
Informatics in Education, 2006, Vol. 5, No. 1, 15–36 15
 2006Institute of Mathematics and Informatics, Vilnius

Structure, Scoring and Purpose of Computing
Competitions

Gordon CORMACK, Ian MUNRO, Troy VASIGA
David R. Cheriton School of Computer Science, University of Waterloo
Waterloo Ontario N2L 3G1, Canada
e-mail: gvcormac@uwaterloo.ca, imunro@uwaterloo.ca, tmjvasig@cs.uwaterloo.ca

Graeme KEMKES
Department of Combinatorics and Optimization, University of Waterloo
Waterloo Ontario N2L 3G1, Canada
e-mail: gdkemkes@math.uwaterloo.ca

Received: January 2006

Abstract. We identify aspects of computing competition formats as they relate to the purpose of
these competitions, both stated and tacit. We consider the major international competitions – the
International Olympiad for Informatics, the ACM International Collegiate Programming Contest,
and top coder – and related contests whose format merits consideration. We consider the operational
impact and possible outcomes of incorporating several of these aspects into scholastic competitions.
We advocate, in particular, that contests be designed so as to provide a rewarding experience and
opportunity for achievement for all competitors; not just the winners. Specific contest elements
that should be considered are: (1) real-time scoring and feedback, (2) rewards for testing and test
case creation, (3) tasks with graduated difficulty, (4) collaborative tasks, (5) practice contests and
entry-level contests for novices, and (6) inclusion of spectators.

Key words: informatics olympiad, programming contest, algorithm contest.

Introduction

Three international informatics contests – and national, institutional, and Internet contests
modeled after them – dominate the landscape. The ACM International Collegiate Pro-
gramming Contest[plight://icpc.baylor.edu] (ICPC), in its thirtieth year, is a
team competition for young post-secondary students. The International Olympiad for In-
formatics[http://www.ioinformatics.org/], half ICPC’s age, targets high-school
students who represent their country in individual competition. The TopCoder algorithm
competition[http_//www.topcoder.com/tc], established in 2001, is an open pri-
vately run on-line contest with a large electronic community. ICPC, IOI and TopCoder
are allalgorithmic contests in which students program solutions to word problems in tra-
ditional languages like Pascal, C++ and Java. There is substantial overlap in the style and
subject matter of the problems addressed by participants in these contests; while none has
a formal syllabus; a rough characterization might be:



16 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

programming problems involving college-level computing and mathematics, as
well as associated fields such as operations research.
Skiena and Revilla’sProgramming Challenges (2003) provides a good overview.

Many individuals participate in (or are otherwise involved in) more than one; however,
each has its own organization, community, and purpose. The stated purposes of IOI and
ACM are to foster interest and community, and to promote achievement:

The ACM International Collegiate Programming Contest (ICPC) provides college
students with opportunities to interact with students from other universities and
to sharpen and demonstrate their problem-solving, programming, and teamwork
skills. The contest provides a platform for ACM, industry, and academia to encour-
age and focus public attention on the next generation of computing professionals
as they pursue excellence.
[http://icpc.baylor.edu/icpc/info/ppgs.pdf]

The primary goal of the IOI is to stimulate interest in informatics (computing
science) and information technology. Another important goal is to bring together
exceptionally talented pupils from various countries and to have them share sci-
entific and cultural experiences.
[http://olympiads.win.tue.nl/ioi/history.html]

Only TopCoder has the explicit purpose of evaluating its participants:
TopCoder’s mission is to create objective ratings that place high value on the pro-
gramming industries [sic] best and brightest, and build opportunity and commu-
nity for programmers through ongoing programming tournaments and employer
connections.

[http://www.topcoder.com/tc?module=Static&d1=about&d2=management]

Contests in general serve a number of roles. They are sport, providing entertainment
to spectators and participants. They recognize achievement. They illustrate, to students,
educators and the public at large, the nature of the discipline. They serve as an incentive
for students to enter the discipline, and to study and practice particular skills and tech-
niques. They serve as a model for similar competitions, and drive preparatory contests
and informatics curricula. They serve to build and support a community of participants,
coaches and well-wishers.

The balance of roles in a contest involves many tradeoffs. Sports typically involve
artificial rules and scoring methods that may be unreflective of any activity beyond the
sport. Rules that involve time pressure or adversarial strategies may attract some par-
ticipants and spectators while repelling others. Rules that introduce random or arbitrary
components may aidcompetitiveness (in the American sense that any of a large number
of competitors may win any given event) but compromise the recognition of true achieve-
ment. On the other hand such rules serve to counter the all-too-common inference that
the winner is the best in the discipline; he or she is simply the winner of this particu-
lar event. Accolades and prizes for overall winners provide spectacle but little incentive
or recognition for the majority who are not among the best. Similarly, tasks designed
only to identify the best may fail to provide any valuable experience for the majority of
participants. Lack of feedback may promote self-discipline and self-evaluation, reduce



Structure, Scoring and Purpose of Computing Competitions 17

competitive pressure and introduce suspense as to the outcome; on the other hand it may
increase frustration, diminish achievement and diminish spectator appeal.

The following sections describe the current structure of ICPC, IOI, and TopCoder
competitions. Other competitions, computing and non-computing, are then summarized
for contrast. Particular design issues are then elaborated, drawing examples from aspects
of the various contests. Finally, several proposals are advanced for implementation within
the context of existing structures. Each proposal is analyzed as to its compatibility with
existing structures and the degree to which it might advance the purposes of scholastic
computing contests.

Contest Structure and Scoring

ICPC. A team of three students shares one computer workstation in a five-hour effort to
solve a number of problems, in English, given on paper. Each problem consists of a mo-
tivating application, a precise input and output specification, and some simple examples.
The team may solve the problems in any order; a solution consists of a program written
in a conventional programming language such as Pascal, C++, or Java, which must cor-
rectly handle all valid inputs. The source code for the solution is submitted electronically
to the judges, who test it as exhaustively as possible on blind test data. If it runs in time
and passes all test cases, it is accepted; otherwise it is rejected. No partial credit is given,
but the team may resubmit a rejected program. When a program is accepted a penalty
accrues – 1 point for every minute since the beginning of the contest, and 20 points for
each prior rejected submission for the same problem. The final ranking is by number of
problems solved, with penalty points as a tie-breaker. At the world finals, penalty points
are recorded only for the top twelve teams; teams below the twelve with the same num-
ber of correct submissions are declared to be tied; teams below median are unranked.
In addition, the following regional champions are declared, based on the same ranking,
including penalty points (even for teams not in the top twelve overall): Africa and Middle
East, Asia, Europe, Latin America, North America, South Pacific.

