
Informatics in Education, 2018, Vol. 17, No. 1, 77–92
© 2018 Vilnius University
DOI: 10.15388/infedu.2018.05

77

Computational Thinking in Primary School:  
An Examination of Abstraction and Decomposition 
in Different Age Groups

Wouter J. RIJKE1, Lars BOLLEN1, Tessa H. S. EYSINK1,  
Jos L. J. TOLBOOM2*

1Department of Instructional Technology, University of Twente, Enschede, The Netherlands
2Stichting Leerplanontwikkeling SLO, Enschede, The Netherlands
e-mail: w.j.rijke@gmail.com, l.bollen@utwente.nl, t.h.s.eysink@utwente.nl, j.tolboom@slo.nl

Received: December 2017

Abstract. Despite a growing effort to implement computational thinking (CT) skills in primary 
schools, little research is reported about what CT skills to teach at what age. Therefore, the re-
search questions that guide this study read: (1) How is age related to students’ success in com-
putational thinking tasks? (2) How are computational thinking tasks perceived by students? (3) 
How do students’ experience learning with respect to computational thinking? 200 primary school 
students between the age of 6 and 12 participated in this study. These students got introduced 
to two CT subjects: abstraction and decomposition. We found that age seems to be related with 
these concepts, with an interaction effect for gender in the abstraction task. No differences found 
between young and older students in the constructs perceived difficulty, cognitive load, and flow 
indicate that young primary school students can engage in learning these CT skills.

Keywords: computational thinking, abstraction, decomposition, primary school, programming, 
perceived difficulty, flow.

1. Introduction

In the Netherlands, there is increasingly more attention for computational thinking as one 
of the 21st century skills (Barendsen, Grgurina, & Tolboom, 2016; Thijs, Fisser, & Van der 
Hoeven, 2014), when compared to earlier stages (Grgurina & Tolboom, 2008). Computa-
tional thinking is a term first used by Papert (1980, 1996), and later by Wing (2006), and 
was used to describe the thought process of formulating problems and their solutions in a 
way that can be carried out by a computer. It is now more and more argued by educators 
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that computational thinking should be picked up not only by computer scientists, but by 
everyone: it can make everyday activities much more efficient, and might create a better 
understanding of today’s pervasive usage of computers and software (Lee, Mauriello, 
Ahn, & Bederson, 2014). Despite a growing effort to focus on computational thinking 
skills in primary schools, there are still no clear guidelines on what is the appropriate age 
to implement interventions to foster these skills.  This study aims to get insight into the de-
velopment of students’ computational thinking skills during their primary school years.  

1.1. Background

There has been done some research on computational thinking for young students, for 
example a study which evaluated the teaching of two programming topics (i.e., program-
ming and data representation) with twelve-year-olds (Duncan & Bell, 2015). In this study, 
it was suggested that teaching computational thinking skills would be most easy when 
combining these lessons with lessons about computer science. However, not all (primary) 
schools have the resources to provide laptops or desktops for all students. Although this 
phenomenon has led to a rise in unplugged teaching, which means teaching computer 
science without actual use of computers, the assessment of computational thinking is cur-
rently still mainly computer based (Fields, Searle, Kafai, & Min, 2012; Koh, Basawapat-
na, Bennett, & Repenning, 2010; Werner, Denner, & Campe, 2012). In addition, research 
on teaching programming to older students who have no prior programming experience, 
has shown that the programming concepts and theories are perceived very difficult, and 
in result programming courses often have a lot of dropouts (Robins, A., Rountree, J. and 
Rountree, 2003; Stachel et al., 2013). Students from these studies have difficulties under-
standing the abstract concepts that are encountered in programming.

