
Informatics in Education, 2006, Vol. 5, No. 2, 195–206 195
 2006Institute of Mathematics and Informatics, Vilnius

Various Utilizations of an Open-Source Program
Visualization Tool, Jeliot 3

Roman BEDNARIK, Andrés MORENO, Niko MYLLER
Department of Computer Science, University of Joensuu
PO Box 111, FI-80101, Finland
e-mail: firstname.surname@cs.joensuu.fi

Received: January 2006

Abstract. In this paper, we present an open-source program visualization tool, Jeliot 3. We discuss
the design principles and philosophy that gave rise to this successful e-learning tool and to several
other related environments. Beside Jeliot 3, we introduce three different environments, BlueJ, EJE,
and JeCo that use Jeliot 3 as a plug-in to allow visualization of the program code. Another system,
FADA, is a tool that was derived from Jeliot 3 but serves for different pedagogical goals. A com-
munity of users and developers of these projects has been created and supported, that allows for
global and iterative improvements of the Jeliot 3 tool. This way, both academic research and feed-
back from the user community contribute to the development. We compare the presented approach
of the tool development to some of the current tools and we discuss several instances evidencing a
particular success.

Key words: e-learning, program visualization, open source development, GPL.

1. Introduction

Programming is a skill that, in the present society, becomes often necessary and required
in everyday situations: actions such as modifying a piece of text or writing a macro in
office software or setting the multimedia system to record a selected television program
are just three examples of end-user programming. At the same time, programming is a
complex task with multiple interrelated components, tradeoff decisions, and performance
requirements that concern the whole process (Detienne, 2002; Hocet al., 1990). As well
as with other skills, to become an expert in programming requires a deliberate practice
(Ericsson, 2003). Central to programming is the ability to comprehend a computer pro-
gram, so to establish a valid mental representation of the problem solved by the program.
Because of the lack of knowledge and experience, novice programmers have problems
with constructing the viable models of problems. Therefore, tools to support the con-
struction of such models are desirable.

One of the approaches to support novice programmers in their comprehension task is
algorithm and program visualization. Typically, a novice-oriented program visualization
tool is used to teach programming concepts, for example, by showing some parts of a
program graphically. This can mean for example, a class diagram or animation of the



196 R. Bednarik, A. Moreno, N. Myller

programs execution behavior are shown to the students. A number of visualization tools
have been developed in previous years; however, the practical results have been inconclu-
sive (for an analysis, see Hundhausenet al., 2002). It has been also pointed out, that these
tools are often designed in a uniform fashion (Bednariket al., 2005), without a contextual
sensitivity to task and to learner’s cognitive growth (e.g., Ben-Ari, 2001).

From a software engineering point of view, another reason behind the partial failure
of program visualization tools can be the low number of iterations in the development
life-cycle of the tool and the restrictions in the distribution policies. Particularly, usability
and empirical evaluations of the tools are missing, the tools are not published freely, and
the interaction between designer- and user communities is limited to an email support.
Typically, a tool and the visualizations are designed by experts in programming and then
tested in a laboratory setting or in a programming course. At the same time, the source-
codes are not distributed along with the tool, the tool does not provide means for easy
extensibility, and thus the community around the tool is restricted. We present another
philosophy to the development of e-learning tools. Our intention is to 1) provide full
access to the source codes, 2) allow for extensibility, modularity and integration with
third-party environments, 3) evaluate regularly the outcomes of the tools, 4) and create
and support user community.

In this paper, we introduce Jeliot 3 (Morenoet al., 2004a) (see alsohttp://cs.
joensuu.fi/jeliot), a program visualization tool which is especially designed for
novices. It has a simple user interface and the visualizations are complete, explaining the
whole program execution to the student. Jeliot 3 can be used both to teach and to learn
programming. Jeliot 3 is an open source program visualization tool that has been used to
teach programming to novices for several years (Ben-Ariet al., 2002, Ben-Bassat Levy
et al., 2003). We discuss the previous, current and future use cases and prospects of this
e-learning tool.

The paper is organized as follows: we first introduce the concept of open source, and
then we review a state-of-art of program visualization tools with respect to the openness
and extensibility. Later we introduce Jeliot 3 and the family of its predecessors. The
design philosophy introduced in the following section, the most interesting extensions
and derivations are reviewed, demonstrating the success of the environment. Future plans
are discussed and conclusions presented.

