
Informatics in Education, 2007, Vol. 6, No. 1, 81–102 81
© 2007 Institute of Mathematics and Informatics, Vilnius

Creating and Visualizing Test Data from
Programming Exercises

Petri IHANTOLA
Helsinki University of Technology, Department of Computer Science and Engineering
PO Box 5400, 02015 HUT
e-mail: petri@cs.hut.fi

Received: August 2006

Abstract. Automatic assessment of programming exercises is typically based on testing approach.
Most automatic assessment frameworks execute tests and evaluate test results automatically, but
the test data generation is not automated. No matter that automatic test data generation techniques
and tools are available.

We have researched how the Java PathFinder software model checker can be adopted to the spe-
cific needs of test data generation in automatic assessment. Practical problems considered are: how
to derive test data directly from students’ programs (i.e., without annotation) and how to visual-
ize and how to abstract test data automatically for students? Interesting outcomes of our research
are that with minor refinements generalized symbolic execution with lazy initialization (a test data
generation algorithm implemented in PathFinder) can be used to construct test data directly from
students’ programs without annotation, and that intermediate results of the same algorithm can be
used to provide novel visualizations of the test data.

Key words: automatic assessment, programming exercises, testing, test-data, software visualiza-
tion, computer science education.

1. Introduction

Besides software industry applications, typical examples where automated verification
techniques are applied are numerous assessment systems widely used in computer sci-
ence (CS) education (e.g., ACE (Salmela and Tarhio, 2004) and TRAKLA2 (Korhonen
et al., 2003) PILOT (Bridgeman et al., 2000)) – especially in systems used for auto-
matic assessment of programming exercises (e.g., ASSYST (Jackson and Usher, 1997),
Ceilidh (Benford et al., 1993), JEWL (English, 2004), and SchemeRobo (Saikkonen et
al., 2001)). Automatic assessment of programming exercises is typically based on test-
ing approach and seldom on deducting the functional behavior directly from the source
code (such as static analysis in (Truong et al., 2004)). In addition, it is possible to verify
features that are not directly related to the functionality. For example, a system called
Style++ (Ala-Mutka et al., 2004) evaluates the programming style of students’ C++ pro-
grams. The focus of this work is on testing, not on formal assessment. Therefore, the
term automatic assessment is later on, in this paper, used for test driven assessment of
programming exercises.

82 P. Ihantola

Testing is used to increase trust about the correctness of a program by executing it

with different inputs. Thus, the first thing to do is to select a representative set of inputs.

The input for a single test is called test data. After the test data has been selected, the

correctness of the behavior of the program is evaluated. The functionality that decides

whether the behavior is correct or not is called a test oracle. The test data and the corre-

sponding oracle together are called a test case. Finally, the test data of a logical group of

tests together are called a test set.

Test set generation can be extremely labor intensive. Therefore, automated methods

for the process have been studied for decades (e.g., (Clarke, 1976; Jessop et al., 1976;

Ramamoorthy et al., 1976)). However, for some reason such systems are seldom used in

automatic assessment.

In this work we will apply an automatic test data generation tool, namely Java

PathFinder (JPF) (Visser et al., 2004), in test data generation for automatic assessment.

In addition to previously reported techniques of using JPF in test data generation, we will

improve these techniques further on. We will also explain how to automatically provide

abstract visualizations from automatically generated test sets.

Although we discuss automatic assessment and feedback, the core of this research is

on automatic test data generation and visualization. We will introduce a new technology

we hope to be useful in programming education. However, we are not yet interested in

evaluating the educational impact of this work. Manual test data generation is already

the dominant assessment approach in programming education. This work makes test data

generation easier for a teacher and provides visualizations and better test adequacy for

students. Thus, we believe that results of this work are valuable as is. Furthermore, the

motivation for this work is also that most automated test data/case generators are de-

signed for professionals, who have good debugging skills (i.e., skills to locate and correct

errors). Unfortunately, the majority of novice computer science students are not good at

debugging (Ahmadzadeh et al., 2005).

This article is a refined version of my Koli Calling 2006 article Test Data Genera-

tion for Programming Exercises with Symbolic Execution in Java PathFinder (Ihantola,

2007). Whereas the conference article has the focus on technical details and evaluating

the implementation, this article will discuss more about how test data visualizations can

be used to provide better feedback. When compared to the conference article, some tech-

nical details are also dropped out from here.

The rest of this article is organized as follows: Section 2 is about the previous re-

search by others and heavily based on the previous work of Willem Visser, Corina Păsăre-

anu, Sarfraz Khurshid, and others (Artho et al., 2003; Brat et al., 2000; Khursid et al.,

2003; Păsăreanu and Visser, 2004; Visser et al., 2003; Visser et al., 2004). Section 3

describes our contribution and changes to the previous techniques. Section 4 discusses

about some quality aspects in different test data generation techniques and Section 5,

finally, concludes the work.

Creating and Visualizing Test Data from Programming Exercises 83

2. Automatic Test Data Generation

2.1. Different Approaches

There are several different techniques for automated test set generation. There are also
many test generation tools for programs manipulating references introduced in the liter-
ature (e.g., (Barnett et al., 2003; Khurshid and Marinov, 2004; Xie et al., 2005)). Unfor-
tunately most of such tools are either commercial or unpublished research prototypes. In
addition, many open source testing tools1 concentrate on other aspects of testing than test
set generation. Here we will not describe tools, but some techniques for test set gener-
ation. Later in Section 2.2, we will explain how the techniques can be implemented in
JPF.