During the contest, an on-line scoreboard is available indicating the problems solved
and penalty points for each team. Contestants and spectators (on-site and on-line) may
see the scoreboard, but the scoreboard is not updated during the last hour of the contest,
so as to preserve some uncertainty pending the awards presentation. Balloons of differ-
ent colours – one colour per problem – are affixed to the team’s workstations as they
solve problems. The balloons enhance the spectacle and allow observers to glean more
information than shown on the scoreboard, especially during the last hour of competition.

Some regions release detailed final results, as well as the judge data and model solu-
tions. The World Finals releases only summary scores consisting of number of problems
solved and penalty points for the top twelve, number of problems solved for teams solving
at least the median number of problems, and no ranking for teams solving fewer.

Recent ICPC World Finals have included a peripheral event – the Java Challenge or
the Parallel Challenge. In this event, teams are given the specification for some sort of



18 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

adversarial game (such as a war, demolition derby, etc.) and must, within a limited time,
write a program to play the game. The various teams’ entries then play one another in a
live multi-round tournament that is projected during a reception on the evening preceding
the contest proper. The winners of the challenge receive auxiliary awards; the result has
no bearing on the ICPC standings.

IOI. Each country’s delegation consists of up to four competitors. Individual competi-
tors participate in two five-hour sessions on separate days. Each session involves solving
three problems whose specifications are similar to those of the ICPC, but translated from
English to the contestant’s native language. Solutions must be written in Pascal or C++,
and may be submitted electronically. However, no results are communicated to the con-
testant during the contest. He or she may submit or re-submit any of the problems at any
time. Printed results are given to participants following each day’s competition. In addi-
tion, judges’ data is made available so that a participant may diagnose his or her errors,
and appeal the score if he or she believes it is in error.

Unlike the ICPC, IOI awards marks for partially correct submissions. The majority
of problems are judged by running the solutions on a series of test cases are graduated
by perceived difficulty; the contestant scores ten points for each correctly-solved case.
Typically, time limits are very tight, so that only the best-known algorithm to solve a
problem will pass all test cases. (While the ICPC also enforces time limits, these lim-
its are generous and a serious constraint for only a few of the problems; for most, any
reasonable algorithm will do.) Some IOI problems are dubbed “output only”. For these
problems, like those of the IPSC, the input data is given to the contestants, and they sub-
mit the results rather than a program. Several distinct input files are given; the contestant
must submit the result for each one. The inputs are chosen so as to present graduated
levels of difficulty. Some IOI problems – whether “output only” are not, are open-ended,
and scored on a continuous scale according to how well they solve the problem. These
problems are dubbed “relative judging” because the scores are adjusted so that the best
solution scores full marks.

No contestant ranking is disclosed until the final awards ceremony. However, more
gregarious students are often able to deduce material portions of the ranking via the
grapevine. At the awards ceremony, medals are given to those above median, in the order
lowest-to-highest. About 1/12 of all contestants receive a gold medal; 1/6 receive silver;
1/4 receive bronze. In addition, the winner (or winners, in case of a tie) is traditionally
recognized with a special prize from the host or a sponsor, but only the medal awards are
elaborated in the rules.

TopCoder algorithm competition. Individual TopCoder members log in to an on-
line development and judging environment. The environment includes “practice rooms”
where a member may acquaint him or herself with past contest problems, and practice for
the contest by solving them. The environment also provides “chat rooms” which allow
for on-line discussion before, during, and after the contests. In addition, forums (formerly
round tables) provide an archived bulletin board for discussing competitions, algorithms
and related topics.



Structure, Scoring and Purpose of Computing Competitions 19

The contest itself takes place in three rounds –coding, challenge, andsystem test.
During the coding phase, participants are presented with a menu of three problems that
may be opened, each with a “point value” indicating its perceived difficulty. The problems
resemble those of ICPC or IOI, but two of the problems are typically less algorithmically
challenging than would be typical for these contests. Each solution consists of a Java,
C++ or C# class which is embedded in a larger test program that invokes it. Unlike IOI
or ICPC, solutions do not read or write files (or even standard input and output). Rather,
they take their inputs as parameters and return their results. Extensive, but not necessar-
ily exhaustive, test cases are available for testing. Contestants may also compose their
own test cases using the contest environment. The TopCoder on-line system provides a
complete environment for editing, compiling, and testing programs; however, competi-
tors may paste in previously written code that they have on hand, or use “plug-ins” to the
same effect. Contestants are proscribed from obfuscating their programs, or from includ-
ing large amounts of unused code.

A contestant may submit a solution at any time. Contestants may open the problems in
any order, but the point value for a problem begins to decay as soon as it is opened. When
a solution is submitted, its point value is established, but the program is not evaluated until
later. If it subsequently passes all tests, it receives the established point value, otherwise
0. If a contestant discovers that a submitted solution is wrong, it may be resubmitted,
but its value will have decayed further in the interim, and an additional 10% penalty is
applied.

The coding phase lasts 75 minutes. Following a short intermission, the challenge
phase begins. Contestants can view their competitors’ code, and may construct a test
case which which to challenge a specific submission. If the challenge succeeds (i.e., the
submission fails on the test case) the challenger receives 50 points and the submission’s
score is set to 0. Otherwise the submitter receives 50 points.

Following the coding phase, system tests are run on all the submissions; those that
survive all system tests are awarded the score that was determined at the time of submis-
sion.

Individual competition rankings are determined by the sum of submission and chal-
lenge scores. In addition TopCoder maintains an overall ranking of members based on
formula that attempts to model the probability that a particular member will prevail over
any other particular member in a given contest.

In addition to the on-line contests, TopCoder and its sponsors run several multi-level
tournaments, with qualifying rounds done on-line and final rounds done on-site. On-line
spectators may observe notices of the contestants activities – opening problems, com-
piling, testing, and submitting solutions, challenges and their results. The chat rooms
provide a facility for spectators to observe and discuss these events, and to speculate and
argue about their meaning. On-site spectators see a projected image of each contestant’s
computer screen.

Other computing contests. National and regional high-school contests are generally
modelled after the IOI, with somewhat different emphasis. For example, the Canadian
Computing Competition[http://contest-cemc.uwaterloo.ca/ccc/] (CCC) in-
corporates a distributed first-stage competition that is administered autonomously by



20 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

individual schools. Its purposes include identifying several individuals for further
competition (including the IOI), providing enriched education for gifted students, at-
tracting students (girls in particular) to study informatics in high school and uni-
versity, providing curriculum guidance for high schools, and fostering a commu-
nity of computer science students and educators. The USA Computing Olympiad
[http://oldweb.uwp.edu/academic/mathematics/usaco/] (USACO) admin-
isters its competition as an on-line contest. On-line derivatives of ICPC abound; the most
well established is the Valladolid Programming Contest Site[http://acm.uva.es/].
The Internet Problem Solving Contest[http://ipsc.ksp.sk/] (IPSC) is an ICPC-
style contest in which participants are given input data and must submit output data, as
opposed to programmed solutions, thus allowing them to use any computing platform,
tools and problem-solving strategy they choose.

