Informatics in Education, 2007, Vol. 6, No. 1, 153-162 153
© 2007 Institute of Mathematics and Informatics, Vilnius

Visualize and Open Up

Michela PEDRONI, Till G. BAY

Chair of Software Engineering, ETH Zurich
Clausiusstrasse 59, 8092 Zurich, Switzerland
e-mail: {pedronim,bay} @inf.ethz.ch

Received: December 2006

Abstract. Motivating students of the Nintendo generation for Computer Science can only be
achieved by providing them with an exiting and fresh CS1 course. The article describes the ex-
perience of redesigning the introductory programming course at ETH Zurich and shows how the
combination of state-of-the-art visualizations with open project assignments enlivens students’ en-
thusiasm for programming. It shows the setup and the involved libraries, provides example appli-
cations that were built in the course, and presents the data gathered in the evaluation of the open
assignment.

Key words: CS1, introductory programming, open assignments, visualization, multi-media.

1. Introduction

Today’s students are used to graphical programs; the levels are set by the computer games
they play in their spare time. Graphical and multimedia applications are what they want
to produce. Together with others (Guzdial and Soloway, 2002; Feldman and Zelenski,
1996; Becker, 2001), we believe that to “make CS courses fun” (Mahmoud, 2005) and
motivate students by using state-of-the-art graphics/multimedia libraries together with
freedom for creativity is critical to their success in learning.

Over the past three years, we have significantly changed the way we teach program-
ming to first semester CS students by taking a new approach, called the Inverted Curricu-
lum (Pedroni and Meyer, 2006). The Inverted Curriculum is an objects-first, component-
based approach relying on a large software framework with a strong visual aspect. Using
this approach, students start out as consumers of library components by using their ab-
stract interfaces, before they progressively discover the implementations. At the end of
the course, they are capable of producing similar software elements themselves. This re-
sults in a topic introduction that is outside-in, starting with the notion of object, method
call, and class interface, while the internals, such as control structures, local variables,
and assignments, are covered later in the course. The Inverted Curriculum allows stu-
dents to produce interactive graphical applications right from the start, taking advantage
of the power of provided libraries.

A project assignment on which students work in small groups over a period of 4—
5 weeks complements the course redesign. While in the first iteration of the course



154 M. Pedroni, T.G. Bay

(2003/2004) the project assignment specified in detail what kind of application the stu-
dents should produce, in the subsequent two iterations the project was completely opened
up. The main intentions of using an open project instead of small, controlled tasks were:

— Teamwork. Since teamwork is encouraged, students learn to collaborate with their
peers.

— Quality of code. Style, good design, and clean work are emphasized as students
need to use the code previously produced by advanced students to finish the project.

— Project development. Students experience all the phases of the project develop-
ment starting with the formulation of a project idea, defining the design of the
system, implementation, testing, and the delivery of the final product.

— Adaptation to skills. With the extreme diversity of student backgrounds in intro-
ductory programming, an immediate goal is to keep the course work feasible for
the students with little experience, while not boring the experienced programmers
of the class. The open project assignment helps to reach this goal since the tasks to
be done can be adapted to the capabilities of each of the teams.

— Creativity. Keeping the topic of the project open stimulates the imagination of the
students and allows for great creativity.

— Motivation. Learning to program is difficult and needs a lot of practice. Only if
students are motivated to invest the time, this can be achieved.

— Vigibility. The outcome of the project is entirely the students’ own merit; it is an
achievement they can be proud of and show to relatives and friends.

The idea of open project assignments is not novel, but only a few instructors have
reported on their experience with it. Sindre, Line, and Valvag (2003) let students freely
choose what kind of game they produce. Parberry et al. follow their example also using
games and state “[...] that the element of creativity, student morale, the quality of the
resulting games, and the outcomes all suffer when any kind of constraint is placed on
the game being developed” (Parberry et al., 2005). We agree with Parberry and believe
that we can and should go even one step further. We refrain from narrowing down the
domain of projects and therefore put no limitations to students’ creativity, thus motivating
exceptional results.

This paper presents the implementation of the open assignment and accompanies it
with the results and feedback gained. Section 2 describes the general setting and the li-
braries used during the course, while Section 3 explains the implementation of the open
project assignment. Section 4 expands on the results and feedback provided by the stu-
dents, and Section 5 presents the conclusions.

2. Setting
2.1. Course Setup

Since winter 2003 the Introduction to Programming course for first semester Computer
Science majors implements the ideas of the Inverted Curriculum. The number of students



Visualize and Open Up 155

that participated in the courses so far is approximately 600 (250 in 2003/2004%, 180 in
2004/2005, and 170 in 2005/2006).