2.1.1. Method Sequences vs. State Exploration
In unit testing of Java programs, test input consists of two parts: 1) explicit arguments
for the method and 2) current state of the object (i.e., implicit this pointer given as an
argument). The first decision in test input generation is to decide how object states are
constructed and presented. There are at least two approaches to the task:

Method sequence exploration is based on the fact that all legal inputs are results from
a sequence of method calls. A test input is represented as a method sequence (be-
ginning from a constructor call) leading to the state representing test data.

Direct state exploration tries to enumerate different (legal) input structures directly
(i.e., without using the methods of the class in the state construction). Heuristics
can also be applied or the state enumeration can be derived from the control flow
of the method to be tested (as in Section 2.2.3).

The common justification for using method sequence exploration is that in assessment
frameworks, object states can only be constructed through sequential method calls. More-
over, any state constructed with the approach is clearly reachable. On the other hand, in
the method sequence exploration, tests are no longer testing only a single method. If the
methods needed in the state construction are buggy, it is difficult to test other methods.
However, in automatic assessment, one might want to give feedback from all the methods
of the class at the same time – not to say that feedback from method X cannot be given
before problems in method Y are solved. Direct state exploration provides a solution, but
the problem in that is how to implement the state enumeration (e.g., how to make sure
that a certain state is legal/reachable).

2.1.2. Symbolic Execution
The main idea behind symbolic execution (King, 1976) is to use symbolic values and vari-
able substitution instead of real execution and real values (e.g., integers). In symbolic ex-

1http://opensourcetesting.org/ [March 10, 2007]
http://java-source.net/open-source/testing-tools [March 10, 2007]

84 P. Ihantola

ecution, return values and values of variables of programs are symbolic expressions con-
sisting of symbolic input. For example, the output for a program like “int sum(int

x, int y) { return x+y; }” with symbolic input a and b would be a + b.
A state in symbolic execution consists of (symbolic) values of program variables,

a path condition and the program counter (i.e., information where the execution is in
the program). Path condition is a boolean formula over input variables and describes
which conditions must be true in the state. A symbolic execution tree can be used to
characterize all execution paths (i.e., state chains). Moreover, a finite symbolic execution
tree can represent an infinite number of real executions. Formally, a symbolic execution
tree SYM(P) of a program P , is a (possibly infinite) tree where nodes are symbolic states
of the program and arcs are possible state transitions.

For example, the symbolic execution tree of Program 1, min(X, Y), is illustrated
in Fig. 1. In the initial state, input variables have the values specified by the (symbolic)
method call and the path condition is true. Nodes with an unsatisfiable path condition are
pruned from the tree (labeled “backtrack” in the figure).

All the leaf nodes of a symbolic execution tree where the path condition is satisfiable
represent different execution paths. Moreover, all feasible execution paths of P are repre-
sented in SYM(P). In the example of Fig. 1, there are two satisfiable leafs and therefore
exactly two different execution paths in Program 1. All satisfiable valuations for a path
condition of a single leaf node in SYM(P) will give us inputs with identical execution
paths in the program (P). Furthermore, all leaf nodes represent different execution paths.
Thus, if SYM(P) is finite we can easily generate inputs for all possible execution paths
in (P) and if SYM(P) is infinite the maximal path coverage (Edvardsson, 1999) is un-
reachable.

The golden age of symbolic execution goes back to 70’s. The original idea was not
developed for the test set generation, but formal verification and enhancement of program
understanding through symbolic debugging. However, the approach had many problems
including (Coward, 1991): 1) symbolic expressions quickly turn complex; 2) handling
complex data structures is difficult; 3) loops dependent on input variables are difficult to
handle.

1 int min(int a, int b) {

2 int min = a;

3 if (b < min)

4 min = b;

5 if (a < min)

6 min = a;

7 return min;

8 }

Program 1. A program calculating minimum of two arguments.
Line 6 is dead code (i.e., never executed) as one can see from Fig. 1.

Creating and Visualizing Test Data from Programming Exercises 85

Fig. 1. Symbolic execution tree of the Program 1. Numbers in the figure are line numbers.

2.2. Test Data Generation with JPF

JPF is an open source explicit-state model checker of Java programs. Under the hood it
is a tailored virtual machine, and therefore any compiled Java program (i.e., byte-code)
can be directly used as an input for it. No source-to-source translation is needed as with
many other model checkers.

In addition to standard Java libraries, JPF provides some library classes to control
the model checking directly from the program under the model checking. The following
methods of the Verify class will be applied later in different test data generation strategies:

random(int n) will nondeterministically return an integer from {0, 1, . . . n}.

randomBoolean() will nondeterministically return true or false

ignoreIf(boolean b) will cause the model checker to backtrack if b evaluates to true. The
method is typically used to prune some execution branches away.

The fundamental idea behind nondeterministic functions is that whenever they are
model checked, all the possible values are tried one by one.

JPF provides also a symbolic execution library. The library provides types like Sym-
bolicInteger, SymbolicBoolean and SymbolicArray. The main idea with the library is to
provide model level abstractions for programmers. For example, integer variables are re-
placed with SymbolicIntegers and operators between integers with methods of the Sym-
bolicInteger class

The symbolic library of JPF keeps track of the path condition. Whenever branch-
ing depending on a symbolic variable occurs (i.e., some of the comparison methods are
called), the execution nondeterministically splits into two, and the condition (or its nega-
tion on the else branch) is added to the path condition. The framework uses a standard
constraint solver for two tasks:

86 P. Ihantola

• Whenever a new constraint is added to the path condition, satisfiability is checked.
If the path condition is unsatisfiable, Verify.ignoreIf(true) is called and
the corresponding execution branch is pruned as the JPF backtracks.