One of the cornerstones of computational thinking is (problem) decomposition. De-
composition is used when a problem is too big or complex to solve at once, and when 
we know how to solve the subproblems effectively. Strategies are used to decompose a 
problem, since there are usually multiple ways of decomposing a problem. When plan-
ning on carrying out a large problem with a computer, decomposition becomes essential. 
When programming, a code is produced to carry out the command of the programmer. 
This code should be carried out by a computer step by step. These step-by-step instruc-
tions to get something done is called an algorithm. In a study about decomposition in 
an arithmetic setting, it was found that it is teachable for 5 to 6 year olds, when students 
are still developing their number sense (Cheng, 2012). In another study on the relation-
ship between computational thinking, teaching programming, and Bloom’s Taxonomy, 
decomposition was found to be the most difficult computational thinking skill to master 
(Selby, 2015). Selby found that one of the reasons for this, was that sometimes the prob-
lem to solve was not completely understood. Also, students appeared to understand the 
concept of decomposition, but struggled to implement the process in new situations. The 
Royal Society (2012) stated that understanding decomposition is a necessary condition 
before attending to the other cornerstones (i.e., abstraction, algorithm design, evalua-
tion, and generalizations). 
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Problem decomposition might be regarded as the most difficult computational think-
ing skill to master, abstraction is seen by various experts as the most important compu-
tational thinking skill (Hazzan, 1999; Kramer, 2007; Se, Ashwini, Chandran, & Soman, 
2015; Wing, 2006). It is stated that “the abstraction process – deciding what details we 
need to highlight and what details we can ignore – underlies computational thinking” 
(Wing, 2008, p. 3718). According to neo-Piagetian theory, people are thought to develop 
through abstract forms of reasoning, regardless of their age (Lister, 2011). 

The main aim of this study is to investigate the development of students’ decomposi-
tion and abstraction skills, so that more insight can be gained in what is the appropriate 
age for teaching these skills. In order to do so, we look at perceived difficulty, cogni-
tive load, and flow. When a task is consistent with the age of a child, it should not be 
perceived too difficult or too easy (Lehmann, Goussios, & Seufert, 2016). Such a task 
would ask cognitive capacity, but not too much (Mayer & Moreno, 2010). For opti-
mizing people’s cognitive capacity, we look at cognitive load theory (Sweller, 1994). 
This theory explains how cognitive capacity is a system interacting between processing 
information not directly related to the learning content and processing information deal-
ing with the inherent complexity of a task. The remaining capacity is used for actual 
knowledge building. When students have enough capacity left and they feel capable 
and challenged, a state of flow could occur (Csikszentmihalyi, 1975). Flow describes a 
state of mind in which a person is neither over challenged, nor under challenged, and is 
completely engaged in the task. Both the skill level and the difficulty of the task should 
increase simultaneously to maintain a level of flow. Measuring perceived difficulty, cog-
nitive load, and flow will give an indication if abstraction and decomposition are appro-
priate for young students.

The research questions that guide this study are as follows: 
How is age influencing students’ success in decomposition and abstraction (1) 
tasks?
How difficult (in terms of perceived difficulty, cognitive load, and flow) do stu-(2) 
dents perceive the decomposition and abstraction tasks? 
What are students’ perceptions of their learning experiences?(3) 

When looking at success of computational thinking in primary school in previous 
studies, there is no clear indication on what to expect from student’s computational 
thinking skill in relation to their age, flow level, perceived difficulty, or cognitive load. 

2. Methods & Materials

2.1. Participants

The participants were 200 primary school students (100 male, 100 female) ranging 
from first to sixth grade, with students as young as six, and as old as twelve years of 
age (M = 9.09, SD = 1.95). The study started with 210 students, but the 10 removed 
students could not participate in their respective task, so were removed from analysis. 
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In this study, a form of nonprobability sampling was used for selecting participants. The 
participants were collected from a total of six groups from two different schools; one 
large school located in a small-sized city, and an average-sized school in a mid-sized 
city in the Netherlands. The six groups were randomly assigned to one of the two condi-
tions. Participants were classified as young (everyone younger than 8 years old), middle 
(those between 8 and 10 years old), and old (everyone older than 10 years old). This re-
sulted in the distribution displayed in Table 1. The cut-off points for the age groups were 
based on the ages at which children are admitted to certain grades in primary school in 
the Netherlands (Onderwijsraad, 2005). All parents of the participants gave consent for 
participation of their children in this research project.