Algorithmic programming contests in the style of ICPC, IOI and TopCoder empha-
size a specific subset of the skills and techniques that comprise informatics. Are these
the most important skills, or simply those that are easiest to measure? Are these timed
contests attractive a broad population of potential participants, or do they select a narrow
demographic? Are the contests appealing to an audience beyond the immediate partici-
pants and their acquaintances? Do the contests accurately convey – to students, educators,
and the public at large – the nature of informatics? Bill Gates, for one, thinks not. In a
recent visit to the University of Waterloo he said that contests werehard core and did a
poor job of attracting a broad spectrum of talented individuals to study computer science
(Gates, 2005).

Other informatics competitions and challenges diverge from the ICPC/IOI/TopCoder
model. TopCoder’scomponent competitions emphasize the process of designing and de-
veloping, over many days, reusable software components. Submissions are evaluated
manually by filling in a structuredscoreboard which is known to participants in advance.
High-achieving designers are invited to serve as evaluators. The ICFP (International
Conference on Functional Programming) Programming Contest[http://icfpc.plt-

scheme.org/] promotes (but is not restricted to) the use of non-traditional program-
ming languages to address open-ended problems. Participating teams prepare their sub-
missions, in a language and development environment of their choosing, over sev-
eral days. The relative performance of submissions, or their performance in a tourna-
ment, determines the winner. Various robotic and tournament competitions have been
staged[http://www.sumost.ca/steve/games/]; for example, the RoShamBo Pro-
gramming Competition[http://www.cs.ualberta.ca/∼darse/rsbpc.html] is
a tournament between computer programs, written in C, that play Rock-Paper-Scissors.
The 24-Hour Programming Contest[http://www.challenge24.org/] requires
participants to supply their own computing hardware and software, and to create sev-
eral complex embedded applications in a 24-hour period. A number of companies have
sponsored product- or application-specific programming challenges with a view to re-
cruitment and promotion of their product.

Other competitions and challenges diverge still further, either in their format or in the
skills required of participants. The J.W. Graham Computer Science Seminar (Graham and



Structure, Scoring and Purpose of Computing Competitions 21

Latulipe, 2003) is an event in which 14-to-16-year-old girls with no prior programming
experience are invited to attend an expense-paid week-long introduction to programming,
computer hardware and other topics related to informatics. While these tasks involved
tangible measures of accomplishment, they involved noprogramming contest, either be-
fore or during the seminar. Admission was, however, competitive; based on transcripts,
teacher recommendations and written statements, 40 of 900 applicants were selected to
attend in the first year. Some competitions and challenges use special-purpose languages
to as to minimize complexity, to avoid requiring prior training with specific tools, and
to integrate more readily into some tangible application. The J.W. Graham Seminar uses
Tcl/tk so as to give immediate visual feedback for programming efforts. Statistical games,
animation programming, robotic control scripting and games programming provide infor-
matics challenges while avoiding programmingper se (Rodger and Walker, 1996; Werner
et al., 2005; Roberts, 2000; Ladd and Harcourt, 2005). Turing Machines – normally used
only as an abstract model of computation – have been implemented and used as the ba-
sis for a programming contest (Brogi, 1997). Other competitions diverge in the opposite
direction, emphasizing particular aspects of current methods in software development
(Adrianoff et al., 2004; Adrianoffet al., 2003; Sherrell and McCauley, 2004).

A particularly novel contest structure, which encourages collaboration over compe-
tition, is based on a wiki-like environment (Gulley, 2004). Participants post solutions to
a shared wiki; each posting is evaluated when it is posted. Other participants are free to
take others’ submissions and improve upon them. In this way, the best overall solution
constantly improves – sometimes incrementally and occasionally by leaps and bounds.
Individuals’ contributions to the process are visible but not explicitly rewarded

The Australian Informatics Competition (AIC) is a contest which requires no knowl-
edge of programming. It is a paper-and-pencil contest with multiple-choice and short-
answer questions that are designed to encourage algorithmic thinking. As an example,
one question presents a game board together with rules for moving around the board. Stu-
dents are asked to compute the minimum number of moves needed to reach any square.

Non-computing contests. Competitions in areas other than informatics are perhaps
worthy of study. Verhoeff describes the operation of the International Mathematics
Olympiad (IMO) and contrasts it with the IOI. The IOI and IMO are two of the six
International Science Olympiads[http://olympiads.win.tue.nl/index.html],
the other four being Physics, Chemistry, Biology and Astronomy.

Mathematics is perhaps most closely associated with informatics, due as much to his-
tory as to common subject matter. Mathematics has a solid educational tradition; students
from all countries have the opportunity to receive formal education in standard mathe-
matical subjects. While the IMO has no prescribed syllabus, tasks are drawn from a de
facto list which avoids post-secondary topics such as calculus. Six long-answer problems
are posed over two competition days. Each is graded manually on a seven-point scale:
7 points are awarded for a perfect answer, 6 for an answer with some insubstantial flaw;
5 for a small mistake, 2 for significant progress, 1 for non-trivial progress, and 0 for busy
work (including special cases). Intermediate scores are awarded only in special circum-
stances. This coarse scoring method (42 possible outcomes) ensures that there will be
many tied scores among 200 or more participants; in particular ties for 0 and 42.



22 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

Elementary contests often use more structured formats. The CCC, for example, is
administered by the Centre for Education in Mathematics and Computing (CEMC)
[http://www.cemc.uwaterloo.ca/] – the same organization that has run the Cana-
dian Mathematics Competitions for decades. These competitions are specifically targeted
to students in grades 7 through 12. The early competitions consist of 25 multiple-choice
problems, reflective of the curriculum, with graduated difficulty. Later contests include
written proofs, in the style of the IMO, which are graded manually by CEMC. Prior to
grade 9, students are recognized only in their schools; in later years, national results are
published and the highest ranking contestants are invited to attend a seminar and second
round of competition at the University of Waterloo. The CCC, on the other hand has a
Junior Contest and a Senior Contest, with participants selected by experience not grade.
Both are algorithmic programming contests in the IOI style. As for the mathematics com-
petitions, winners are invited to a second round at the University of Waterloo. Although
the CCC has occasionally included written questions, it is essentially a programming con-
test. It has nothing to offer grade 7 and 8 students, or for that matter, any student who has
not learned to write a complete program from scratch in some algorithmic programming
language.