• To provide concrete valuations for (symbolic) input states (i.e., to get concrete test
data from a symbolic state)

2.2.1. Explicit Method Sequence Exploration
Explicit method sequence exploration is based on generating method sequences of differ-
ent length by using the nondeterministic functions of JPF as in Program 2. The example is
a container where states are constructed with insert and delete methods. Model checking
of the example generates all the method sequences up to 10 calls with arguments varying
between 0 and 5. Actually, all the possible states of a traditional binary search tree can
be constructed by repeating the insert method only, but all the states of the class are not
necessarily reached with the same approach. For example, if a binary search tree uses
lazy deletion, all the states cannot be reached through inserts only.

2.2.2. Symbolic Method Sequence Exploration
Symbolic method sequence exploration is similar to explicit method sequence explo-
ration. The only difference is that symbolic variables are used instead of concrete ones.
Program 3 does the same as Program 2, but with symbolic values. Because arguments
given for the BinarySearchTree are no longer integers but symbolic integers, the original
container class needs to be annotated before the symbolic approach can be used. The an-
notation means that integers are replaced with SymbolicIntegers and operators with the
corresponding method calls.

2.2.3. Generalized Symbolic Execution with Lazy Initialization
Generalized symbolic execution with lazy initialization, described by Visser et al. (Khur-
sid et al., 2003; Visser et al., 2004) is a symbolic state exploration technique. In contrast to
method sequence exploration, the approach does not require a priori bounds of the input

1 public static final int END_CRITERIA = 10;

1 public static final int MAX_ARGUMENT = 5;

3 public static void main(String[] args) {

4 Container c = new BinarySearchTree();

5 for (int i = 0; i <= END_CRITERIA; i++) {

6 if (Verify.randomBoolean()) break;

7 if (Verify.randomBoolean())

8 c.delete(Verify.random(MAX_ARGUMENT));

9 else

10 c.insert(Verify.random(MAX_ARGUMENT));

11 }

12 }

Program 2. Test data creation with explicit method sequence exploration
for a BinarySearchTree class.

Creating and Visualizing Test Data from Programming Exercises 87

1 public static final int END_CRITERIA = 10;

2 private static void main(String[] args) {

3 Container c = new BinarySearchTree();

4 for (int i = 0; i <= END_CRITERIA; i++) {

5 if (Verify.randomBoolean()) break;

6 if (Verify.randomBoolean())

7 c.delete(new SymbolicInteger());

8 else

9 c.insert(new SymbolicInteger());

10 }

11 }

Program 3. Test data creation with symbolic method sequence exploration
for the annotated BinarySearchTree class.

structures (e.g., END_CRITERIA in Programs 2 and 3). Ideally the approach uses only
the method to be tested in the test data generation. Thus, test data can also be generated
to methods in a partially implemented class with some methods missing. For example, it
is possible to test the delete operation of a binary search tree without implementing the
insert operation at all.

The program to be tested is annotated so that fields are lazily initialized when they
are first used. Special getter and setter methods have to be written for each field of the
class. After that, fields are used through these methods only. When an unused (no pre-
vious reads or writes) field of a reference type is accessed through a getter, the field is
nondeterministically initialized to any of the following:

• null;
• a new object with uninitialized fields;
• a reference pointing to any of the previously created objects of the same type (or

subtype).

Primitive fields are always initialized to a new symbolic variable.
Method getRight in Program 4 is an example from such a nondeterministic ini-

tialization. In the example, vector v contains the null object and all the objects created
so far. The nondeterministic branching to select any item from v, or a completely new
object, is on the line 11. Fig. 2 illustrates how getNext initializes the next field to null,
to new object, or to any of the previously created objects of the same type. In the last

Fig. 2. Lazy initialization instantiates a reference to null, new object or any of the previously created object
(here we have assumer that there is only one previously created object).

88 P. Ihantola

1 public class BinaryTreeNode {

2

3 /* only the right child is presented to save space */

4 private BinaryTreeNode right;

5 private rightInitialized = false;

6 static Vector v = new Vector();

7 static {v.add(null); v.add(this);}

8

9 public final BinaryTreeNode getRight() {

10 if (!rightInitialized) {

11 int i = Verify.random(v.size());

12 if(i<v.size()) return (BinaryTreeNode)v.elementAt(i);

13 right = new BinaryTreeNode();

14 rightInitialized = true;

15 v.add(right);

16 Verify.ignoreIf(!precondition()) // e.g., acyclic

17 }

18 return right;

19 }

20

21 }

Program 4. Annotated getter to be used in lazy initialization.

case, we have assumed that this was the first time when getRight was called and a
self-reference back to the object itself was therefore the only possibility.

Test data generation is launched by calling the method to be tested with an empty
this object as an argument. The empty object means an object with uninitialized fields.
In the following, we will assume that this is the only reference argument, but other
reference arguments would be handled similarly. Uninitialized fields are then initialized
when they are used the first time (therefore the name lazy initialization) and the result is
a nondeterministically constructed test data for the original program. Because the model
checker checks all possible values of nondeterministic choices, the result is actually a test
set (i.e., several test data).

When an execution of an annotated method ends, references that were used in that
particular execution are initialized. The state, however, does not represent input, but it is
a symbolic object graph representing the output structure. Thus, when fields are initialized
by the lazy initialization, those values need to be stored, because the algorithm can modify
the values afterwards (i.e., destructive updates).

Another problem is that lazy initialization can lead into illegal input structures. Thus,
a conservative class invariant is required. The invariant is implemented as a method that
can determine if a (partially) complete object graph can be completed into a legal one.
Actually such a precondition for each method separately would be sufficient. However,
if an invariant can be defined, it can be used with all the methods of the class. Execution
will backtrack if the invariant does not hold after the lazy initialization (see line 16 in

Creating and Visualizing Test Data from Programming Exercises 89

Program 4). It is important that the invariant will look at the original references created
by the lazy initialization, not at the ones that are possibly modified by the program under
the test. This is because we want to prune illegal input structures, not structures that are
constructed from legal structures by the method.