2.2. Design of the intervention 

For this research, two unplugged lessons were used as an intervention. In the UK, pri-
mary school teachers are supported in various ways to implement computational thinking 
skills. The Barefoot Computing project is one of those initiatives. On barefootcas.org.uk, 
teachers can download and co-operate in exemplar primary computing resources. The 
project provides workshops for teachers, with the aim to deliver new computing subjects 
with confidence, in addition to exemplar teaching activities. These activities focus on 
showing how computing and other subjects (e.g., math, English, and science) can be 
combined. In the current study, lessons from the Barefoot Computing project were used 
as an introduction into two computational thinking skills: abstraction and decomposition. 
In the abstraction task, originally recommended for 7 through 11-year-olds, the students 
worked in dyads. One of the students received a deck of sixteen cards, containing com-
mon, concrete nouns (e.g., ‘school’, ‘lamp’ or ‘cat’) that s/he had to sketch one-by-one, 
without skipping cards. The other student had to guess the word. In order to do so, students 
have to abstract the most important details of the concept, and ignore unimportant details. 
In the decomposition task, recommended for 5 through 11-year-olds, students created 
hand clapping, hand tutting, or hand jive sequences of movements. Students were asked 
to break the sequence of actions down into parts and in doing so, they were using their de-
composition skills. The students paired up and received a design sheet to document their 
movements. They were instructed to make as many decompositions as possible, and to 
make it clear enough that another pair from their class could perform their sequence with 

Table 1
Participant Distribution per Computational Thinking Skill and Age Group

Computational thinking skill Age group Total
Young 
(< 8 yrs)

Middle
(8–10 yrs)

Old
(>10 yrs)

Abstraction 43 26 46 115
Decomposition 23 42 20   85

Total 66 68 66 200
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only their design sheet.  Sets of eight (abstraction) and nine (decomposition) slides were 
used to guide the lesson. These slides contained examples, learning goals, and discussion 
topics, like how these skills are used when working with computers. The materials used 
in the lessons were displayed on the slides, as well as the discussion topics when discuss-
ing the role of abstraction and decomposition in programming, for computational think-, for computational think-
ing asks how we can use computers to solve problems. The applications of computational 
thinking are discussed, such as programming a game (Angry Birds and Candy Crush are 
mentioned), and how you have to abstract and decompose ideas and codes   in order to 
facilitate a computer to run your steps. Ultimately, computational thinking has applica-
tions in a wide variety of disciplines, like statistics, biology and economy. 

All materials used in the lessons were translated from English to Dutch by the re-
searchers. The researchers hereby used the steps provided by the World Health Organi- The researchers hereby used the steps provided by the World Health Organi-The researchers hereby used the steps provided by the World Health Organi-
zation (2007) to obtain a Dutch version of the lessons that was conceptually equal to 
the original. These steps comprised forward translation (to Dutch), expert panel back-
translation (with supervisors), and pre-testing (i.e., a pilot) before finalizing the eventual 
lessons. We accounted for socio-cultural dependent words (e.g., London) and changed 
them (e.g., Amsterdam) to accommodate to the target group. 

2.3. Measurements

The constructs ‘perceived difficulty’, ‘cognitive load’, ‘flow’, and ‘students’ perceptions 
and experiences’ were measured by a questionnaire (see  Appendix A). 

2.3.1. Perceived Difficulty
The questions about perceived difficulty were translated from the Perceived Difficulty 
Assessment Questionnaire, or PDAQ (Ribiero & Yarnal, 2010).  Perceived difficulty 
was measured by asking students to rate the task on a four-point Likert scale, with 
a higher number representing more perceived difficulty, on three aspects: difficulty, 
length, and clarity.