2. Open Source Approach

The open source approach to development promotes that applications are distributed to-
gether with their source codes. Developers, both internal and external, can inspect the
source code of the software for security flaws, or they can modify it to better suit their
needs. Different distribution licenses for open source software exist in order to specify
what can be done with the available source code. The Berkeley Software Distribution
(BSD) license and the General Public License (GPL) are the two of the most commonly
used open licenses. The main difference between them is that software distributed under



Various Utilizations of an Open-Source Program Visualization Tool, Jeliot 3 197

BSD can be adopted into commercial software without restrictions. The GPL requires all
subsequent software derived from GPL licensed software to be GPL licensed as well.

A great deal of current public applications is published under an open source license.
Successful examples of GPL licensed software are the GNU/Linux operating system, or
the Mozilla Foundation Firefox web browser. In the field of education, the Moodle, an
online learning environment, is being widely adopted by educational institutions. The fact
that these tools are distributed for free can partly explain their success and an increasing
share on the market. However, the possibility to contribute to the development of these
tools without restrictions has positively affected their success as well. All of them provide
the means to let users adapt and extend the capabilities of the software beyond the original
goal.

3. Overview of Program Visualization Tools

Many program visualization tools and environments have been developed to support the
teaching and learning of programming. A complete overview of all the tools goes beyond
the limitations of this paper1; however, Table 1 summarizes a representative set of tools
for program/algorithm visualization, developed recently or being developed in academic
research. Focusing on the aspects important to the current interest, it can be observed that

Table 1

An overview of present program/algorithm visualization tools with regard to their openness. The columns in
order are: system name, implementation language, operating system on which the system can be run, is the
system downloadable, is documentation available, licensing, does system’s website contain discussion board or
mailing list, has the system been update lately or is the project alive, is the system extensible, reference to the
publication explaining the system

System Impl.
Lang.

OS DL Doc. Lic.

Disc.
board/
mail.
list

Upd./
proj.
alive

Ext. Ref.

Animal Java Win/ Unix Yes Yes Other2 No Yes Yes Rössling & Freisleben, 2002

BlueJ Java Win/ Unix Yes Yes Other Yes Yes Yes Köllinget al., 2003

Dynalab Pascal Win/ Unix Yes No Other No No No Boroniet al., 1996

Jeliot Java Win/ Unix Yes Yes GPL Yes Yes Yes Morenoet al., 2004a

JIVE Java Win/ Unix Yes No N/A No Yes No Gestwicki & Jayaraman, 2005

Matrix Java Win/ Unix Yes Yes GPL No Yes Yes Korhonenet al., 2004

PlanAni Tcl/Tk Win/ Unix Yes Yes N/A No Yes Yes Sajaniemi & Kuittinen, 2003

Tango C Unix Yes Yes Other No No No Stasko, 1990

1For a recent overview c.f. Diehl, S. (Ed.), Software Visualization. Vol. 2269 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

2Other: usually the tools are free to download and distribute, however the source-codes are not available at
the moment.



198 R. Bednarik, A. Moreno, N. Myller

while most of the systems can be run on any of the current operating systems, only few
systems are distributed freely under an open-source license, and even fewer provide a
discussion area for the user community. In our view, we regard a system to be extensible
if it supports either internal or external extensions with an application program interface
(API) or other well defined interface.

4. Jeliot Family

The development of the Jeliot family (Ben-Ariet al., 2002) began almost ten years ago
when the first system Eliot (Lahtinenet al., 1998) was developed to help in the production
of algorithm animations. After Eliot, two other systems have been developed, namely Je-
liot I (Sutinenet al., 2003) (see alsohttp://cs.joensuu.fi/jeliot/jeliot.html)
and Jeliot 2000 (Ben-Bassat Levyet al., 2003).

The development process of Jeliot has been research-oriented, meaning that all ver-
sions have had their own research agenda rising from the previous versions’ design and
empirical evaluations. The systems have been implemented in different environments and
a new version has been developed either to extend the possibilities for visualization or to
support different user populations. The first versions, Eliot and Jeliot I, shared the main
goal, which was to ease the production of algorithms animations. The Jeliot I implemen-
tation allowed it to be used on the Internet, making Jeliot’s use distance independent.
Jeliot 2000 was especially designed for novice learners, whereas Jeliot 3 (Morenoet al.,
2004a) is a generalization of the work done with Jeliot 2000; extending it to visualize ob-
ject oriented concepts. Fig. 1 shows the interface of Jeliot 3 with an ongoing animation.

Fig. 1. Interface of Jeliot 3.