Introduction to Programming is a mandatory 8 ECTS credits course for CS masters
and the only Computer Science course in their first semester. In the second semester, a
course called Data Structures and Algorithms is held as a follow-up to Introduction to
Programming. The other courses of the first semester are mostly math courses, laying the
basic knowledge for advanced studies in CS.

The course consists of seven weekly lessons, where four are plenary lectures held by
the professor and three are held in groups of up to 25 students by graduate and doctoral
student tutors.

The semester stretches over 14 weeks with Christmas break after week 9. We divide
the semester into two parts: the first part from week 1 to week 8 where students are
handed out weekly assignments that they are supposed to solve alone. In week 9 (before
Christmas break), students get the description for the project assignment which they solve
in small groups until the end of the semester. Furthermore, students solve up to three sit-
in assignments spread over the semester to help them assess their current status and get
a feeling on how they are performing compared to their classmates. All the handed in
weekly assignments, mock exams, and the project are corrected (but not graded) by the
tutors.

Instead of grading assignments in first-year courses, ETH has the policy that students
need to get a certificate to be admitted to the exam. The exam determines whether stu-
dents are allowed to move into their second year of study. It takes place after the second
semester toward the end of the semester break. To get the admittance certificate, students
need to do about 70-80% of the weekly assignments and mock exams (not necessarily
correctly, but showing a clear effort), and to submit the project assignment. While having
no grading during the semester is quite unusual, it allows even newcomers to program-
ming to take a long-term approach to learning and prevents them from getting obsessed
about their grades during the semester.

2.2. Technical Foundation

The technical building grounds of the course are the libraries used to develop the multi-
media applications. The approach focuses on the use of libraries early in the Computer
Science education. By using libraries that were written by others, students learn to read
code. This clearly is one of the most important skills an engineer of our field needs to
provide. A consequence of this activity is that programming patterns are studied in prac-
tice rather than in the abstract. By exploring the libraries, students see how others have
solved a problem.

The libraries provide a vast APl which makes them suitable for the open assignment.
Students can choose to use only the simple mini frameworks provided by the libraries,

1The number of students in 2003/2004 is exceptionally high. This is probably due to the fact that in 2001,
2002, and 2003 some of the Swiss high schools shortened the duration of high school by one year and thus had
two age-groups graduating at the same time.



156 M. Pedroni, T.G. Bay

or they can go for their full power. By using the mini frameworks, complexity remains
hidden and the students can concentrate on their own application design (e.g., they can
use a ready made keyboard handling framework). But if they want to do more, they can
use the finer grained and more complicated API that is also provided (e.g., they can devise
their own keyboard handling facility).

2.2.0.1. The two libraries used heavily in the courses are described in the following two
subsections. They are both mostly developed and maintained by the students. Many of
the students that worked with the libraries in their CS1 course, choose to contribute later
either as part of a thesis or voluntary work. These students thus help to improve the
quality as well as the capabilities of our foundation. Of course many of the students are
motivated to contribute to the libraries because of the bugs they have encountered when
using them.

2.2.1. EiffelMedia

Recently Carter (2006) has shown that the number one reason for boys to study Computer
Science is their interest in computer games whereas for girls it was the possibility to use
computers in other fields — in both cases one can argue that the visualization capabili-
ties are of great importance. EiffelMedia (Bay, 2006b) provides visualization capabilities
that are state-of-the-art and impress and motivate the students. As mentioned above, the
library is maintained together with the students and is open source. EiffelMedia has a
rich set of frameworks that allow building multimedia applications such as games like
Antworld shown in Fig. 1. The features of the library include 2D graphics, sound sup-
port, video decoding, 3D graphics, networking support, a widget toolkit and many more.

Fig. 1. Day and a night in Antworld.



Visualize and Open Up 157

TR
E

& Erearpws

B
=

L ]
ELE
L]
hinon s

Fig. 2. 3D model of a city in Traffic.

2.2.2. Traffic

The second library the course relies on is Traffic (Pedroni, 2006). Traffic models the
public transportation system of a city consisting of transport lines (e.g., metro lines, bus
lines, light rail) and places (metro stations, landmarks). It contains city modeling classes,
visualization facilities for the display of city maps and additional supporting classes for
building applications. Traffic comes with several applications: One of them — Flathunt —
is a strategy round-based game, others are either example applications to show certain
features of the library, or they accompany the textbook Touch of Class (Meyer, 2006),
currently under development. Both — Traffic and its applications — have been specially
developed for the use in classroom with the Inverted Curriculum. Traffic uses EiffelMedia
to visualize the city model.

Both of the libraries are particularly well suited for using in an open project because
they offer a wealth of functionality and highlight visualization and multimedia. With
this foundation, we feel comfortable to give students the freedom of an open project
assignment.