2.3.2. Cognitive Load
Cognitive load was measured by an adapted and translated version of the NASA Task 
Load Index (Hart & Staveland, 1988), consisting of five items measuring mental de-
mand, temporal demand, overall performance, frustration level, and effort by means of 
a five-point Likert scale, with a higher number representing more cognitive load. An 
example of an item was “How hurried or rushed was the pace of the task?” 

2.3.3. Flow
Flow was measured by items from the translated Flow Short Scale (Rheinberg, Vollmey-
er, & Engeser, in Eysink et al., 2015), consisting of nine items about how students expe-
rienced the task. Students rated the questions on a five-point Likert scale, with a higher 
number representing more perceived flow. This is adapted from the original, where a 
seven-point Likert scale was used and a higher number represented less perceived flow. 
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We decided a five-point scale would be more suitable for this target group. An example 
of one of the nine items was “I felt like I had everything under control”. The nine flow 
items (with five answer possibilities) were combined into one variable, with a number 
between 9 (no flow) and 45 (maximum amount of flow). The reliability as measured with 
Cronbach’s α, was .68 for young students, .78 for students in the middle group, and .86 
for the oldest students.

2.3.4. Perceptions and Experiences
The perceptions of the students’ learning experiences were measured by asking students 
to rate how much they liked the task on a five-point Likert scale, and by asking them to 
describe the lesson in one word. In addition, they were asked to grade the lesson on a 
scale from 1 to 10 (a standard way of grading in The Netherlands). Previous experience 
was measured by one item; “Did you ever carry out an activity like this before?”, with 
a “yes” or “no” answer option. A follow-up question was provided when “yes” was an-
swered; “If yes, then what did you do?”.

2.4. Data Analysis

To measure students´ success on the abstraction task, the number of cards a student 
could get their partner to guess right was counted. A student good at abstraction is as-
sumed to be  good at determining the important details to sketch and would have more 
cards guessed right by their partner than someone less skilled. To compare between 
ages, the number of cards guessed right was divided by the time on task.

Decomposition success was measured by the number of movements students created. 
A movement is defined as a separate drawing of a movement, different from the previous 
movement, and independent from the number of iterations. When decomposing their se-
quence, more skilled students would create more movements than less skilled students. 
Here too, the number of decomposed movements was divided by the time on task.

2.5. Procedure 

All lessons were given by the same researcher, to control for the influence of the teacher 
on the lessons. The lessons were given in the students’ own classroom, with the presence 
of their own teacher. Students were given a set time for their abstraction or decomposi-
tion task. After the lesson ended, students were asked to fill in the questionnaire on per-
ceived difficulty, cognitive load, flow, and their perceptions and experiences (Appendix 
A). Students from first grade (n = 49) did not fill in the questionnaire. This was decided 
after the pilot run, where students had too much trouble with reading (students start read-
ing in first grade), and the unfamiliarity with questionnaires. The first grade students´ 
artefacts (i.e., drawings and decomposed movements) did get analysed. 

The sampling procedures were approved by the Ethics Committee of the Faculty of 
Behavioural, Management and Social Sciences of the University of Twente.
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3. Results

3.1. Abstraction

Table 2 presents students’ mean scores and standard deviations on the abstraction task 
for students in the young, middle, and old group.  

A one-way ANOVA showed that there were differences between age groups on the 
abstraction task (F(2,112) = 40.901, p < .001, 𝜂��  = .42). Pairwise comparisons using the 
Bonferroni procedure showed that students in the old age group performed better than 
those in the middle age group (p < .001) and the young age group (p < .001), and stu-
dents from the middle age group performed better than those from the young age group 
(p = .004). A Pearson correlation also showed a moderate positive correlation between 
age (before grouping) and the abstraction task (r = .66, p < .001). This means that, on 
average, as students become older, more of their drawings in the abstraction task were 
guessed right by their peers. 