Various Utilizations of an Open-Source Program Visualization Tool, Jeliot 3 199

During the development and evaluation cycles of Jeliot, it has been learned that there
is no one best formula for all learning needs, but there should be several features in the
learning environment from which the learners can select the ones they need (Ben-Ariet
al., 2002). This means that we should give students the possibility to use different kinds
of visualizations with various orientations, leading to a stage where an extendable and
modular system is needed as a basis for this development. This was our aim when we
designed the Jeliot 3 system.

To support the extensions of Jeliot 3 we have published the source codes of
the system under the GPL license. Furthermore, we have developed a website (see
http://cs.joensuu.fi/jeliot) that contains materials for adopting as well as
for modifying Jeliot 3. There are documentation, discussion forum, published research
papers, and a mailing list, all available to support the exchange of information.

5. Extensibility and Reusability of Jeliot 3

5.1. Internal Extensibility

The development of Jeliot 3 is subject to several design principles. One of the orig-
inal principles of Jeliot is to strive for extensibility, both internally and externally
(Myller, 2004). Jeliot 3 features M-Code (Moreno, 2005), a linear transcription that rep-
resents the execution of an object oriented program, defining the program trace. An
M-Code transcription is obtained by interpreting the program source code. The cur-
rent version of Jeliot makes use of DynamicJava, a BSD licensed Java interpreter (see
http://koala.ilog.fr/djava/) that has been used also in other projects (Allenet
al., 2002). The possibility to have an access to the source code of the interpreter was of
great value to the development, as we were able to modify and build upon it. The mod-
ifications carried out in the Java interpreter were mainly to connect it with Jeliot 3, and
to produce a textual representation of program trace, e.g., performing an assignment, an
evaluation of a condition and similar.

M-Code instructions are composed of an identification number to be referred later,
an instruction code, indicating what kind of operation is performed, and one or more
operands. It also carries information about the location in the corresponding source code.
On the one hand, this open configuration allows for producing an animation of a program
written in any programming language. To do so, the only requirement is to have an in-
terpreter of such a language (e.g., C++) to produce the M-Code correctly and thus create
an animation in Jeliot 3. Currently, there are several free interpreters for a wide range of
programming languages available. At the moment, together with our collaborators we are
working for versions to support C++, Pascal and Python.

On the other hand, the design of the M-Code allows the user-application to com-
pose several different kinds of visualizations from a single M-Code stream. This means
that one program execution can be used to generate several visualizations that illustrate
different aspects of the program execution. It also makes it possible to distribute the vi-
sualization of the program execution to several users. As an example being currently



200 R. Bednarik, A. Moreno, N. Myller

implemented, besides the original view of the program execution based on the M-Code
generated from the source code, Jeliot 3 offers also a dynamic call-tree view that is pro-
duced by using the same M-Code stream.

5.2. External Plug-in Development

Releasing Jeliot 3 as an open-source application has fostered many interesting col-
laborations leading to several innovations. One of those has been with the EJE team
(http://ilias.aifb.uni-karlsruhe.de/rku/) at the University of Karl-
sruhe, Germany. This cooperation has been two-folded. On one side, the EJE team inte-
grated Jeliot 3 into ILIAS (http://www.ilias.de/ios/index.html), an open
source Learning Management System used at their institution. This project resulted in
the ability of Jeliot 3 to be started from any lecture webpage, (Küstermann, 2005). On the
application side, the EJE team develops a Java editor, EJE (Editing Java Easily). Jeliot 3
has been completely integrated as a visualization plug-in to EJE, see Fig. 2. The interna-
tional cooperation between EJE and Jeliot 3 teams clearly benefited both tools. Jeliot 3
can make use of an improved environment, with an editor and other features, while EJE
can visualize the code the user is creating.

The communication between EJE and Jeliot teams was mostly carried out by email.
It included bug reports, comments, code modifications and code extensions to the Jeliot

Fig. 2. Screenshot of EJE running Jeliot 3 (on the right side).



Various Utilizations of an Open-Source Program Visualization Tool, Jeliot 3 201

main branch. To sum it up, due to the open source code and the extensible architecture,
the cooperation between both parts has been made possible and yielded important inno-
vations in e-learning tools.

Other plug-ins have been developed out of the main branch of Jeliot, namely the BlueJ
plug-in and the JeCo tool. BlueJ is a widely-used integrated development environment
that is oriented to Java students. It focuses on the graphical creation of classes by means of
an UML notation and direct interaction with classes by creating objects and manipulating
them in the object bench (Kölling, 2003). The plug-in architecture enables an interaction
between BlueJ and Jeliot 3. Thus, it combines the standard UML notation and interaction
with objects in the object bench used in BlueJ, like object creation and method calling,
with the animation created by Jeliot visualization engine to represent such concepts.