What lazy initialization with symbolic values actually does, is generating the sym-
bolic execution tree of the program. If the tree is finite, the approach will find all the
leaf nodes of the tree, and therefore generate a test set with maximal path coverage (Ed-
vardsson, 1999). However, if SYM(P) is infinite, the test data generation process does
not terminate. A typical case where symbolic execution tree is infinite is when the length
of execution paths in the control flow graph of P is proportional to the size of test data.
That is the case for example with insert and delete operations in a binary search tree.
One possible solution is to modify the JPF virtual machine so that only paths up to given
length are checked. Another possibility is to set an upper limit for structure sizes in the
class invariant. However, deriving actual test data from partially initialized object graphs
is still an open problem. The constraint solver behind JPF will instantiate all the symbolic
variables, but the unknown references are the problem. A simple solution is to make un-
known references pointing to a special node called “unknown”. Thus, graphs are not
actually completed, but this should not be a problem because references pointing to “un-
known” are not to be used as long as the program to be tested and the program to be used
in the test generation are the same.

3. Our Approach

Whereas the previous section was about related research of others, this section is about
our contributions to visualize test data and refine the symbolic execution based test data
generation approaches of Section 2.

Automatic assessment of students programming exercises sets up some special re-
quirements to the automatic test set generation. For example, when deriving tests from
students’ programs, manual annotation is not acceptable. This is because in automatic
assessment test data is generated on-the-fly, whenever a student submits a solution. As
mentioned in Section 1, students’ debugging skills are not good. Therefore we believe
that visualizations of test-data are needed to support the learning process.

3.1. Visualizations for Abstract Feedback

Conceptually, in the approach we are now proposing, the outcome of automatic test set
generation is not only a set of tests, but a set of test patterns. Each test pattern defines
test data that are somehow similar. Test pattern is a kind of opposite to test set because
the latter contains different test data in order to provide good test coverage. A possible
grouping criteria for test patterns is that the execution paths in the program are identical.
In detail, a test pattern consists of a single test schema and possibly several test data
derived from the schema. All the test data in the same test pattern are derived from the

90 P. Ihantola

schema of the pattern. Finally, the test set is obtained by selecting arbitrary test data from
each test pattern.

In this work, a schema is an object graph with two special features: 1) object ref-
erences can be unknown and 2) symbolic expressions are used for primitive fields. In
addition, the schema has constraints related to the symbolic expressions.

The schemas will be used to demonstrate tests on a higher abstraction level when
compared to the actual test data. To understand the use of schema in the feedback, let us
consider test schema s and test data t derived from s. Instead of exact feedback saying
P(t) fails (or works correctly), we will provide abstract feedback like “P(s) fails (or
works correctly)”. However, the oracle of the automatic assessment is based on investi-
gating Pspecification(t) = Pcandidate(t), as in the traditional approach. Fig. 3 illustrates
this process and the related terminology.

Because test schema is an object graph with some constraints, it can be easily visual-
ized. Fig. 4, for example, provides visualizations from partially initialized object graphs
of a delete method in a binary search tree. These schema visualizations were automati-
cally generated from a student’s program by using generalized symbolic execution with
lazy initialization. Fig. 5, on the other hand, gives examples from the possible test data
that can be derived from the schema of Fig. 4.

There are four types of nodes in the schema visualization: null nodes (small empty
circles), nodes that are known to exist, but the data of the node is newer used (circles
with ?), nodes with a data element that is used by the algorithm (circle with a letter),
and nodes that represent a reference that is not used by the method (triangular nodes). In
nodes where the data is used, keys inside nodes are symbolic variables and constraints
over those variables are also provided.

3.2. Without Annotation

Two techniques to remove the need of annotation in different use cases will be introduced:
1) use of the comparable interface and 2) a common upper class to a candidate program
and the specification, called a probe.

Fig. 3. The process of creating feedback for students and some related terminology.

Creating and Visualizing Test Data from Programming Exercises 91

Fig. 4. Excerpts of different input structures for the delete method of binary search trees.

Fig. 5. Examples of instantiated input structures from schemas in Figure 4.

3.2.1. Comparable Interface
Use of the Comparable interface can remove the need of replacing int type with Sym-
bolicInteger. For example, let us assume a container implementation without primitive
fields and where the data stored implements the Comparable interface. The interface is a
standard Java interface used with objects having a total order. If the argument type in in-
sert and remove methods of the container is Comparable, we can introduce the symbolic
execution by using a special object that is comparable and hides the symbolic execution
(Program 5). Moreover, students do not need this special class because they can test their
container implementations, for example, with Integer wrappers.

The drawback of the Comparable approach is that in the comparison the execution
will split into three when comparing SymbolicIntegers would split the execution into
two. We will come back to this in Section 4.3.

1 public class ComparableSymbolicInt extends SymbolicInteger

implements Comparable {

2 public int compareTo(Object other) {

3 ComparableSymbolicInt o = (ComparableSymbolicInt) other;

4 if (this._LT(o)) return -1;

5 else if (this._GT(o)) return 1;

6 else return 0;

7 }

8 }

Program 5. Definition of a comparable type that can hide symbolic execution
so that programmers should not need to care about that.

92 P. Ihantola

3.2.2. Probes to Hide Invariants
Probes contain the specialized getters and setters of the lazy initialization as well as the
class invariant. This makes it possible that those are not needed in classes derived from
the probe. Thus, on-the-fly test generation from students programs is basically possible.
The behavior of the getters and setters can be controlled so that lazy initialization can
turned on and off.