The International Physics Olympiad (IPhO)[http://www.jyu.fi/tdk/kastdk
/olympiads/] embodies theoretical and experimental tasks on separate competition
days. A formal syllabus prescribes the subject ares from which tasks are drawn. The
tasks, originally at a par with hard high school problems, now extend well beyond – com-
parable that might be tackled by a college major in physics. Tasks are posed as multi-
component problems with graduated difficulty. The International Chemistry (IChO),
[http://www.icho.sk/] like the IPhO, includes theoretical and practical tasks with
graduated components and has a detailed syllabus. Topics in the syllabus are identi-
fied as one if (1) standard high-school curriculum material, (2) enriched high-school
curriculum material, and (3) extra-curricular material not to be used unless introduced
in preparatory tasks. The International Biology Olympiad (IBO)[http://www.ibo-

info.org/] mirrors the format of the IPhO and IChO, but specifies proportions of each
major subject area that must be represented in the tasks.

The International Astronomy Olympiad (IAO)[http://www.issp.ac.ru/iao/]
is quite different from the others, occasioned by the fact that astronomy is rarely a com-
ponent of high-school curricula. The competition therefore targets youth with a junior
contest for 14–15 year-old and a senior contest for 16–17 year-old competitors. The ra-
tionale is to be the impetus to introduce and nurture interest in astronomy among a group
who would otherwise see little opportunity. Accomplished older students of astronomy
are expected to find other means, such as research symposia, of furthering their interests.

Finally, one may consider the nature of the appeal of cerebral contests outside the
realm of science. Quiz shows and quiz games have enduring popularity. Reach for the
Top [http://www.reachforthetop.com/] has engaged Canadian high-school stu-
dents (including the author) since 1961. Trivial Pursuit debuted as a smash hit, as did the
National Trivia Network (NTN) online quiz contest[http://www.ntn.com/]. On-line
poker, including NTN’s version, is the current rage. Chess is widely played for recreation,



Structure, Scoring and Purpose of Computing Competitions 23

and professional chess draws a wide audience. Ironically, chess provides a highly visi-
ble computer application – the 1996 ACM General Conference brought together Gary
Kasparov, Deep Blue, and the ICPC world championship.

Contest Design Issues

We believe that contest designers would be well advised to consider contest design in
light of specific objectives and constraints that are framed as independently as possible
from the aspects of design that advance those objectives within the constraints. To this
end, we offer the following points of discussion.

The need to identify a winner. The scientific olympiads in general identify sets of
gold, silver, and bronze medal winners. However, they publish complete rankings (at
least of the medalists) and there is some tendency to compare rankings of individuals and
aggregate standings for the members of a particular country’s delegation. Sponsors and
promoters like to single out winners for prizes and attention. Complete rankings and the
naming of a winner make serve to enhance the spectacle of the event; on the other hand,
complete rankings belie the importance and accuracy of the contest scores. Excessive
focus on a winner may detract from recognizing the achievements of others.

If one accepts that it is desirable to identify a (unique) winner, one should be careful
in choosing the mechanism to do so. One approach is to make the tasks so difficult that it
is nearly impossible for anyone to solve them all. If all the problems are at such a level (as
they have been for several recent IOI competitions) they offer little to most participants
by way of fostering achievement. Even the winners are expected tofail on several of the
problems.

Pressure elements. A number of elements of competitions exacerbate the pressure felt
by participants. These elements may enhance the entertainment value and appeal to some
participants (primarily boys), but may discourage others. Such elements include onerous
time limits, scoring by time, adversarial tasks and publication of total rankings.

Unpredictable evaluation and lack of feedback may also cause pressure, with little
offsetting entertainment value. A participant’s ability to guess how his or her performance
will be evaluated should not be a determining factor; neither should a participant’s ability
to guess what subject matter might be covered, or participant’s ability toplay the odds to
account for random factors.

Some elements of strategy may cause pressure but also foster valuable informatics
skills. Blind testing, for example, emphasizes validation and testing. But all-or-nothing
scoring (e.g., ACM and TopCoder), or after-contest testing (e.g., IOI and TopCoder) in
which the participant has no opportunity to learn from and correct his or her errors, add
considerable pressure and may not be the optimal method to foster the desired skills.

Prior knowledge vs. skill. Programming contests demand some combination of ap-
titude, prior knowledge and skills. The major competitions emphasize algorithmics –



24 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

knowledge of existing algorithms, their application in new circumstances, their realiza-
tion in some particular development environment, efficiency analysis, testing and debug-
ging. Memorization of existing algorithms (both common and obscure) and their real-
ization in a particular environment can, but should not, we suggest, dominate the other
factors. Other aspects of informatics, such as databases, operating systems, user inter-
faces, software engineering and theory are addressed only insofar as they are embedded
in programming tasks. Should they be included more explicitly? The major contests use
a standard development environment with conventional programming languages, editors,
compilers and debuggers. Participants may be considerably advantaged or disadvantaged
by prior experience with these tools. It is therefore important that all participants have
equal access to the tools, exactly as used in the contest. It is also important to consider
that the choice of tools constitutes an endorsement. Similarly, the choice of tasks serves
to illustrate the nature of informatics to contestants and to spectators. This purpose is well
served when the applications and their solutions are realistic, and the inputs and outputs
of the task can be readily seen to relate to the application.

Regardless of which skills and subjects are emphasized, participants’ abilities will
vary considerably. It is desirable that participants of all abilities are challenged and have
an opportunity to demonstrate accomplishment.

Collaboration vs. competition. Team competition fosters collaboration to a certain
extent. More general collaboration is traditionally confined to non-contest activities. For
example, IOI 2001 included an activity in which countries’ delegations paired in a scav-
enger hunt. Is is appropriate to project the image that social activities are collaborative
whereas informatics is competitive?

ICPC’s Java/Parallel challenge offers a chance for teams to write a software robot that
competes on their behalf. Teams can discuss their strategy with coaches and use any other
resources they please – they can even collude with other teams. However, the contest still
involves extreme time pressure, the contestants teams do not have a chance to revise
their submissions after observing tournament performance, and the animated activities in
which the robots compete are modeled after the most combative of video games, in which
attacking foes is an essential element for success.

Spectators, scoreboards and blackouts. Programming contests naturally draw spec-
tators. Coaches, family members and peers are naturally attracted, regardless of the in-
trinsic sporting appeal of the contest. Those interested in computing may find the contest
interesting in its own right. School, regional or national pride may elicit a following. A
primary goal of scholastic contests – to attract interest – is well served by supporting and
expanding the spectator community. Sponsors’ interests are served as well.

Specific Proposals

Real-time feedback. Many major competitions use on-line submission and automatic
judging. Within this context, real-time contestant feedback is readily implemented. This
feedback may be an essential part of the scoring method, as in ICPC, or it may be strictly



Structure, Scoring and Purpose of Computing Competitions 25

to assist contestants in assessing their own progress, thus reducing rather than exacerbat-
ing time and competitive pressures. In the context of the IOI, the following sources of
feedback should be considered:

On-demand scoring. Contestant may submit his or her solution for testing at any
time, in accordance with current IOI practice. In addition, contestant may request
final judgment which runs the submission on the official judge data and reports
summary results to the contestant. On-demand scoring by itself offers little advan-
tage to contestants unless combined with incremental scoring or resubmission.