JeCo (Morenoet al., 2004b) is a fully functional prototype that extends the concept of
Woven Stories (Gerdtet al., 2001) into a co-operative programming environment. Woven
Stories is a co-authoring tool, where users can concurrently create text documents by
adding nodes (sections) to a graph (document). The resulting graph then describes the
document and its formation. JeCo makes use of the idea and features the novel concept of
collaborative program visualization. It allows the user to visualize programs, send these
visualizations to other users of JeCo, comment other users’ programs and visualizations
and chat with other users.

All these activities attribute to enriching the user learning and experience, letting users
to approach their learning through the combination of integrated tools. However, the most
important aspect is that the principle of openness lets researchers cooperate and create a
community around the tools, connecting researchers, developers, teachers and students.

5.3. New Tool Development

Jeliot 3 releases have always been accompanied with the source code that built the re-
leases. Thus, researchers, developers, and users can easily check the latest improvements
done to the tool and they can apply them to their derived works.

As an illustration of the approach, Fionnuala O’Donnell, from the Trinity College
at Dublin, Ireland, developed a simulation framework for teaching distributed systems
concepts (O’Donnell, 2004), called FADA (Framework Animations of Distributed Algo-
rithms, see Fig. 3 for a screenshot of FADA). It makes use of Jeliot 3 source code to
implement the GUI and other parts of the tool. Thus, the authors of FADA could focus on
the visualization side of distributed systems, and make use of a novice oriented GUI of
Jeliot 3. An important advantage of having different visualization tools sharing the same
GUI is that when users encounter the same GUI again they can expect the same function-
ality as with the previous tool. This is an important fact, as it has been often claimed that
novice users have to be specifically taught to use their new environments (e.g., Ben-Ari,
2001). Therefore, this approach can reduce the initial problems the novice students have
to encounter. On the example FADA, we can observe that the reuse of the open-source
environment resulted in a new tool with different pedagogical purposes.



202 R. Bednarik, A. Moreno, N. Myller

Fig. 3. FADA screenshot.

6. Community around Jeliot

One of the main goals of the on-going development of Jeliot is to create a community of
users and developers around the tool. Currently, most of the users are Finnish and Israeli
students and teachers. Some of the user groups, such as young students and high school
teachers in Israel and senior students in Finland, feel Jeliot as an integral part of their
learning; they have developed a sense of ownership of the tool (Squires, 1999). Such
feeling fosters learning through the tool, however, it has also been reported to produce
dependency, and users can feel confused when the tool is not present.

Mailing lists and forums are set up for building and connecting different institutions
using Jeliot 3 and we have received valuable feedback, ideas and propositions to the
further development. However, we have seen that there are improvements needed to get
students and teachers more involved and motivated. Different reasons for this behavior
can be considered. For example, as most of the student-users are Finnish and Israeli who
may not be fluent in English, they may feel insecure about expressing their thoughts in a
foreign language.

7. Conclusion

Jeliot 3 is an open and modular program visualization tool targeted especially to novice
programmers and students. We have shown how the open-source philosophy and design
decisions yielded into extensibility in different contexts resulting into new tools, and



Various Utilizations of an Open-Source Program Visualization Tool, Jeliot 3 203

how these extensions have benefited the development of the tool itself. Jeliot 3 itself is
put together from open source software, too, demonstrating the power of open source
development for real educational learning tools. Comparing with other available program
visualization tools, we consider our approach as rather innovative.

We presented three platforms that use Jeliot 3 as a plug-in to deliver program visu-
alizations to the users of the systems. Two of these systems are in wide use and thus
bring Jeliot 3 available to large audiences. Moreover, there is a tool derived from Jeliot 3
showing how open source licensing can support efforts of other developers.

The development of the Jeliot family has been driven by academic research that has
guided and given new directions for the further development. We have and will be car-
rying out several experiments with Jeliot 3 to validate its usability and efficiency in the
context of introductory programming both in face-to-face as in on-line courses. So far
the results have been positive and we expect to extend the use of Jeliot into collabora-
tive learning where group processes should be supported as well as into distance learning
where adaptivity to the users’ needs is crucial. Our work is supported by the commu-
nity of users and researchers formed around Jeliot and the feedback and suggestions have
helped us to enhance Jeliot 3 to better suit all the different needs of our users. We hope to
see the community evolving into the direction of a true learning and collaborative com-
munity where the roles of people are changing, and where a developer becomes a learner
and learner a developer.

