Fig. 3. Abstract representation of a service.

An Iterative Methodology for Teaching Object Oriented Concepts 73

4.3. Teaching the Concepts of Generalization and Functionality Expansion

Abstract Sep. This step illustrates the direction of generalization which is the direction
of the UML arrow (Fig. 4). The basic example of the relation between classes sub and
Super, With relevant functionalities: DoSubThing and DoSuperThing. This means that
when an object is created from the sub class, it “searches” for the requested behavior or
property within the class code it was instantiated from. If the requested service is not
defined at this class level, it is being directed according to the generalization UML arrow
to its super class. This way, the concept of dynamically finding the behavior is quickly
comprehended: just “follow the yellow brick (generalization arrows) road”, until you find
the requested behavior, and execute it.

The abstract steps are divided into two phases: the “finding the behavior” road and
the viewing the accumulated available behavior of a class using a CASE tool. We first
present the Super class methods (Fig. 5) followed by the Sub class methods (Fig. 6).

The students are presented with the two different sections of the CASE tool; the upper
section with the title “General” was originated by the sub class and the one with the title
“Inherited” was generated by the super class.

REe= st s T e Rl I

L Denpirthin (=¥ |
Fig. 5. Magic Draw’s representation of internal methods of the Super class.

......

i ey

5

& [y e Thirg H s

E

Fig. 6. Magic Draw’s representation of internal and inherited methods of the Sub class.

74 |. Hadar, E. Hadar

Lo ¥ Tarwm
T
GRS eV]
L W T T

Ers——
Ty S Mg
infreresimit g Nrgo

=
{
| {
Doy v G Thnges |

Fig. 7. Visibility (Private, Public, and Protected) and multilevel generalization.

Concrete Sep. Automatically generate the code that illustrates these methods:

public class Super {
public void DoSuperThing() {
}

}

public class Sub extends Super {
public void DoSubThing() {
}

}

The students are referred to the keyword extends (Java) and are explained its resem-
blance to the UML arrow. Notice that the term “extends” may cause problems in cases
where the sub class does not add extension, but rather overrides behavior, or is used for
polymorphic purposes. Next, we iterate and insert the visibility properties of elements,
namely the public, private and protected (Fig. 7). Different visibility attributes are added
to the functions, as well as a higher super class named GrandClass.

Concrete Sep. Using the CASE tool automatic code generation.

public class GrandClass{
public void DoGrandThing() {
}
private void DoPrivateGrandThing() {
}
protected void DoProtectedGrandThing() {
}
}
public class Super extends GrandClass{
public void DoSuperThing() {
}
private void DoPrivateSuperThing() {
}
protected void DoProtectedSuperThing() {
}
}
public class Sub extends Super{
public void DoSubThing() {

An Iterative Methodology for Teaching Object Oriented Concepts 75

}

private void DoPrivateSubThing() {

}
}

The goal of this example is to show the automatic additions of behavior when ex-
tending a base class. By using a walkthrough conducted by the lecturer, it demonstrates
direction of locating a behavior. Naturally, assuming there are no overriding or non-
polymorphic duplicated methods, as this example exhibits.

5. Applying the Iterative Teaching Method: a Case Study

The iterative teaching method was applied during an “Introduction to Software Engineer-
ing” course, taught by the second author, at the section of the course related to OO. The
students participating in the course had taken a C language course and a four-lessons
introduction to C++ concepts during the previous year. The number of students partici-
pating in the course was 20, all from the Department of CS at the University of Haifa,
during the third semester of their studies.

5.1. Applying the Iterative Teaching Method

The iterative teaching method was initially applied due to a time constraint. A serious
condition was identified where the students were supposed to be familiar with the basic
concepts of OO implemented with C++. However, when trying to perform a basic exercise
in the beginning of the course, the students exhibited confusion and difficulties in using
fundamental OO concepts. Among the difficulties observed were:

e Misusing aggregation and generalization. For example, constructing functional ex-
pansion only by using generalization. This led to generation of many overridesand
overloads instead of combining basic service consumptions via aggregation.

e Abusing the usage of polymorphism. For example, creating huge sized classes
(without using the Liskov substitution rule). This caused under-usage of classes’
interfaces or misusage of abstract classes and their virtual substitution.

e Misunderstanding coupling and dependencies. Leading, for example, to incorrect
message passing due to duplicated methods naming, erroneous separation of re-
sponsibilities of the designed classes and separation of data from behavior, gener-
ating high coupling.

e Low cohesion. Many cases were observed in which the classes included a mere col-
lection of functions without any commonality or inner dependencies. When asked
on the nature of encapsulation, the students replied with the visibility argument of
preventing access to service: public, private, protected. However they rarely em-
ployed common usage of private functions among several public interface ones.
The objects were loaded into the memory and then destroyed, merely for the us-
age of a single public function which does not require any object state, private or
inherited behavior.