3. Procedure

For the open project assignment students were required to choose a partner of equal
strength, so that they could design their project idea to be challenging for both of them and
fitting their programming skills. In previous years, the number of students per group was



158 M. Pedroni, T.G. Bay

three, but this was changed to two students in 2005 to prevent organizational problems
such as code synchronization and task distribution among students.

Students used a wiki to organize their project. As a first task, each group generated a
new page for their project and a description of what their application should do. Using this
platform, they were able to discuss issues online, upload any of the intermediary results
(such as the documentation and source code), and — if interested — they could browse
other groups’ projects at any point.

We guided students by officially giving them two options in deciding on the project
idea: Option A was to implement an extension to Flathunt/Traffic or EiffelMedia with
examples of possible projects of reasonable size. Since the students had already been
using these libraries during the course, most of them chose this path. Option B was totally
open, telling them to do whatever they wanted with the one restriction that their idea had
to get approved by the tutor. As a result of the openness, almost every group was asking
approval from their tutor to also get feedback on the feasibility of their project.

As a consequence of timing problems that some of the students had in previous years
and feedback stating that the project description should emphasize the importance of the
software design phase, students had to meet four milestones. The first milestone was
due after a very short period of four days. For this milestone, they had to hand in a first
project idea and a description on the wiki. The next milestone was planned for right after
Christmas break where they had to give a more precise description of the requirements
and the task distribution among the partners. The third milestone followed one week later,
where they should provide a document describing the OO design of their system. The last
milestone was two weeks later (in the last week of the semester) and they had to hand in
the code and a short developer guide.

The project was complemented by having each group give a short presentation to their
tutors and fellow students during the exercise session of the last week of the semester.
In each of the exercise groups one of the projects was elected to be shown in a sub-
sequent event called the Object-oriental bazaar. The bazaar was the closing lecture of
the semester and was open to the public. Students were asked to invite their friends and
the department was encouraged to come and see what the first-semester students had
achieved. In a first round, the elected projects were presented to the curious public, but
the second half was devoted to all the projects where each group was present with a
laptop showing and explaining their projects to interested students, tutors, professors or
other guests. This happening was greatly appreciated by the students since they felt that
we valued their efforts.

During the project time, the plenary lectures held by the professor covered advanced
topics such as event-driven programming, an in depth discussion of data structures, and
an introduction to software engineering. The work for the professor stayed the same as
during the first weeks of the semester. For the tutors the project phase resulted in more
individual mentoring tasks which they generally tried to schedule during part of the three
exercise lessons per week. Since there were no weekly assignments during the imple-
mentation phase, the time that was needed initially for corrections of weekly assignments
could be used for answering the occasional e-mails with questions and for preparing



Visualize and Open Up 159

feedback on the projects. Most of the tutors appreciated the project phase because the
time spent with students was more interactive while the amount of work for them stayed
approximately the same.

4, Resultsand Student Feedback

The open project assignment of the course in 2005/2006 resulted in over 70 applica-
tions (Bay, 2006a). About 50% of these applications were games written with Eiffel Media
such as two Sudoku solvers, some Battleship implementations, the traditional Pong game,
spaceshooters or jump’n’run games. Another 25% were either extensions to Flathunt or
extensions to the Traffic library such as a multiplayer Flathunt, a timetable Traffic ex-
tension, or modifications of the existing game Flathunt. The remaining 25% were appli-
cations or libraries of any kind, such as an InstantMessenger, a math parser, a browser,
collection classes, or an RSS feed reader. The games usually came with 2D graphical user
interfaces, but also included five console applications, and a few games with amazing 3D
visuals, such as Antworld shown in Fig. 1.

The number of source code lines (not counting comments) produced by the students
in 2005/2006 ranged from 418 to 9744 while the number of classes ranged from 2 to 114
(see Fig. 3). The average amount of lines of code was 1885 while the average number
of classes was 17. Clearly, projects like Antworld (5891 loc, 65 classes) or Hoovercraft
(9744 loc, 114 classes) were beyond our expectations. The project with only two classes
was a “Connect four” console application and was chosen by the students to train con-
ditionals and loops. As such, this project served its purpose, and students learned much

120
L

Fesesereralt
100
" =i
@
w
L]
| & antworld
el
k]
&
_E guadro
E = * -
E - ¥y P
* *" -
20
L] i & *
*% *
L]
i
o 2000 00 BO0O B0 LINHZOH

lines of source code [(without comments)

Fig. 3. Lines of code and number of classes for the projects in 2005/2006.



160 M. Pedroni, T.G. Bay

by doing it, but it lacked a good object-oriented design. To ensure that students were
aware of where they needed to improve, each project group received feedback and we
encouraged them to continue their work by improving or redesigning their applications.