3.1.1. Perceived Difficulty, Cognitive Load, and Flow
We found no differences between age groups on the perceived difficulty items (i.e., 
difficulty, length, and clarity). Students who thought the task was very clear, expe-
rienced more flow (M = 39.65, SD = 5.28) than those who felt it was very unclear 
(M = 29.25, SD = 5.44, F(3, 85) = 8.688, p < .001, 𝜂��  = .24). Experiencing more flow 
did not lead to more success on the abstraction task (r = .114, p = .353). There were 
no differences on the other cognitive load items for students in the young, middle, or 
old age group.

3.1.2. Perceptions
There were no differences in the perceptions of the abstraction task for younger, mid-
dle, or older students. Students gave an average grade of 8.3 (SD = 1.8) on a scale 
from 1 to 10. Students (n = 15) who said to have done something similar before (prior 
experience), performed better (M = 2.69, SD = 1.57) on the abstraction task than those 
(n = 69) who had no prior experience (M = 1.83, SD = 1.32, F(1, 82) = 4.890, p = .03, 
𝜂��  = .06). 

Table 2
Cards Guessed Right per Minute on the Abstraction Task for each Age Group

Age group n M   SD 95% CI

Young 43   .60   .29   [.51,   .69]
Middle 26 1.46   .72 [1.16, 1.75]
Old 46 2.60 1.53 [2.14, 3.05]

Note. CI = confidence interval.
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3.2. Decomposition

Table 3 represents mean scores and standard deviations on the decomposition task for 
students in the young, middle, and old age group. 

A one-way ANOVA test showed that there were differences between age groups 
and students’ scores on the decomposition task (F(2, 82) = 40.480, p < .001, 𝜂��  = .50). 
Pairwise comparisons using the Bonferroni procedure showed that the older students 
(M = 1.01, SD = .39) performed significantly better than students in the middle age 
group (M = .50, SD = .15) and those in the youngest age group (M = .44, SD = .17). 
A Pearson correlation test also showed a moderate positive correlation between age (be-
fore grouping) and the decomposition task (r = .67, p < .001). This means that, on aver-
age, as students become older, they decomposed their sequence in more movements.

3.2.1. Perceived Difficulty, Cognitive Load, and Flow
As described in the procedure section (2.5), students from the first grade did not fill in 
the questionnaire. We found no differences in the perceived difficulty, cognitive load, 
and flow items between students from the middle age group and the oldest students. 
Students who considered the lesson to be short, experienced less flow (M = 30.86, 
SD = 7.13) than students who considered the lesson to be long (M = 37.65, SD = 5.18), 
as is shown by an ANOVA analysis (F(2, 62) = 4.111, p = .021, 𝜂��  = .12). When con-
ducting a univariate analysis of variance, we found an interaction effect between age 
and perceived length of the lesson (F(1, 58) = 4.976, p = .03). This means that the per-
ceived length of the lessons has an influence on the difference in decompositions made 
between different ages. 

3.2.2. Perceptions
Although on average, students graded the decomposition lesson with a high mark 
(M =  8.3, on a scale from 1 (very poor) to 10 (excellent), SD = 1.9), a difference was 
found between older students and students in the middle age group (F(2, 64) = 5.363, 
p = .007, 𝜂��  = .14). Pairwise comparisons using the Bonferroni procedure show that 
students from the oldest age group graded the decomposition lesson with a signifi-
cantly lower mark (M = 7.3, SD = 1.6) than those from the middle age group (M = 8.7, 
SD = 1.8, p = .013). The other between groups comparisons showed no significant 
differences.

Table 3
Decompositions Made per Minute for each Age Group

Age group n M  SD 95% CI

Young 23   .44  .17 [.37,   .52]
Middle 42   .50  .15 [.46,   .55]
Old 20 1.01  .39 [.83, 1.20]

Note. CI = confidence interval.
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3.3. Ancillary Analyses

3.3.1. Abstraction
After analysing the results that were linked to the research questions, supportive and 
exploratory analyses were conducted. A one-way ANOVA analysis showed that there 
were differences in the number of cards guessed in the abstraction task between males 
and females (F(1, 113) = 4.504, p = .036, 𝜂��  = .04). In addition, an interaction effect was 
found between gender and age group with respect to the scores on the abstraction task 
(F(2, 109) = 7.334, p = .001). This is displayed in Fig. 1. 