The obvious limitation of probes is that new fields cannot be declared in a class de-
rived from the probe. If new fields would be declared, lazy initialization of those would
not be possible. This is mainly because the invariant method (declared in the probe) can-
not say anything about the new fields. Probes can be easily applied to exercises dealing
with exactly defined data structures (e.g., implement the red-black-tree or implement the
AVL-tree). The problem is how to handle more open assignments where the structure of
the class can vary from solution to solution. Most likely, the probe approach cannot be
used in such cases.

3.3. An Example

Let us provide an example of exercises and feedback we have in our mind. The exercise
is to implement a binary search tree where duplicates are stored left. Students should
create a new class that extends a BinaryTreeNode class provided with the exercise. The
BinaryTreeNode provides all the fields that are needed and getters and setter that are
declared as final. All the fields of BinaryTreeNode are declared as private. Thus, students
can use those fields through predefined getters and setters only. This upper class is an
example of probe discussed in Section 3.2.2

Signatures of the methods that students should implement are:

• public BSTNode insert(Comparable c);
• public BSTNode delete(Comparable c);

A user can test his or her own solution with any wrapper object (e.g., Integers). How-
ever, we can also implement symbolic execution by using special objects as explained
in Section 3.2.1. Thus, for students the exercise does not provide anything symbolic
execution or lazy initialization specific, but at the same time those can be used in the
assessment.

An example of the feedback is provided in Fig. 6. A textual feedback that is not in
the picture says that “Delete fails when deleting node A and when B and C are equal.”

Fig. 6. Data visualization related to the binary search tree exercise.

Creating and Visualizing Test Data from Programming Exercises 93

This illustrates a case where deleting a node with two children is implemented so that the
node to be deleted is replaced with a node from the right subtree. Because duplicates are
stored left, the replacing node should be taken from the left subtree.

Unfortunately this feedback is not how far we are at the moment. Generalized sym-
bolic execution with lazy initialization will produce all similar object graphs (i.e., input
that will lead into revealing the bug) up to the given depth with the following properties:

1. The node to be deleted has two children.
2. Right child of the node to be deleted has a left child and a duplicate of that is the

smallest element in the right child of the node to be deleted.

Of course the algorithm will also generate other inputs that do not reveal the bug.
Summarizing this general description of inputs leading to incorrect output into one visu-
alization would be extremely interesting. At the moment we get a set, instead of one, of
object graphs where this property holds.

Another problem is the simplicity of symbolic expressions. As stated in Section 2.1.2,
one of the problems of symbolic execution is that they can easily turn too complex to
handle. In simple exercises, like the binary search tree, expressions are not too difficult
for the computer, but they can be difficult for humans.

Fig. 7 illustrates how the search operation is executed in the case of generalized sym-
bolic execution with lazy initialization. Constraints are not included to the figure, but
to the three nodes at the bottom row of the figure they are (assume that the node to be
searched is in variable arg): 1) arg > A, 2) arg < B, and 3) (not arg > A) and (not arg
< A). It is clear that (not arg > A) and (not arg < A) implies A = arg, but how to include
simplifications like this to the feedback is a challenge.

Fig. 7. Excerpts from the symbolic execution tree of the search operation in a binary search tree.

94 P. Ihantola

4. Discussion

In this section, we will compare different ways to use JPF in test set generation. View-
points of this discussion are inspired by the educational domain in where we have applied
the automatic test set generation: teachers design exercises, provide model solutions and
students submit their solutions to the automatic assessment to get feedback. The view-
points of the following discussion are:

Preparative work describes style and amount of annotations that the are needed before
test data can be automatically derived from a Java program. The topic is interest-
ing because in automatic assessment where student submit code and hope to get
immediate feedback from the code, manual annotation of students’ code does not
work.

Generality is used to discuss about the fact that automatic test data generation might not
work with all kinds of programs. An example of possible limitations in JPF is that
the symbolic execution does not support floats. The topic is interesting because
it limits the types of possible exercises that can be used with different test data
generation approaches.

Abstract feedback is about how exactly failed tests are described for students. Ac-
cording to Mitrovic and Ohlsson (Mitrovic and Ohlsson, 1999), too exact feed-
back can passivate learners and therefore abstract feedback should be preferred.
Correspondingly, on introductory programming courses at the Helsinki University
of Technology, we have observed that exact feedback (i.e., “program fails where
a = 2, b = 4”) guides some students to fix the counter example only. After “fixing
the problem”, the candidate program might work with a = 2 and b = 4, but not
with other values a < b.

Three fundamentally different approaches of using JPF were described in Section 2.2:
1) explicit method sequence exploration 2) symbolic method sequence exploration, and
3) generalized symbolic execution with lazy initialization. In Section 3.2, we introduced
two new approaches: the comparable interface and probes. The new techniques are de-
signed to help test data generation directly from students’ candidate programs. New tech-
niques can be combined with previous techniques and Fig. 8 summarizes the resulting
six2 different test data generation approaches.

On the upper level, we have separated techniques between method sequence explo-
ration and lazy initialization. On the second level, symbolic execution is used with lazy
initialization but it can also be used in (symbolic) method sequence exploration. Symbolic
execution and lazy initialization both need different types of annotations. New techniques
we have developed are hiding these annotations from users. The Comparable interface an-
swers to the challenge of symbolic execution and probes to the lazy initialization specific
problems.

2Not all combinations are reasonable.

Creating and Visualizing Test Data from Programming Exercises 95

Fig. 8. Different test data generation approaches under discussion: new techniques introduced in this work are
on gray background, whereas techniques on white background are from the related (previous) research.