76 |. Hadar, E. Hadar

This situation called for finding a quick and effective way to teach the essential OO
concepts in no more than 3 sessions, each of 4 hours, in order to reach a point where the
students would be able to produce adequate artifacts for OO exercises. Achieving this
goal was crucial before proceeding with the remainder of the course.

The lecturer decided to use the CASE tool provided for this course (Rational Rose)
and started using it from the very start: teaching a concept, modeling, generating the
respective code, and constantly synchronizing between the two views. This process was
applied for each basic OO concept according to the principles presented in the previous
section.

5.2. Evaluation Tools

As this was a single case study conducted mainly to qualitatively explore phenomena
related to this experience of applying the iterative teaching methodology rather than sta-
tistically corroborating a hypothesis, our evaluation tools were chosen accordingly. Nev-
ertheless, some comparison with other courses has been made, under reservations, as will
be later elaborated. The evaluation tools for this study included:

1. The final test of the course.
The test examined the students’ understanding of the studied OO concepts and their
ability to correctly use and implement these concepts.

2. A position questionnaire regarding the quality of the course.
This questionnaire evaluated, among other things, the students’ position regarding
their general satisfaction from the course, whether they found the course useful and
whether they thought it was interestingly taught.

3. Interviews with students, focusing on the iterative teaching methodology and its
perceived contribution.

The quantitative outcomes obtained via the two first evaluation tools were compared
to the respective outcomes of the same tools gathered in three other similar courses taught
in the CS departments of three different universities (one of which was the university
where the current course took place). In these three courses the iterative teaching method
was not applied. All four courses (including the one presented in this case study) were
taught by the same lecturer. The outcomes of the interviews and the textual data from
the tests were qualitatively analyzed in order to understand how this approach affected
students’ perception and understanding of the material taught.

5.3. Results

The test given to the students in all four courses was similar in content-mixture and diffi-
culty level. This was assured by the lecturer’s test generation method. The lecturer holds
a large bank of questions related to the course’s content, where the questions are catego-
rized according to issue and difficulty level. When constructing a test, the lecturer selects
the questions according to fixed parameters of mix relations among issues and difficulty
levels.

An Iterative Methodology for Teaching Object Oriented Concepts 77

The iterative teaching method was aimed at closing the gaps in the students’ existing
knowledge. One analysis conducted to examine whether this was achieved was by com-
paring the test grades in this course to the test grades in the other three courses. However,
this comparison needs to take into consideration that the students in the iterative course
were less advanced than the students in the other (control) courses.

The students in the iterative course (noted at Fig. 8 as the | course) were university
computer science students in their third semester, after two programming courses (one in
C and one in C++).

All students in the three control courses were students during their fifth semester, after
having had at least four OO related courses. The three control groups differed from each
other in the university type and their study track. The first control group (U1) was in a
prestige technology and science institute, in the computer science faculty, software engi-
neering track. The second control group (U2) was in an academic college in the school
of computer science, software engineering track. The third control group (U3) included
computer science students in the same university and the same department (computer
science) where the iterative course took place.

The relevant grades and their standard deviations are presented in Fig. 8. The iterative
course average grade was 75.5, while the other courses’ average grades were 72.4, 77,
and 83.1. The highest average grade was achieved at the university where the general
students’ achievement profile is considerably higher with comparison to the others.

As can be seen, the students’ average achievements in the iterative course were within
the grade scales of the other courses. Therefore, one may conclude that the boot-camp
succeeded in closing the gap in a short time, bringing these second year students to similar
level of OO understanding as their peers achieved in their third year.

It is important to note that this comparison between the courses should be considered
with much caution: while some variations were carefully controlled (e.g., the same lec-
turer taught all four courses and all courses were conducted in CS departments), some
were not (e.g., different universities). This may give an initial indication that the sug-
gested iterative teaching methodology is effective, however, a more comprehensive quan-
titative research needs to be conducted in order to further generalize this conclusion.

Gradas snd Stsndand Devixfon
q
1
-]

CiParein Cowrses

Fig. 8. Courses test grades comparison. The | course stands for the iterative
teaching course, the U1, U2, U3 markers stand for the other courses;
the | course and the U2 took place at the same university.