References

Allen, E., R. Cartwright and B. Stoler (2002). DrJava: a lightweight pedagogic environment for Java. InPro-
ceedings of the 33rd SIGCSE technical symposium on Computer Science Education. ACM Press, pp. 137–
141.

Bednarik, R., A. Moreno, N. Myller and E. Sutinen (2005). Smart program visualization technologies: planning
a next step. InProceedings of the 5th IEEE International Conference on Advanced Learning Technologies
(ICALT 2005), Kaohsiung, Taiwan. IEEE Computer Society, pp. 717–721.

Ben-Ari, M. (2001). Program visualization in theory and practice.Informatik. Informatique, 2, 8–11.
Ben-Ari, M., N. Myller, E. Sutinen and J. Tarhio (2002). Perspectives on Program Animation with Jeliot. In

S. Diehl (Ed.),Software Visualization, Lecture Notes in Computer Science, vol. 2269. Springer-Verlag,
Dagstuhl, pp. 31–45.

Ben-Bassat Levy, R., M. Ben-Ari and P.A. Uronen (2003). The Jeliot 2000 program animation system.Com-
puters and Education, 40(1), 15–21.

Boroni, C.M., T.J. Eneboe, F.W. Goosey, J.A. Ross and R.J. Ross (1996). Dancing with DynaLab: endearing
the science of computing to students.SIGCSE Bulletin, 28(1), 135–139.

Detienne, F. (2002).Software Design – Cognitive Aspects. Springer-Verlag, London.
Ericsson, K.A. (2003). The acquisition of expert performance as problem solving: Construction and modifi-

cation of mediating mechanisms through deliberate practice. In J.E. Davidson and R.J. Sternberg (Eds.),
Problem Solving. New York, Cambridge University Press, pp. 31–83.

Gerdt, P., P. Kommers, C. Looi and E. Sutinen (2001). Woven stories as a cognitive tool. InCognitive Technol-
ogy, Lecture Notes in Artificial Intelligence, Vol. 2117. Springer-Verlag, pp. 233–247.

Gestwicki, P., and B. Jayaraman (2005). Methodology and architecture of JIVE. InProceedings of the 2005
ACM Symposium on Software Visualization (SoftVis ’05). ACM Press, New York, NY, pp. 95–104.

Hoc, J.-M., T.R.G. Green, R. Samurcay and D.J. Gilmore (Eds.) (1990).Psychology of Programming. Academic
Press.

Hundhausen, C.D., S.A. Douglas and J.T. Stasko (2002). A meta-study of algorithm visualization effectiveness.
Journal of Visual Languages & Computing, 13(3), 259–290.



204 R. Bednarik, A. Moreno, N. Myller

Korhonen, A., L. Malmi, P. Silvasti, V. Karavirta, J. Lönnberg, J. Nikander, K. Stålnacke and P. Ihantola (2004).
Matrix – A Framework for Interactive Software Visualization. Laboratory of Information Processing Science,
Department of Computer Science and Engineering, Helsinki University of Technology. TKO-B 154/04,
Research Report.

Küstermann, R., D. Ratz and D. Seese (2005). Effektive Java-Grundausbildung unter Einsatz eines Learning
Management Systems und spezieller Werkzeuge. InProceedings of the INFOS’ 05. pp. 10.

Kölling, M., B. Quig, A. Patterson and J. Rosenberg (2003). The BlueJ system and its pedagogy.Journal of
Computer Science Education, 13(4).

Lahtinen, S.-P., E. Sutinen and J. Tarhio (1998). Automated animation of algorithms with Eliot.Journal of
Visual Languages and Computing, 9(3), 337–349.

Moreno, A. (2005).The Design and Implementation of Intermediate Codes for Software Visualization. Depart-
ment of Computer Science, University of Joensuu, Joensuu, Finland.
http://cs.joensuu.fi/jeliot/files/Andres_thesis.pdf

Moreno, A., N. Myller, E. Sutinen and M. Ben-Ari (2004a). Visualizing Programs with Jeliot 3. InProceedings
of the International Working Conference on Advanced Visual Interfaces (AVI 2004). Gallipoli, ACM Press,
pp. 373–376.

Moreno, A., N. Myller and E. Sutinen (2004b). JeCo, a collaborative learning tool for programming. InPro-
ceedings of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’04). Rome,
IEEE Press, pp. 261–263.