As the graph shows, male (M = .62, SD = .23) and female students (M = .58, 
SD =  .26) in the youngest age group tend to perform basically the same on the abstrac-
tion task. This is also the case for students in the middle age group (M = 1.44, SD = .76 
and M = 1.47, SD = .72, respectively). But when looking at the oldest students (older 
than 10 years old), female students (M = 3.26, SD = 1.62) outperformed their male peers 
(M = 1.87, SD = 1.06) significantly on the abstraction task F(1, 44) = 11.717, p = .001, 
𝜂��  = .21). In order to get a more detailed picture, Fig. 1b represents male and female 
scores on the abstraction task over age in years. The figure shows that around the age 
of 9.5 years old females started to surpass males on the abstraction task and their scores 
increased more rapidly than those of males.

3.3.2. Decomposition 
For the decomposition task, no interaction effect was found between gender and age 
group, as displayed in Fig. 2a. 

However, when age is represented per year (Fig. 2b), a more refined picture of the 
development becomes visible. When performing a univariate analysis of variance, an  

  

 

  

                                           (a)                                                                                      (b)

Fig. 1. Interaction effect between gender and age groups (a) and age (b) on the abstraction task.



W.J. Rijke et al.86

interaction effect between gender and age is found (F(5, 73) = 2.501, p = .04). Ergo, dif-
ferent results are found for males and females at different ages. Females did, however, 
outperform their male counterparts after the age of 11 (F(1, 14) = 7.643, p = .02).

Flow is moderately correlated with the grade students gave the decomposition lesson 
(r = .603, p < .001), which means when the grade they give the lesson becomes higher, the 
students experienced more flow. Understanding of the task was also correlated moderately 
with how much they liked the task (r = .509, p < .001) and the grade students assessed the 
lesson with (r = .571, p < .001). Thus, when students had a good understanding of the de-
composition task, they liked the task more and assessed the lesson with a higher grade.

4. Discussion

The aim of this study was to investigate from what age group lessons about decomposition 
and abstraction are appropriate. Three main findings are worth discussing in further detail. 
First, results show that students do not show the same level of abstraction skills across 
all ages, as expected. Older students were found to do better on the abstraction task than 
students in the youngest age group. This is largely in line with the results of Marini and 
Case (1994). They found that the capacity for abstract reasoning begins to appear at the 
age of 11 or 12. This follows Jean Piaget’s theory of cognitive development, in which 
he states that until the age of 12 children are still forming schemas, which make abstract 
reasoning difficult (Lister, 2011). According to Piaget, the cognitive development of 
abstract reasoning goes hand-in-hand with the biological maturation of the brain. When 
interpreting our results, we should acknowledge that we had no participants from fifth 
grade, and the small number (i.e., 15) of participants in the decomposition task for sixth 
grade. This resulted in 20 participants for the group of ‘old’ children who performed the 
decomposition task. This could lead to a bias of our results of this group. 

 

 (a) 
 

 (b) 

 

                                            (a)                                                                                    (b)
Fig. 2. The difference between age groups (a) and the development between gender and age (b) for the 

decomposition task.
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Second, during the ancillary analyses, it was found that after the age of 9.5 years old, 
female students begin to outperform their male peers on the abstraction task. A similar 
finding was reported by Statter and Armoni (2016), who found that “female students 
achieved better grades (…) in our abstract scale grading” (p. 83). Their study involved 
seventh graders (ages 13 to 14), with the main goal to develop an intervention to teach 
abstraction skills as early as possible. Also, using functional magnetic resonance imag-
ing (fMRI), girls between 9 and 15 years old have been found to show significantly 
greater activity in brain areas linked to abstract thinking through language than boys of 
the same age (Burman, Bitan, & Booth, 2008). Also, girls are believed to hit puberty ear-
lier than boys; a period linked to the development of abstract reasoning (Kipke, 1999). 