78 |. Hadar, E. Hadar

The results from the questionnaires showed a very high level of student satisfaction
from the course in which the iterative teaching method was applied. Moreover, this course
was selected as the best course taught in the department that semester, receiving the high-
est total course grade according to the university courses quality questionnaire, i.e., 4.89
out of 5. Specifically, in the “interesting teaching” section it received 4.95 and in the “co-
herent and clear teaching” section it received 4.68 out of 5. Both grades were at the top
level of the university. The university’s average of courses grades that semester was 4.43
with standard deviation of 0.41 out of 377 courses. In the other three courses, where the
iterative teaching method was not applied, the range of the courses’ satisfaction grades
was 3.7-3.9.

The analysis of the interviews indicated that the students generally believed that this
teaching method helped them significantly in their understanding of OO concepts and
principles. Following are a few examples of the students’ statements related to this issue.
“This method makes it very easy to browse and understand the ’tons’ of information
required for OO courses”; “l don’t understand why we were not using these tools from
the start [previous courses]. The usage of the CASE tool assists considerably in ’seeing’
and understanding the complex issues that we learned”; “The dual view of diagrams and
code helps us focus and understand how the program should be constructed. It is easy to
see a mistake such as high coupling or wrong decisions”.

The textual analysis of the tests indicated that the basic difficulties identified in the
beginning of the course were overcome: the students used the principles of aggregation,
generalization and polymorphism properly; the levels of cohesion in their solutions were
improved and the objects’ responsibilities were well defined. We do not imply of course
that the solutions were perfect, merely that a basic OO concept understanding has been
achieved.

5.4. Case Sudy Discussion

The case study presented in this section relates to a single course of 20 students. Dur-
ing this course the motivation for a highly effective and efficient teaching method arose
for resolving an ad-hoc crisis (namely, the absence of the knowledge that the students
were expected to have); the new iterative teaching method was applied and its effect on
students’ understanding was explored. While further research needs to be conducted in
order to obtain conclusions that may further be generalized, we find the results of the case
study presented here as encouraging to follow this direction.

6. Conclusion

In this paper we presented a methodology for teaching OO concepts using an iterative
approach cycling between visual representation and detailed code, utilizing a CASE tool.
We found this iteration between abstract visual models and concrete implementation ef-
fective in focusing students on the different aspects of OO basic concepts. Instead of
deciding whether to teach programming or model first, we propose to teach them both

An Iterative Methodology for Teaching Object Oriented Concepts 79

in parallel, alternating between these two views. Consequently the development of both
skills — programming and design, namely concrete and abstract thinking respectively
— will be simultaneously encouraged. Moreover, we propose to use visual modeling as
the universal language of design, whereas the selected implementation language serves
merely as an example. Thus, it becomes easier to transfer the implementation knowledge
among the various programming languages, while maintaining the core concepts of OO
as mathematical axioms.

We believe that the iterative methodology for teaching OO concepts may be a step
in the right direction towards supporting the development of students” abstract thinking
skills, thus improving their OO concept understanding. Future research may quantita-
tively study the effect of the suggested methodology on the learning processes. An addi-
tional direction of research may explore the application of teaching methodology iterating
between different abstraction levels to additional areas in CS and software engineering.

References

Aharoni, D. (2000). What you see is what you get: the influence of visualization on the perception of data
structures. In T. Nakahara and M. Koyama (Eds.), Proceedings of the 24th Conference of the International
Group for the Psychology of Mathematics Education (PME24), vol. 2. Hiroshima University, Hiroshima,
pp. 2-1-2-8.

Aharoni, D., and U. Leron (1997). Abstraction is hard in computer-science too. In E. Pehkonen (Ed.), Pro-
ceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education.
University of Helsinki, Lahti, Finland.

Armstrong, D.J. (2006). The quarks of object-oriented development. Communications of the ACM, 49(2), 123—
128.

Bennedsen, J., and M.E. Caspersen (2004). Programming in context —a model-first approach to CS1. In SGCSE
Technical Symposium on Computer Science Education. pp. 477-481.

Berge, O., R.E. Borge, A. Fjuk, J. Kaasbyll and T. Samuelsen (2003). Learning object-oriented programming.
Paper presented at the Norsk I nformatikkkonferanse (Norwegian Informatics Conference).

Booch, G. (1999). UML in action. Communications of the ACM, 42(10), 26-28.

Bucci, P, T.J. Long and B.W. Weide (2001). Do we really teach abstraction? In SGCSE Technical Symposium
on Computer Science Education, pp. 26-30.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced
Mathematical Thinking. Kluwer, Netherlands, pp. 95-123.

Fleury, A.E. (2001). Encapsulation and reuse as viewed by Java students. S GCSE 2001, 2/01, 189-194.

Gilbert, J.K., C.J. Boulter and R. Elmer (2000). Positioning models in science education and in design and
technology education. In J.K. Gilbert and C.J. Boulter (Eds.), Developing Models in Science Education.
Kluwer Academic Publisher, pp. 3-17.