4.1. Preparative Work

The preparative work is evaluated based on the amount of annotations required. The scale
includes values none, automatic, and semi-automatic. None means that absolutely no
annotation is needed, automatic means that the annotation process can be automated,
and semiautomatic means that the annotation process can be partially automated, but
substantial amount of manual work is still needed. Table 1 summarizes our observations
in this category.

Method sequence exploration requires some annotation if symbolic arguments are
not hidden behind the Comparable interface. However, the annotation process can easily
be automated as variables of int type are only replaced with SymbolicInteger variables
and operations between integers are replaces with method calls. Visser et al. (Visser et
al., 2004) have already described a semiautomatic tool for the task. Actually the tool
can also construct additional fields needed in generalized symbolic execution with lazy
initialization as well as getters and setters for fields. Use of fields are also replaced with
getter calls and definitions (i.e., assignments) with calls to corresponding setters. The
only task in the tool that is not automated is the type analysis.

The annotation that cannot be automated in generalized symbolic execution with lazy
initialization is the construction of invariants or preconditions. However, probes can be
used to hide invariants and other needs of annotation – just like Comparable hides simple
use symbolic integers. The framework can provide support for common data structures

Table 1

Evaluating the annotations needed

technique annotation

Method sequences

with concrete none

with comparables none

with symbolic automatic

Lazy initialization

generalized symbolic semiautomatic

probes with comparables none

probes with symbolic automatic

96 P. Ihantola

and algorithms. For more exotic classes, a teacher can implement the probe for students.
In both cases, if a probe is available, handmade annotations are not needed.

4.2. Generality

Generality is about what kind of programs can be used as a basis in test data generation.
Table 2 gives relative ranking between techniques – more stars in the figure indicate that
there are more situations in which the technique can be applied. The scale is neither linear
nor absolute, i.e., one star is not bad (only the least general among the evaluated), four
stars is not the best possible (but perhaps the most general among the evaluated), and two
stars is not twice that general as one star.

Concrete method sequence exploration has practically no limitations and is therefore
ranked at the highest place. all the possible operations with arguments (i.e., integers) are
directly supported. Bit level operations are also supported and data flow can go from input
variables to other methods (e.g., to library methods that are difficult to annotate).

The other techniques are first ranked according to the comparable vs. symbolic classi-
fication. Use of symbolic objects is considered a more general approach when compared
to Comparables. However, the symbolic approach has also many limitations like that the
symbolic execution framework of JPF does not support bit level operations. In addition,
data flow from test data to other methods is problematic. Such an attempt would require
the same preparative work for other methods, as well. For library methods, this might be
extremely tricky. However, limiting the program to Comparables is considered a more
significant drawback when compared to the limitations of symbolic integers. There are
many practical examples when a simple program needs integer arguments, and the com-
putation cannot be performed with comparable arguments only.

The secondary classification criteria is the use of probes. If probes are not needed,
it is considered more general when compared to cases where the program is built on
probes. A new probe is needed for every possible data structure, which limits the number
of supported programs.

Table 2

Evaluating the generality

technique generality

Method sequences

with concrete *****

with comparables **

with symbolic ****

Lazy initialization

generalized symbolic ****

probes with comparables *

probes with symbolic ***

Creating and Visualizing Test Data from Programming Exercises 97

Table 3

Evaluating the abstractness of schemas

technique abstractness

Method sequences

with concrete *

with comparables **

with symbolic **

Lazy initialization

generalized symbolic ***

probes with comparables ***

probes with symbolic ***

4.3. Abstract Feedback

In this category, the evaluation is based on how much test data can be derived from the
same test schema. In other words, how general is the schema. Remember that schemas are
used to provide feedback from tests. All the described approaches have a property that
executions leading into two different execution paths cannot be derived from the same
schema. Table 3 gives the relative ranking between techniques – more stars in the figure
indicate that the schemas are more general. Actually it is easy to generate abstract feed-
back. Feedback like “your program fails” is extremely general3, but we aim to provide
something that is neither too exact nor too abstract.

Concrete method sequence exploration is the least abstract method because the
schema and test data are the same. Lazy initialization is the most abstract approach as
test schemas with it are only partially initialized object graphs. For each partially initial-
ized symbolic graph, there are (several) symbolic graphs that can be obtained through
method sequence exploration.

Another aspect related to the abstractness of schemas is redundancy. We have defined
schemas so that all the test data derived from a single schema will lead into identical
execution paths. However, it is possible that there are several schemas stressing one path
only. This is what we call redundancy. Therefore, the more abstract the schema is, the
less redundant it is.

A reason why the concept of redundancy is interesting is that even with the most
abstract approaches some redundancy exists. The extra branching, and therefore re-
dundancy, that the Comparable interface brings was described in the previous chapter.
Whereas the comparison of symbolic integers has two possible results (a < b is either
true or not) the comparison of Comparable objects has three possible outcomes (less
than, equal, and greater than).

Nondeterministic branching in lazy initialization will also add extra branching to the
program. Let us think about binary search tree delete operation. If the node to be deleted
has two children, the minimum from the right subtree will be spliced out as in Program 6

3In our binary search tree example the schema related to this feedback would be a completely unknown
tree.

98 P. Ihantola

1 f(node.getLeft() != null && node.getRight() != null) {

2 BSTNode minParent = node;

3 BSTNode min = (BSTNode)node.getRight();

4 while (min.getLeft() != null) {

5 minParent = min;

6 min = (BSTNode)min.getLeft();

7 }

8 node.setData(min.getData());

9 if (node == minParent)

10 minParent.setRight(min.getRight());

11 else

12 minParent.setLeft(min.getRight());

3 }

Program 6. Excerpts from the binary search tree delete routine.