Incremental scoring. When contestant requestsjudgment his or her submission is
run on the judge test cases in some predetermined order, stopping with the first
unsatisfactory judgment Summary results, and perhaps the test data and correct
output, are returned to the contestant. Contestant may revise his or her solutions;
further judgment requests apply the submission to previously-untested cases.

Resubmission. After receiving feedback, contestant’s submission is re-scored on
test cases for which an unsatisfactory judgment was previously returned, possibly
for a reduced score. Resubmission requires that the test data – at least the correct
output – not be returned to the contestant. So there’s a tradeoff between two valu-
able opportunities – the opportunity to learn from incorrect submissions and the
opportunity to repair mistakes.

“Buy” a test case. Contestants may, by forfeiting the right to resubmit, gain access
to the input and output data for a particular case. This affords the contestant the
opportunity to evaluate the tradeoff between learning and repairing; however, this
very choice introduces a strategic element that is tangential to the principal focus
of the competition.

Unscored mock judgment. Contestant may requestmock judgment which runs his
or solution on data resembling the judge data. Results are returned to contestant, but
have no bearing on contestant’s score. Mock judgment may be fairly exhaustive,
in which case contestant may reasonably assume that satisfactory mock judgments
predict a good score on the real test data. Or the mock judgment may omit certain
difficult cases, in order to promote analysis. Some combination of exhaustive and
non-exhaustive mock tests may be used for different tasks; however, the task de-
scriptions should indicate which is provided. Mock judgment may use any of the
feedback mechanisms outlined above.

Scoring of sample cases. Contestants are given a number of sample inputs and sub-
mit only the results, which may be derived using an ad hoc combination of manual
and automatic computation. These serve to reinforce the contestant’s understanding
of the problem, independent of discovering and implementing a general efficient
algorithm.

Test case creation task. Thorough analysis and testing may be encouraged by reward-
ing the composition of effective test data. This objective may be achieved with additional
submission and scoring elements that complement existing evaluation methods, and the
feedback mechanisms proposed above.



26 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

Test case submission. Contestant composes both input and output, which are run in
the judge environment using a standard implementation. Validity of the submitted
input and output is evaluated and reported to the contestant.

Test case scoring. Contestant scores could be based, in part, on successful test case
submission. The intended effect is to encourage testing and the creation of good test
cases. Evaluation criteria must support this effect. Of course, test cases should have
valid input and output, but they should also expose special cases likely to expose
errors. To this end, we suggest that test cases could be evaluated with respect their
ability to correctly detect erroneous solutions – these erroneous solutions may be
composed by the judges, or the actual submissions. Using the actual submissions
need not be adversarial (as it is in TopCoder’s challenge phase), as only statistics
need to be reported, and only the scores of the test cases (not the scores of the
program runs on the test cases) are affected. We suggest that an appropriate score
would be the fraction of all incorrect submissions detected by a suite of test cases.
If the effectiveness of test cases is evaluated on the basis of other all contestants’
submission at the time of testing, final test case scoring could be computed only at
the end of the contest. Feedback in this regard should be clearly labeledprovisional.

Test case wiki. Collaboration may be encouraged by posting all submitted test data
to a shared data space available to all contestants. Data sets may be anonymous,
credited, or credited using a pseudonym. Data sets may be augmented by their
current score – the fraction of incorrect submissions (to date) that they correctly
detect. Data sets may be ranked by their effectiveness; that is, the wiki forms a
ladder tournament. Contestants are free to use any of the data sets, and may aug-
ment or enhance them to form better ones. Contestant’s test cases may be scored
in various ways, such as the incremental improvement of their submissions over
previous ones, or the popularity of their test suites as measured by the number of
other contestants that use them, or the popularity by vote, or simply the effective-
ness of their final submission as detailed above. Careful consideration should be
given to any scoring mechanism to ensure that anti-collaborative tactics, such as
withholding submissions to the last minute, are discouraged.

Graduated difficulty. Of the major computer contests, only IOI presents contestants
with a few very hard problems – very hard in that only a minority, generally a tiny mi-
nority solve them (i.e., provide a correct solution that meets all the specified constraints).
This means that the vast majority of submissions arepartially correct; in other words,
incorrect. The overarching effect of scoring is to reward incorrect solutions with part
marks. We believe that this situation has arisen partly due to the small number of tasks,
and the fact that the tasks are not divided subtasks of graduated difficulty. We believe that
problem difficulty has risen in a quest to avoid (ties for) perfect scores, further exacer-
bating the problem. Even if we stipulate (which we do not) that ties for perfect scores
are a problem, we advance measures or graduated scoring as being more appropriate than
across-the-board increases in difficulty.



Structure, Scoring and Purpose of Computing Competitions 27

Larger problem sets covering a range of difficulty. ICPC uses a larger number of
tasks, ranging in difficulty from straightforward to very challenging. Tasks have
equal scoring weight and are not ordered or otherwise labeled by difficulty; there-
fore, difficulty assessment is an element of strategy. ICPC espouses the design prin-
ciple that, in a good contest, every team should solve at least one problem, every
problem should be solved by at least one team, and no team should solve all prob-
lems. The difficulty of IOI tasks is comparable to the hardest of ICPC tasks. Yet
IOI medalists do not automatically succeed at ICPC, even though ICPC provides
feedback, in large part because ICPC demands total correctness. TopCoder pro-
vides tasks with a range of difficulty; the assessed difficulty of each task is stated,
and the score for each task depends on its difficulty.

Speed of submission as an element of score. Time pressure is a large element of the
TopCoder algorithm competition. Contestants who do the easy problems quickly
but cannot do the hard problem often outscore contestants do the hard problem
more slowly. We are not convinced that this emphasis on speed offers the right bal-
ance. ICPC’s balance, which rewards speed but not nearly so heavily as TopCoder,
may be appropriate for the college level, but we suggest that speed should not be
an explicit factor in scoring high school competitions. Nevertheless, speed offers a
more appropriate measure of accomplishment than scoring incorrect submissions.