Hadar, 1. (2004). The Study of Concept Understanding via Abstract Representation: The Case of Object Ori-
ented Design. Research thesis for Ph.D. Israel Institute of Technology, Technion.

Hadar, 1., and O. Hazzan (2004). On the contribution of UML diagrams to software system comprehension.
Journal of Object Technology, 3(1), 143-156.

Hadar, 1., and U. Leron (to be published). How Intuitive is Object Oriented Design? (preprint). To be published
in Communications of the ACM.

Hazzan, O., and I. Hadar (2005). Reducing abstraction in graph theory. Computersin Mathematics and Science
Teaching, 24(3), 255-272.

Hendrix, D.T., J.H. Cross Il, S. Maghsoodloo and M.L. McKinney (2000). Do visualizations improve program
comprehensibility? Experiments with Control Structure Diagrams for Java, SGCSE, March, 382-386.

Holmboe, C. (1999). A cognitive framework for knowledge in informatics: The case of Object-Orientation. In
ITICSE 99 Conference Proceedings, June, 1999. pp. 17-20.

80 |. Hadar, E. Hadar

Kobryn, C. (1999). A standardization Odyssey. Communications of the ACM, October, 42, 29-37.

Laitenberger, O., A. Colin, M. Schlich and K. EI-Eman (1999). An Experimental Comparison of Reading Tech-
niques for Defect Detection in UML Design Documents. NRC-CNRC, National Research Council Canada.

Leron, U. (1987). Abstraction barriers in mathematics and computer science. In J. Hilel (Ed.), Proceedings of
the 3rd Int. Conference for Logo and Mathematics Education.

Leroux, H., and C. Exton (2001). Visualising the execution of concurrent object-oriented programs dynamically
using UML. In WSCG’ 2001 — The 9th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’ 2001, February 2001.

Siau, K., L. Lee and J. Korhonen (2001). Use case diagram in requirement analysis: an empirical investigation.
In Proceedings EMMSAD’ 01. pp. VIII-1-VI1I-7.

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as
different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

Wirfs-Brock, R., and B. Wilkerson (1989). Object-oriented design: a responsibility-driven approach. In Pro-
ceedings OOPSLA 89, pp. 71-75.

I. Hadar is a lecturer at the Department of Management Information Systems at the
University of Haifa. Her research focuses on human aspects of software engineering:
cognitive processes of software development; the role and influence of visual models
in requirement engineering and software design; and human factors — organizational,
management, social and cognitive factors —and their influence on software quality. Irit has
her PhD from the Department of Education in Technology and Science of the Technion —
Israel Institute of Technology. Both her master and bachelor degrees are from the Faculty
of Industrial Engineering and Management of the Technion.

E. Hadar is a chief methodologist at HP Software. His responsibilities include the de-
velopment of new methodologies in software engineering, service oriented architecture
and object oriented technology, as well as conducting education and coaching sessions.
Prior to his current job, Ethan was a faculty member at Netanya Academic College, at the
Software Engineering Department. In parallel Ethan has more than 17 years of consulting
experience in mentoring R& D teams in design and software engineering related issues.
He holds a PhD degree from the Department of System Analysis and Operation Research
of the Technion — Israel Institute of Technology. Both his master and bachelor degrees
are from the Faculty of Mechatronics of the Technion.

| teracine metodologija mokant objektiniu koncepciju
Irit HADAR, Ethan HADAR

Abstraktus mastymas yra svarbus mokantis kompiuteriu mokslo. Kadangi kompiuterija i3
esmeés pagrista objektine technologija ir koncepcijomis, tai Sis igudis tampa netgi esminiu.
Ankstesni tiriamieji darbai teigia, kad studentai, besimokantys netgi geriausiuose universitetuose,
taip pat kaip ir patyre pramonés praktikai turi sunkumy vartodami abstrak€ius terminus, plétodami
objektines technologijas. Siame straipsnyje sitiloma iteraciné mokymo metodologija, kuri biity nau-
dojama mokant objektiniu koncepciju. Pateikta metodologija remiasi tuo, kad besimokantiesiems
siuloma susipaZinti su modeliavimo kalbomis ir priemonémis vos pradéjus studijas ir modeliai
siejami su jy programomis. Teoriskai nagrinejamas modeliavimo kalby ina3as, i$ dalies — UML,
paskui pereinama prie abstraktaus mastymo ir tada — prie objektiniu koncepciju supratimo. Straip-
snyje pateikta keletas stebéjimu, atliktu metodologijos bandymo metu ir mokant konkrety kursa
universitete.