Fig. 9. Two input data for the binary search tree leading to identical execution paths.

which is an excerpt from the delete routine. Both input structures in Fig. 9 are obtained
through the lazy initialization with probes. The node to be deleted is A in the both cases.
In both cases, B is the smallest value in the right subtree of A. Thus, B is spliced out, by
setting the link (originally pointing to B) to the right child of B. The right child of B is
accessed. As a consequence, it is initialized to null or a new object. Because the right
pointer in A is simply set to the right child of B, the execution is the same regardless of
the value.

The same problem of extra branching in lazy initialization is present whenever branch-
ing does not depend on the initialized values. On the other hand, creating tests for such
boundary cases (i.e., nulls) might reveal some bugs that would otherwise be missed.

5. Conclusions

In software testing, it is important to create adequate tests to reveal possible defects, and it
is equally important to locate and remove these defects. We have addressed both of these
problems in the domain of automatic assessment of students’ programming exercises.

Creating and Visualizing Test Data from Programming Exercises 99

As a conclusion, automatic test data generation based on students’ programs can provide
better test adequacy when exercises are designed to support that as described in Section 3.
We have also explained how to support the debugging process by providing novel data
visualizations of what is tested.

This work presents a novel idea of extracting test schemas and test data. Test schema
is defined to be an abstract definition from where (several) test data can be derived. The
reason for separating these two concepts is to provide automatic visualizations from au-
tomatically produced test data and therefore from what is tested.

On a concrete level, the work has concentrated on using the JPF software model
checker in test data generation. Known approaches of using JPF in test data generation
(i.e., concrete method sequence exploration, symbolic method sequence exploration, and
generalized symbolic execution with lazy initialization) have been described. In addition,
new approaches have also been developed:

Use of Comparable interface that removes the need of annotation in the previous sym-
bolic test data generation approaches. The drawback of the approach is that only
programs using comparables can be used.

Use of probes to remove the manual invariant construction needed by the lazy initializa-
tion.

Both new approaches are also a step from model based testing towards test creation
based on real Java programs. Automatic assessment of programming exercises is not the
only domain where the results of this work can be applied. Other possibilities are for
example:

• Tracing exercises is another educational domain where the presented techniques
can be directly applied. In tracing exercises test data and algorithm are given for a
student. The objective is to simulate (or trace) the execution (e.g., (Korhonen et al.,
2003)). The problem of test adequacy (i.e., providing test data for students) is the
same as addressed in this research.

• Traditional test data generation can also benefit from our results. We believe that
the idea of hiding the symbolic execution behind the Comparable interface is in-
teresting as it can introduce symbolic execution to some existing programs without
the need of instrumenting or annotating the programs. Extra branching resulting
from the Comparable construction is not that bad, because it is nearly the same as
boundary value testing (e.g., (Grindal et al., 2005)). Instead of creating one test
data for a path with the constraint a � b, two tests are created: a = b (i.e., the
boundary value test) and a < b.

As a summary, interesting concepts and techniques to make automatic test data gen-
eration more attractive in teaching and especially automatic assessment are presented.
Results can be reasonably well generalized and applied on other contexts than automatic
assessment of programming exercises. However, we are still in the early phases of bring-
ing formally justified test data generation and computer science education closer to each
other.

100 P. Ihantola

Acknowledgements. This work was supported by the Academy of Finland under
grant number 210947. I also want to thank Ari Korhonen and Lauri Malmi for their
support during this work.

References

Ahmadzadeh, M., D. Elliman and C. Higgins (2005). An analysis of patterns of debugging among novice com-
puter science students. In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education. New York, NY, USA, ACM Press, pp. 84–88.

Ala-Mutka, K., T. Uimonen and H.-M. Järvinen (2004). Supporting students in C++ programming courses with
automatic program style assessment. Journal of Information Technology Education, 3, 245–262.

Artho, C., D. Drusinksy, A. Goldberg, K. Havelund, M. Lowry, C. Păsăreanu, G. Rosu and W. Visser (2003).
Experiments with test case generation and runtime analysis. In Proceedings of Abstract State Machines
2003. Advances in Theory and Practice: 10th International Workshop. Vol. 2589 of LNCS. Springer-Verlag,
pp. 87–108.

Barnett, M., W. Grieskamp, W. Schulte, N. Tillmann and M. Veanes (2003). Validating use-cases with the AsmL
test tool. In Proceedings of 3rd International Conference on Quality Software. IEEE Computer Society, pp.
238–246.

Benford, S., E. Burke, E. Foxley, N. Gutteridge and A. M. Zin (1993). Ceilidh: A course administration and
marking system. In Proceedings of the 1st International Conference of Computer Based Learning. Vienna,
Austria.

Brat, G., W. Visser, K. Havelund and S. Park (2000). Java PathFinder - second generation of a Java model
checker. In Proceedings of the Workshop on Advances in Verification. Chicago, Illinois.

Bridgeman, S., M. T. Goodrich, S. G. Kobourov and R. Tamassia. Pilot: an interactive tool for learning and
grading. In SIGCSE ’00: Proceedings of the Thirty-first SIGCSE Technical Symposium on Computer Science
Education. New York, NY, USA, ACM Press, pp. 139–143.

Clarke, L.A. (1976). A system to generate test data and symbolically execute programs. IEEE Trans. Software
Eng., 2(3), 215–222.

Coward, D. (1991). Symbolic execution and testing. Inf. Softw. Technol., 33(1), 53–64.
Edvardsson, J. (1999). A survey on automatic test data generation. In Proceedings of the 2nd Conference on

Computer Science and Engineering in Linköping. ECSEL, pp. 21–28.
English, J. (2004). Automated assessment of gui programs using JEWL. In Proceedings of the 9th Annual

SIGCSE Conference on Innovation and Technology in Computer Science Education. ACM Press, pp. 137–
141.