Myller, N. (2004).The Fundamental Design Issues of Jeliot 3. Master’s thesis. Department of Computer Sci-
ence, University of Joensuu, Joensuu, Finland.
ftp://cs.joensuu.fi/pub/Theses/2004_MSc_Myller_Niko.pdf

O’Donnell, F. (2004).A Simulation Framework for the Teaching of Distributed Systems Concept.
https://www.cs.tcd.ie/Fionnuala.ODonnell/Framework/index.htm

Rössling, G., and B. Freisleben (2002). ANIMAL: A system for supporting multiple roles in algorithm anima-
tion. Journal of Visual Languages and Computing, 13(3), 341–354.

Sajaniemi, J., and M. Kuittinen (2003). Program animation based on the roles of variables. InProceedings of
the 2003 ACM Symposium on Software Visualization. ACM Press, pp. 7–16.

Squires, D., and J. Preece (1999). Predicting quality in educational software: evaluating for learning, usability
and the synergy between them.Interacting with Computers, 11(5), 467–483.

Stasko, J.T. (1990). Tango: A framework and system for algorithm animation.IEEE Computer, 23(9), 27–38.
Sutinen, E., J. Tarhio and T. Teräsvirta (2003). Easy algorithm animation on the Web.Multimedia Tools and

Applications, 19(2), 179–184.



Various Utilizations of an Open-Source Program Visualization Tool, Jeliot 3 205

R. Bednarik has received MSc (2002) and PhLic (2006) degrees from the Department
of Computer Science, University of Joensuu, Finland. At the moment he is completing
a PhD project in the field of eye-movement tracking methodologies. In particular, his
research interests include HCI, psychology of programming, usability, program visual-
ization and computer science education. He has published several papers in reviewed
journals and international conferences.

A. Moreno is a PhD student at the University of Joensuu, Finland, since May 2005.
He received his master’s degree from the Polytechnic University of Madrid, Spain. His
master’s thesis developed an intermediate code for program animation, and was jointly
supervised by professors Erkki Sutinen and Mordechai Ben-Ari. He is currently research-
ing on program visualization and animation for novices, focusing on how to make cur-
rent visualization tools aware of the personal differences of the users. Having published
in conferences such as ACM ITiCSE and IEEE ICALT, he is an active member of the
Algorithm Animation community. He has also taken part in several working groups at
ITiCSE.

N. Myller received his BSc in 2003 and MSc in 2004 both from the Department of
Computer Science at University of Joensuu in a record time of 2.5 years from starting.
Currently, he is studying for his PhD under supervision of prof. Erkki Sutinen (Uni-
versity of Joensuu) and prof. Mordechai Ben-Ari (Weizmann Institute, Israel) and the
expected graduation is in 2007. His research interests lie in the fields of visualization and
concretization technologies, CSCL, information retrieval, computer ethics and adaptive
systems. He has published more than 30 papers in international journals and conferences.



206 R. Bednarik, A. Moreno, N. Myller

Skirtingi atvirosios programos, vizualizavimo priemonės „Jeliot 3“,
panaudojimo būdai

Roman BEDNARIK, Andrés MORENO, Niko MYLLER

Straipsnyje supažindinama su atvir↪aja vizualizavimo priemone „Jeliot 3“. Aptariami dizaino
principai ir ideologija, leidusi populiarėti šiai puikiai elektroninio mokymo priemonei bei dar kele-
tui kit ↪u su ja susijusi↪u aplink ↪u. Būtent, greta „Jeliot 3“ straipsnyje aptariamos ir trys kitos aplinkos:
„BlueJ“, „EJE“ ir „JeCO“, naudojaňcios „Jeliot 3“ kaip papildin↪i, skirt ↪a programos tekstui vizu-
alizuoti. Taip pat aptariama ir FADA aplinka, kuri sukurta remiantis „Jeliot 3“, tačiau naudojama
skirtingiems pedagoginiams tikslams. Pastebėtina, jog jau yra susib̄urusi ši↪u projekt↪u naudotoj↪u ir
tobulintoj ↪u bendruomeṅe, tad „Jeliot 3“ priemoṅe nuolat tobulinama remiantis tiek akademiniais
tyrimais, tiek bendruomenės pateikiamomis pastabomis ir pastebėjimais. Straipsnyje aprašoma pro-
grama gretinama su kai kuriomis kitomis šiuolaikinėmis priemoṅemis, supažindinama su kai ku-
riais itin ṡekmingais šios programos panaudojimo atvejais.