Adjudication of near correctness or significant progress. IMO uses a small num-
ber of tasks and is therefore subject to some of the same criticism. However, IMO
places no emphasis on identifying a unique winner, and scoring seeks to identify
nearly correct solutions which, according to a human assessor, contain only a mi-
nor mistake. This judgment method is quite different from counting the number
of cases for which the solution works (e.g., it may be nearly correct but work for
no cases, or completely off track and work for several). Nevertheless, the format
of the IMO has competitors in isolation, with no feedback, searching for solutions
to a very small number of hard problems. We see no easy way to incorporate the
adjudication of near correctness or significant progress within a fully automated
judging system. A semi-automatic judging system like that used by ICPC, com-
bined with scoring guidelines like those used by the IMO, might be an appropriate
way to effect this approach. Task statements, for example, might encourage partici-
pants to submit as comments the algorithms chosen, rationale (or even proof) along
with their submission. These could be the basis for assessing significant progress,
which inspection or even modification and testing of the code might be the basis
for assessing near correctness. These activities are done routinely (but not formally
or systematically) by ICPC (and, we believe, IOI and TopCoder) judges.

Multi-part problems. The other science olympiads tend to use multi-part problems
in which the first parts are relatively straightforward, and successive parts develop
the theme of the task. Each step is individually correct or not, so partial scores
are based on number of correctly answered components. Most IOI tasks could be
formulated as multi-part problems. Some parts might involve solving small cases



28 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

by hand, or answering other questions relating to the task. We suggest that the
now-infamous fifty-percent-rule, if applied, should be handled this way – the task
should explicitly have one part which involves solving the problem with weaker
constraints. The fifty-percent rule may be considered a very coarse and limited
special case of the multi-part approach. But it introduces an extraneous element of
strategy – the contestant must decide whether to try for a single implementation that
solves both parts, or to solve them separately. Better to have different, if related,
sub-tasks than simply to vary the size of the problem.

Speed of execution as an element of score. Efficiency is an important element of
informatics, but so is correctness and any number of aspects. Execution speed
is not a particularly good measure of efficiency, as it depends on the vagaries of
the implementation of language and run-time features like input/output, maps and
memory management subsystems. The specification of tight limits telegraphs in-
formation about the expected solution to the problem, potentially biasing the con-
testant’s search for a solution. IOI uses very tight per-question time limits which
are a challenge to meet for almost every task. We believe that this situation arose
as the mechanism to award partial scores, a mechanism whose appropriateness we
question. In contrast, ICPC and TopCoder use a fixed time limit – it is up to the
contestant to determine, for each task, whether or not this limit is a serious con-
straint. For most problems, any reasonable algorithm will do. Plenty of challenge
remains in designing and implementing a reasonable algorithm.

Open-ended tasks. Open-ended tasks provide a continuous or near-continuous
score, which is attractive in avoiding ties and in rewarding a wide diversity of
achievement. Such an approach – dubbedrelative scoring – has been used occa-
sionally for individual tasks in IOI competitions. The name is perhaps misleading,
underscoring the adversarial rather than continuous aspect of scoring. There is no
particular reason why such tasks must be gradedon the curve as implied by the
term. The important aspect is that there is no known optimal solution to a prob-
lem, and points are awarded for correct submissions in proportion to how well
they do. Past relative scoring tasks have involved precisely defined, but intractable,
optimization problems. A vast number of real-world applications, such as pattern
recognition, information retrieval compiler optimization, admit no precise math-
ematical formulation, yet are suitable for this purpose. Although they may admit
no mathematical specification, it is easy to evaluate submissions in an objective
manner by applying them to data derived from real sources. It is also possible to
describe a basic approach which, if implemented correctly, will yield a baseline
score. Such tasks appear to be good illustrations of real informatics problems. A
sample task, adapted from one used by the Canadian Computing Competition, ap-
pears in the appendix.

Tournament-based evaluation. Contestants write a program to play some game for
two or more players. Contestant’s entries are played in a round-robin tournament
and scored by their win ratio. While there is an adversarial aspect to this method,



Structure, Scoring and Purpose of Computing Competitions 29

it may be mitigated by the fact that proxies (i.e., the submitted programs) do battle
rather than the contestants. Tournament scoring has been proposed but never used,
to your knowledge, for IOI. It is easy enough to implement within the current en-
vironment. As with scoring test suites by effectiveness, feedback could provide at
best provisional scores.

Practice contest. The practice contest introduces contestants and potential contestants
to the contest, and, in this capacity, should be as representative as possible.

Practice tasks are first-class citizens. All too often, practice problems are posed
as an afterthought, and not subject to the same quality assurance process as the
contest problems. Often the problems are utterly trivial, or relate to subject matter
outside the scope of the contest. As an example of the former, the ICPC final every
year uses for practice a task paraphrased asgiven two positive integers a and b,
compute the sum of the integers between a and b, inclusive. The mathematics and
programming are trivial, but the problem contains a devious trap:a may be greater
thanb. Every year this causes new teams untold fear and frustration for no reason –
ICPC finals may be counted on to identify winners by their ability to solve difficult
problems, not to avoid devious traps.

Tasks deemed inappropriate are inappropriate for practice. If a task is rejected as
a competition task because it contains inappropriate subject matter, it should be
rejected as a practice task as well.

Practice tasks may introduce or foreshadow new material. IPhO guidelines state
explicitly that extra-curricular material must be introduced in the practice tasks.
This approach provides a well-defined mechanism by which the subjects addressed
by tasks may evolve. The practice serves notice that certain techniques may be
required in the contest proper; sample solutions should provide a solid explanation
of the new material.

Collaborative activities. The informatics aspects of the IOI emphasize individual ac-
complishment. The goal of providing shared scientific and cultural experience is largely
addressed by ceremonies, field trips and leisure activities. Some of the leisure activities,
like scavenger hunts and other games, foster interaction and collaboration. We are con-
cerned here with informatics-oriented collaboration, both within and outside the contest
proper.

Wiki-based activities. We have proposed above a scheme for wiki-based test data
creation which has a high degree of collaboration within the context of the compe-
tition. Other wiki-based activities might be ongoing, with every participant having
the opportunity to contribute to some grand challenge. Or the participants could
be divided coarsely into, say 4 teams with each team having one member from
each country. Tasks could be open-ended, like the spam filter task, or more design-
oriented, like creating an interactive application to illustrate the IOI. Results from
each year could be published on the web so that each year’s participants would
have an incentive to out-do the previous year.



30 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

Informatics-based leisure activities. Although competitors certainly need a rest be-
tween competition days, a change can be as good as a rest. Scavenger hunts may be
adapted to solve informatics problems – perhaps of the sort pioneered by the AIC
which require no computer. A software robot tournament might be appropriate –
multi-country teams, perhaps with the aid of a wiki, strive to write robots. The tour-
naments are projected on a screen for the entertainment of all. Such a tournament
could be modelled after the ICPC challenge, amended to remove time pressure and
to make the tournament less resemble a boy’s combat video game.

Entry-level contests. Programming contests modelled after the IOI competition re-
quire that students be familiar with a programming language and environment. These
contests are accessible only to students who have already studied computer program-
ming. But it may be wise to design additional contests that will be accessible to a broader
audience.