Results show a different pattern for performance on the decomposition task and age 
groups than on the abstraction task. No differences in performance on the decomposition 
task were found, neither between age groups, nor between males and females. However, 
when looking at students older than 11 years old, the number of decompositions made 
per minute more than doubled, and females began to outperform males significantly. 

What has to be taken into account, is the validity of the measurements used for ab-
straction and decomposition. These were not validated measures, by lack of any. The 
abstraction skills of the students were measured by the ability of a peer to correctly rec-
ognize their drawings of specified concepts. The underlying idea was that a student who 
is good at abstraction is able to determine which aspects are important and which are not, 
and, as a consequence, are able to quickly draw concepts that are easy to recognize. One 
could argue, however, whether other skills, such as drawing skills or creativity interfere. 
The same applies to the decomposition task, which might have been influenced by motor 
skills or the complexity of the selected sequence of movements. Further research should 
investigate whether other ways of measuring these skills would yield similar results. Also, 
12 year old students can be expected to perform on a higher level on the computational 
thinking tasks, simply due to more years of practicing these skills in every day life.

Third, for both tasks, there are no significant differences between age groups on per-
ceived difficulty, cognitive load, and flow. Also, there are no extreme scores on the per-
ceived difficulty items. The students did not perceive the tasks too difficult, or too easy. 
Students did not rate the cognitive load items very high, indicating that not very much 
cognitive capacity was asked from them. Also, flow was rather high in most students. 
These findings indicate that there are no signs to assume that children under 8 years old 
are too young to engage in learning these computational thinking skills, and that they 
can be challenged in doing so. For future research, however, we need to establish certain 
thresholds for these constructs a priori, to determine at what point we would consider 
these tasks inappropriate for a student’s age. 

In addition, cognitive load and flow were measured by self-reporting questionnaires, 
which might not be the most reliable way of measuring these complex constructs, es-
pecially with respect to the studied age groups (Logan, Claar, & Scharff, 2008; Mor-
tel, 2008). In our study, we did not find significant differences, but more qualitative 
measures, like interviews with the students, could provide other results. Other future 
research should focus on trying to design validated measures for computational think-
ing skills. These will become essential in assessing whether we succeed in our goals of 
implementing computational thinking in (primary) education. 
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5. Conclusions

The current study provides an indication of the minimum age at which lessons about 
abstraction and decomposition are appropriate, and contributes to the scarce collection 
of empirical studies on computational thinking. It was observed that students gradually 
become more skilled in abstraction tasks as they become older, with females following a 
steeper development than males after the age of 9.5 years old. With the upcoming desires 
to implement computational thinking skills earlier in the curricula, educators should ex-
pect a gradual development for both boys and girls. When students reach fourth grade, 
girls will likely start to distinguish themselves positively from boys on abstraction tasks. 
The availability of additional and more challenging materials would be desirable for this 
scenario. Some opponents feel like young children should not be exposed to more screen 
time, technology, or computers at all. We see that this argument is not valid when using 
unplugged, hands-on learning materials. The overall conclusion is that although infer-
ences should be made cautiously, abstraction and decomposition have a future in prima-
ry school curriculum, starting with the youngest students. Especially in upper primary 
education (grade 4 through 6), students start to make progress in their abstract reason-
ing. The current study underlines the current paradox when it comes to programming: 
a considerable shortage of women in the Science, Technology, Engineering and Math 
(STEM)-fields, despite multiple studies reporting that girls perform as good, or even 
better in these fields (Corbett & Hill, 2015; Grover & Pea, 2013; Modi, Schoenberg, & 
Salmond, 2012; Wang & Degol, 2013). Although this century has progressed for almost 
two decades, it is not too late to start investing in these 21st century skills.
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Appendix. A Student questionnaire
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