Grindal, M., J. Offutt, and S.F. Andler (2005). Combination testing strategies: a survey. Software Testing, Veri-
fication and Reliability, bf 15(3), 167–199.

Ihantola, P. (2007). Test data generation for programming exercises with symbolic execution in java pathfinder.
In Proceedings of the Koli Calling, Sixth Finnish/Baltic Sea Conference on Computer Science Education.
Accepted for publication.

Jackson, D., and M. Usher (1997). Grading student programs using assyst. In SIGCSE ’97: Proceedings of the
Twenty-eighth SIGCSE Technical Symposium on Computer Science Education. New York, NY, USA, ACM
Press, pp. 335–339.

Jessop, W.H., J.R. Kane, S. Roy and J.M. Scanlon (1976). ATLAS – an automated software testing system.
ICSE, 629–635.

Khurshid, S., and D. Marinov (2004). TestEra: Specification-based testing of Java programs using SAT. Autom.
Softw. Eng., 11(4), 403–434.

Khursid, S., C.S. Păsăreanu and W. Visser (2003). Generalized symbolic execution for model checking and
testing. In Proceedings 9th International Conference on Tools and Algorithms for Construction and Analysis.
Vol. 2619 of LNCS. Springer-Verlag, pp. 553–568.

King, J.C. (1976). Symbolic execution and program testing. Commun. ACM, 19(7), 385–394.
Korhonen, A., L. Malmi and P. Silvasti (2003). TRAKLA2: a framework for automatically assessed visual al-

gorithm simulation exercises. In Proceedings of the 3rd Annual Finnish/Baltic Sea Conference on Computer
Science Education. Joensuu, Finland, pp. 48–56.

Creating and Visualizing Test Data from Programming Exercises 101

Mitrovic, A., and S. Ohlsson (1999). Evaluation of a constraint-based tutor for a database language. Interna-
tional Journal of Artificial Intelligence in Education, 10, 238–256.

Păsăreanu, C.S., and W. Visser. Verification of Java programs using symbolic execution and invariant gen-
eration. In Proceedings of 11th International SPIN Workshop. Vol. 2989 of LNCS. Springer-Verlag, pp.
164–181.

Ramamoorthy, C.V., S.-B.F. Ho and W.T. Chen (1976). On the automated generation of program test data. IEEE
Trans. Software Eng., 2(4), 293–300.

Saikkonen, R., L. Malmi and A. Korhonen. Fully automatic assessment of programming exercises. In Pro-
ceedings of the 6th Annual Conference on Innovation and Technology in Computer Science Education.
Canterbury, UK, ACM Press, New York, pp. 133–136.

Salmela, L., and J. Tarhio (2004). ACE: Automated compiler exercises. In Proceedings of the 4th Finnish/Baltic
Sea Conference on Computer Science Education. Joensuu, Finland, pp. 131–135.

Truong, N., P. Roe and P. Bancroft (2004). Static analysis of students’ Java programs. In Proceedings of the
Sixth Conference on Australian Computing Education. Australian Computer Society, Inc., pp. 317–325.

Visser, W., K. Havelund, G. Brat, S. Park and F. Lerda. Model checking programs. Autom. Softw. Eng, 10(2),
203 – 232.

Visser, W., C.S. Păsăreanu and S. Khurshid (2004). Test input generation with Java PathFinder. In Proceedings
of the 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM Press, pp.
97–107.

Xie, T., D. Marinov, W. Schulte and D. Notkin (2005). Symstra: A framework for generating object-oriented unit
tests using symbolic execution. In Proceedings of the 11th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pp. 365–381.

P. Ihantola is a PhD student at Helsinki University of Techonology (TKK). He received
his MSc (computer science) from TKK in 2006. His research interests are in automated
testing, software visualization, and automatic assessment in computer science education.

102 P. Ihantola

Abstrakči ↪u testavimo duomen ↪u kūrimas ir vizualizavimas
naudojantis programavimo uždaviniais

Petri IHANTOLA

Automatinis programavimo uždavini ↪u vertinimas paprastai grindžiamas testavimu. Labiausiai
automatizuotos sistemos paleidžia testus ir ↪ivertina juos automatiškai, tačiau test ↪u duomen ↪u genera-
vimo jos neautomatizuoja. Nesvarbu, kad automatini ↪u test ↪u kūrimo technologijos ir priemonės jau
yra galimos. Mes ištyrėme, kaip “Java PathFinder” programinės ↪irangos modelio tikrintuvas galėt ↪u
būti panaudotas specifiniams automatizuot ↪u testavimo duomen ↪u kūrimo poreikiams tenkinti.

Praktinės problemos yra šios: kaip gauti testavimui skirtus duomenis tiesiai iš besimokanči ↪uj ↪u
program ↪u (t.y., be anotacij ↪u), kaip jas vizualizuoti ir automatiškai abstrahuoti testavimo duome-
nis besimokantiesiems. ↪Idomi išvada, pateikiama šiame straipsnyje, yra ta, kad esant, mažiausiai
patobulinim ↪u, bendriausias simbolinis ↪ivykdymas, naudojantis pradine inicializacija (testavimo
duomen ↪u generavimo algoritmas, realizuotas programoje “PathFinder”) gali būti panaudotas testui
sukonstruoti tiesiogiai iš besimokanči ↪uj ↪u program ↪u be joki ↪u anotacij ↪u, ir to paties testo tarpiniai
duomenys gali būti panaudoti kuriant naujas testavimo duomen ↪u vizualizacijas.