Among the six science Olympiads, we find ourselves in a distinct, perhaps unenviable,
position. Mathematics, Physics, Chemistry and Biology programs at the high school level
are well established. Teachers of these subjects are generally well qualified; they under-
stand what the subject is about and can easily point to appropriate advanced material
for the gifted student. Astronomy is different; students pick it up as a hobby, without
school courses and in most countries will actually move toward the subject at the uni-
versity level by first studying physics. We are different. There are, in many, though not
all, school systems, high school courses, typically taught by dedicated teachers with lit-
tle formal training in the subject. Computer Science is a subject that offers a career to
a very large number of students and hence there are large CS programs at many (most)
universities. Unlike the older sciences, students not only lack solid courses and guidance
for choosing it as a university program, but are also subjected to misinformation and a
negative impression of its intellectual content. As a consequence, we often attract the
wrong students at the university level. A goal of computing contests would seem to be
in addressing this issue. Our contests have the potential to educate a broader audience
about the intellectual challenge of computer science. This audience should include stu-
dents who have not learned computer programming, as well as parents, teachers, and
other mentors. This brings us to our proposal: to study how to design a novice informat-
ics contest with no programming prerequisites. For such a contest, no knowledge of a
programming language or environment may be assumed. Students with no background
in computer science could write this contest and learn about some of the techniques and
challenges of our Computer Science. The Australian Informatics Competition (described
above) is an excellent example of an entry-level paper-and-pencil contest. Can we design
a competition that still uses the computer, but in a way that requires no prior knowledge
of programming? By retaining the computer in the contest, students can formally spec-
ify their procedures (using a self-contained environment defined within the contest) and
enjoy interactivity and feedback.

Spectators are essential not peripheral. Spectator involvement should be an explicit
objective of contest design and event organization. Media (traditional and non-traditional)



Structure, Scoring and Purpose of Computing Competitions 31

should be used to communicate the key messages of the IOI and to involve spectators in
following events that reinforce these key messages.

Spectator appeal depends on the sporting nature of the contest. The rules and ele-
ments of strategy must be transparent enough and interesting enough that the spectator
generally understands and is engaged by what is going on. Spectator appeal depends on
communication: the contest must be advertised, so that spectators know where and when
it is taking place, how to follow it (by attending, following on-line or reading about it
after the fact), and the basic theme, rules and elements of strategy. Announcements and
coverage should take place at specific times and places, which should be well advertised
in advance.

Live coverage can be an important element of spectator appeal. This can involve ob-
serving participants, or their progress, or both. The ICPC finals offers a gallery from
which on-site spectators may observe participants, as well as balloons and an on-line
scoreboard by which the teams’ progress may be tracked. The scoreboard is available
on-line, but its location (or, indeed, its existence) is undisclosed prior to the contest. The
scoreboard is frozen one hour from the end of the contest, so as to maintain some uncer-
tainty as to the final rankings pending the awards ceremony. The awards ceremony may
itself could be a spectacle, but in recent years has been a private ceremony involving only
immediate participants. It is not clear that spectator appeal is enhanced by deferring sus-
pense from the contest to the awards ceremony. The IOI provides no live coverage, and
no feedback to participants. Individuals are informed of their results, but collected results
are withheld pending the awards ceremony. TopCoder’s on-line competitions provide ex-
tensive live coverage to members who log in to the contest environment. Spectators can
view participant’s actions but not the problem sets. Spectators can discuss the action in
chat rooms. The final results are available within the environment at an unpredictable time
– the end of system testing. Public results are available much later, also at an unspecified
time.

Analysis, commentary and personal interest may also contribute to spectator appeal.
Technically savvy spectators may like to avail themselves of the task statements so as
to play along by formulating solutions or to analyze them so as to speculate about pos-
sible competition outcomes. Other spectators may nevertheless find the task statements
interesting and educational, and may benefit from expert commentary on the underlying
problems that they expose, and possible strategies for their solution. Solutions, judging
data and contestant submissions may provide fodder for additional analysis and commen-
tary. Personal interest appeal draws from the lives and personal stories of those involved
with the contest. An article by Sean Silcoff, a reporter who accompanied Waterloo’s ICPC
team to the 2000 world finals, captures some of the drama that might better be exposed
to spectators.

Hanging over the Waterloo team like a dark cloud is Problem F. Lhoták has
tried it twice and still hasn’t cracked it. The problem should be the easiest of
the contest, but it’s confounding a lot of teams. What most of them don’t re-
alize is that there’s something wrong with the data. But Lhoták doesn’t give
up. He figures a way around the discrepancy. At the 156-minute mark, the



32 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

judges accept his submission, giving Waterloo its second correct answer. Re-
lief. Twelve minutes later, Waterloo scores its third. Excitement. The team is
back in the game, and suddenly in fifth place. Seventeen minutes later, Che-
ung solves the rubber-stopper stumper. The team vaults into second. Jubilation.
http://www.canadianbusiness.com/article.jsp?content=10326

Appendix – Sample Open-Ended Task – Spam or Not Spam?

Unwanted, unsolicited email (spam) is annoying and clutters your mailbox. You are to
write a spam filter – a program that reads email messages of regular ASCII characters
and tries to determine whether or not each message is spam.

How can we determine whether or not a message is spam? Spam contains words and
phrases that are not common in genuine email messages. For example, the phrase

MAKE MONEY FAST, HONEY!!
is in all-uppercase, contains the word “money” and ends with a double exclamation

mark.
One way to create a spam filter is to read through many spam and non-spam messages

and to come up with a set of rules that will classify any particular message as spam or
not. This process can be tedious and error prone to do manually. Instead you will write a
program to automate the process.

A useful step in automatic classification is to split the text up into set oftrigrams. A
trigram is a sequence of three adjacent characters that appear in the message. A trigram
is case sensitive. The example above is composed of the trigrams:

MAK
AKE
KE
E M
MO
MON
ONE
NEY
EY
Y F
FA
FAS
AST
ST,
T,
, H
HO
HON
ONE
NEY
EY!
Y!!



Structure, Scoring and Purpose of Computing Competitions 33

If we examine a sample of spam and non-spam messages we find that some trigrams
are more common in spam; whereas others are more common in non-spam. This obser-
vation leads to a classification method:

• Examine a sample consisting of a large number of spam messages. Count the num-
ber of times that each trigram occurs. In the example above, there are 20 distinct tri-
grams; the trigrams ONE and NEY occur twice each and the remaining 18 trigrams
occur once each. (Trigrams that do not occur are considered to occur 0 times.) More
formally, for each trigramt we compute the frequencyfspam(t) with which it oc-
curs in the sample of spam.

• Examine a sample consisting of a large number of non-spam messages. Compute
fnon−spam(t), the frequency with which each trigramt appears in the sample of
non-spam.