As part of the course evaluation, students stated whether they liked doing the project
stretching over several weeks. The overall answers were positive, the average grade al-
ways ranged from 3.9-4.0 points out of 5 for all three iterations of the course. In the
evaluations for 2004/2005 and 2005/2006, they also rated whether they appreciated be-
ing able to freely choose the project task. The mean grades for this question increased
significantly from 3.6 (in 2004/2005) to 4.5 (in 2005/2006) out of 5. The increase is
mostly due to the fact, that much work had been done on EiffelMedia in between itera-
tions and that we guided students more, thus improving their timing.

5. Conclusion

Motivating today’s students to learn programming is a challenge and can only be achieved
if the courses live up the expectations of the Nintendo generation. The combination of
state-of-the-art multimedia libraries with the freedom of open project assignments lets
students strive for excellent, innovative results, and reaches the ultimate goal: increased
motivation of students. Moreover, the approach allows adapting the level of difficulty
to the students’ prior knowledge and emphasizes the importance of code quality and
teamwork. We encourage open project assignments provided they are embedded in a
well structured course, a supportive environment, and a project framework that allows
the students to validate their progress.

References

Bay, T.G. (2006a). Collection of Games and Applications Built in csl.
Available online at: http://games.ethz.ch/.

Bay, T.G. (2006b). Eiffelmedia — the Multimedia Library for Eiffel.
Available online at: http: //eiffelmedia.origo.ethz.ch/.

Becker, K. (2001). Teaching with games: the minesweeper and asteroids experience. J. Comput. Small Coll.,
17(2), 23-33.

Carter, L. (2006). Why students with an apparent aptitude for computer science don’t choose to major in com-
puter science. In SGCSE ' 06: Proceedings of the 37th S GCSE Technical Symposium on Computer Science
Education. ACM Press, New York, NY, USA, pp. 27-31.

Feldman, T.J., and J.D. Zelenski (1996). The quest for excellence in designing cs1/cs2 assignments. In SGCSE
'96: Proceedings of the Twenty-Seventh SSGCSE Technical Symposium on Computer Science Education.
ACM Press, New York, NY, USA, pp. 319-323.

Guzdial, M., and E. Soloway (2002). Teaching the nintendo generation to program. Commun. ACM, 45(4),
17-21.

Mahmoud, Q.H. (2005). Revitalizing computing science education. Computer, 38(5), 100-99.

Meyer, B. (2006). Touch of Class— Learning to Program Well with Object Technology and Design by Contract.
Available online at: http://se.inf.ethz.ch/touch/.

Parberry, 1., T. Roden and M.B. Kazemzadeh (2005). Experience with an industry-driven capstone course on
game programming: extended abstract. In SGCSE ' 05: Proceedings of the 36th SIGCSE Technical Sympo-
sium on Computer Science Education. ACM Press, New York, NY, USA, pp. 91-95.



Visualize and Open Up 161

Pedroni, M. (2006). Traffic.
Available online at: http://traffic.origo.ethz.ch

Pedroni, M., and B. Meyer (2006). The inverted curriculum in practice. In SGCSE ' 06: Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education. ACM Press, New York, NY, USA.

Sindre, G., S. Line and O.V. Valvag (2003). Positive experiences with an open project assignment in an intro-
ductory programming course. In ICSE ’'03: Proceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society, Washington, DC, USA, pp. 608-613.

M. Pedroni is a PhD student and teaching assistant at the Chair of Software Engineer-
ing, ETH Zurich. Her main research interest and focus of her PhD topic is on issues
related to teaching object-oriented programming and defining curricula and courses. She
is the maintainer of Traffic, a library used to teach object-oriented programming to first
semester CS students. She joined ETH in 2003 after a master’s degree at ETH Zurich.

T.G. Bay is a PhD student at the Chair of Software Engineering. He is working on a dis-
tributed software development platform. He is the maintainer of a comprehensive mul-
timedia library — EiffelMedia. He joined ETH in 2003 after a master’s degree at ETH
Zurich and EPF Lausanne.



162 M. Pedroni, T.G. Bay

Vizualizacijair atvirumas
Michela PEDRONI, Till G. BAY

Motyvuoti Siuolaikinius studentus mokytis kompiuteriu mokslo galima tik sukurus idomuy ir
naujoviska kompiuteriu mokslo kursa. Straipsnyje apraSoma patirtis, kaip perkurtas programavimo
pradmeny kursas Ciuricho aukstojoje technikos mokykloje ir parodo, kaip derinant vizualizacijos
mena su atviryju projektu uzduotimis galima sukelti studentu entuziazma programuoti. Straipsnyje
apraSomas igyvendinimo procesas, raSoma apie konkre€ias programuotojo bibliotekas, pateikiamos
pavyzdinés kurse parengtos programos, pristatomi duomenys, surinkti vertinant atviraja uzduoti.