• For a each message to be filtered, computefmessage(t) for each trigramt.
• If fmessage resemblesfspam more closely than it resemblesfnon−spam it is deter-

mined to be spam; otherwise it is determined to be non-spam.
• A similarity measure determines how closelyf1 andf2 resemble one another. One

of the simplest measures is the cosine measure:

∑
t f1(t)· f2(t)√∑

t[f1(t)]2·
√∑

t[f2(t)]2
.

Then we say that a message is spam if

similarity
(
fmessage, fspam

)
> similarity

(
fmessage, fnon−spam

)
.

You are to use this method, or a better method of your own design, to filter spam.
The first line of input contains three integers:s the number of sample spam messages

to follow; n the number of sample non-spam messages to follow;c the number of mes-
sages to be classified as spam or non-spam. Each message consists of several lines of text
and is terminated by a line containing “ENDMESSAGE”. This line will not appear else-
where in the input, and is not considered part of the message. The messages will be real
email messages, and will contain only printable characters, but will not all be be English.

For each of thec messages, your program will output a single line giving the classi-
fication of the message (“spam” or “non-spam”). If your program runs without error and
outputsc lines, each containing “spam” or “non-spam” it will receive a score proportional
to the number of messages that it correctly classifies; otherwise it will receive a score of
zero.

Sample Input 1
2 1 1
AAAA
BBBB CCCC
ENDMESSAGE
BBBB
ENDMESSAGE



34 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

AAAABBBB
ENDMESSAGE
AAABB
ENDMESSAGE

Output for Sample Input 1
non-spam

Sample Input 2
Found in the filed1q1sample.txt

Output for Sample Input 2
Spam

non-spam

References

Adrianoff, S.et al. (2003). A testing-based framework for programming contests. InOOPSLA 2003 Workshop
on Eclipse Technology eXchange. Anaheim.

Adrianoff, S.et al. (2004). Adding objects to the traditional ACM programming contest.SIGCSE’04. Virginia.
Brogi, A. (1997). A Turing machine contest for introducing high school students to computer science.SIGCSE

Bulletin, 29(1).
Gates, B. (2005).Spoken Comment at Faculty Round Table, Univesity of Waterloo, October 13.
Graham, S., and C. Latulipe (2003). CS girls rock: sparking interest in computer science and debunking stereo-

types. InProceedings of SIGCSE’03. Reno.
Gulley, N. (2004). In praise of tweaking: a wiki-like programming contest.Interactions, 11(3).
Ladd, B., and E. Harcourt (2005).Student Competitions and Bots in and Introductory Programming Course.

Consortium of Computing Sciences in Colleges.
Roberts, E. (2000). Strategies for encouraging individual achievement in introductory computer science courses.

SIGCSE 2000, Austin.
Rodger, S., and E. Walker (1996). Activities to attract high-school girls to computer science.SIGCSE’96.

Philadelphia.
Sherrell, L., and L. McCauley (2004). A programming competition for high school students emphasizing pro-

cess. In2nd Mid-South College Computing Conference. Little Rock.
Skiena, S., and M. Revilla (2003).Programming Challenges – the Programming Contest Training Manual.

Springer-Verlag, New York.
Werner, L.et al. (2005). Middle School Girls + Games Programming = Information Technology Fluency.SIG-

ITE ’05, Newark.



Structure, Scoring and Purpose of Computing Competitions 35

G.V. Cormack is a professor in the David R. Cheriton School of Computer Science, Uni-
versity of Waterloo. Cormack has coached Waterloo’s International Collegiate Program-
ming Contest team, qualifying ten consecutive years for the ICPC World Championship,
placing eight times in the top five, and winning once. He is a member of the Canadian
Computing Competition problem selection committee. He is currently an elected mem-
ber of the IOI Scientific Committee. Cormack’s research interests include information
storage and retrieval, and programming language design and implementation.

G. Kemkeshas participated in computing contests as a contestant, coach, and organizer.
After winning a bronze medal at the IOI and two gold medals at the ACM ICPC, he later
led and coached the Canadian IOI team. He has also served on the program committee for
Canada’s national informatics olympiad, the Canadian Computing Competition. Kemkes
is currently writing his PhD thesis on random graphs in the Department of Combinatorics
& Optimization, University of Waterloo.

I. Munro is professor of computer science and Canada research Chair in algorithm de-
sign, at the University of Waterloo. His research has concentrated on the efficiency of
algorithms and data structures. He has served the International Scientific Committee of
the IOI as well as on the editorial boards of CACM, Inf & Comp, and B.I.T., and the pro-
gram committees of most of the major conferences in his area. He is presently a member
of the board of the Centre for Education in Mathematics and Computing. He was elected
fellow of the Royal Society of Canada in 2003.

T. Vasigais a lecturer in the David R. Cheriton School of Computer Science at the Univer-
sity of Waterloo. He is also the director of the Canadian Computing Competition, which
is a competition for secondary students across Canada, and has been the delegation leader
for the Canadian Team at the International Olympiad of Informatics.



36 G. Cormack, G. Kemkes, I. Munro, T. Vasiga

Informatikos varžyb ↪u strukt ūra, vertinimas ir tikslai

Gordon CORMACK, Graeme KEMKES, Ian MUNRO, Troy VASIGA

Straipsnyje išskiriami informatikos varžyb↪u form ↪u aspektai, susij↪e su ši↪u varžyb↪u tiek išreikš-
tais, tiek aiškiai neišreikštais tikslais. Aptariamos pagrindinės šios srities tarptautinės varžybos –
Tarptautiṅes informatikos olimpiados, Tarptautinės koledž↪u programavimo (ACM) bei geriausio
programuotojo varžybos, dėmesio skiriama ir kai kurioms kitoms. Aptariamos ši↪u varžyb↪u kai kuri ↪u
aspekt↪u pritaikymo galimyḃes mokykliṅems varžyboms, j↪u ↪itaka ir padariniai. Manoma, jog varžy-
bos turi b̄uti organizuojamos taip, kad visi dalyviai – ne vien tik laimėtojai – pasisemt↪u iš j ↪u patirties
ir ↪igyt ↪u naudos. Be to, aptariami šie siektini specifiniai varžyb↪u elementai: 1) gr↪ižtamasis ryšys, kai
dalyvis spr↪esdamas užduotis iš karto mato savo rezultat↪a, 2) apdovanojimai už testavim↪a bei testo
klausimo suk̄urim ↪a, 3) užduotys skirstomos pagal sudėtingum↪a , 4) bendradarbiavimu pagr↪istos už-
duotys, 5) praktikos bei atrankini↪u varžyb↪u pradedantiesiems organizavimas, 6) žiūrov ↪u ↪itraukimas.


