Informatics in Education, 2006, Vol. 5, No. 1, 63-76 63
[2006Institute of Mathematics and Informatics, Vilnius

On the Suitability of Programming Tasks for
Automated Evaluation

Michal FORISEK

Department of Informatics, Physics and Informatics Comenius University
Mlynska dolina, 842 48 Bratislava, Slovakia
e-mail: forisek@dcs.fmph.uniba.sk

Received: March 2006

Abstract. For many programming tasks we would be glad to have some kind of automatic eva-
luation process. As an example, most of the programming contests use an automatic evaluation
of the contestants’ submissions. While this approach is clearly highly efficient, it also has some
drawbacks. Often it is the case that the test inputs are not able to “break” all flawed submissions. In
this article we show that the situation is not pleasant at all — for some programming tasks it is im-
possible to design good test inputs. Moreover, we discuss some ways how to recognize such tasks,
and discuss other possibilities for doing the evaluation. The discussion is focused on programming
contests, but the results can be applied for any programming tasks, e.g., assignments in school.

Key words: programming contests, programming tasks, I0l, automated testing, black-box testing,
task analysis.

1. Introduction

Competitions similar to the International Olympiad in Informatics (I0l, 2006) and the
ACM International Collegiate Programming Contest (ACM, 2006) have been going on
for many years. In the ACM ICPC contest model the contestants are given feedback on
the correctness of their submissions during the contest. Due to a vast amount of submitted
programs this is almost always done automatically. (Often there is a human supervising
the testing process.) At the IOl the submitted programs are only tested after the contest
ends, and the submissions are awarded a partial score for solving each of the test inputs.

We will now describe this canonical 10l scoring model in more detail. Each of the
tasks presented to the contestants is worth 100 points. Before the competition the au-
thor of the task prepares his own solution, a set of test inputs, and an output correctness
checker. (The output correctness checker can be replaced by a set of correct output files,
if they are unique.) The 100 points are distributed among the test inputs. After the con-
test ends, each of the contestants’ programs is compiled and run on each test input. For
each test input the program solves correctly (and without exceeding some enforced lim-
its) the contestant is awarded points associated with that test input. This testing model is
commonly known under the nanméack-box testing

We now answered the question “How?”. However, an even more important question
is “Why?”. What are the goals this automated evaluation procedure tries to accomplish?

64 M. ForiSek

After many discussions with other members of the 10l community, our understanding is
that the main goals are:

1. Contestants are supposed to find and implemeardreect algorithm. l.e., their
algorithm is supposed to correctly solve all instance of the given problem. A con-
testant that found and implemented a reasonably efficient correct algorithm should
score more than a contestant that found an incorrect algorithm.

2. The number of points a contestant receives for a correct algorithm should depend
onits asymptotic time complexity.

3. Several points should be deducted for small mistakes (e.g., not handling border
cases properly).

Note that these are only general rules. There may be different task types, e.g., open
data tasks or optimization tasks, where a different scoring schema has to be used. We
intentionally omitted details like “worst-case vs. average-case complexity”, and “com-
plexity vs. efficiency within the given limits”. However, the points mentioned above can
be applied to a vast majority of 10l tasks, and to many programming tasks in general.

The canonical way to reach the above goals is a careful preparation of the test inputs.
The inputs are prepared in such a way that any incorrect program should fail to solve
most, if not all of them. Different sizes of test inputs are used to distinguish between
differently efficient correct programs.

Well, at least that's the theory. In practice, sometimes an incorrect program scores far
too many points, sometimes an asymptotically better program scores less points than a
worse one, and sometimes a correct algorithm with a minor mistake (e.g., a typo) in its
implementation scores zero points.

In this article we document that these situations do indeed occur, try to identify the
various reasons that can cause them and suggest steps to be taken in future to solve these
problems.

In the next section we present some problematic 10I-level tasks from the recent years.

2. Investigating Recent 10I-level Tasks

To obtain some insight into the automated evaluation process we investigated all compe-
tition tasks from I0Is 2003, 2004, and 2005 (USA, Greece, and Poland). Our goal was
to check whether there is ancorrect algorithm that'seasy to findeasy to implement

(in particular, easier than a correct algorithm) awdres a significantly inappropriate
amount of point®n the test inputs used in the competition.

For the tasks presented below we were able to find such algorithms. The results of this
survey are presented in Table 1, some more details are in Appendix A.

In most of the cases we are aware that implementations of algorithms similar and/or
identical to the ones we found were indeed submitted by the contestants. Sometimes, we
are also aware of inefficient but correct programs that scored much less.

In addition, both Table 1 and Appendix A contain a task “safe” that was already
used in several similar contests (see the appendix for more details). The main reason for

On the Suitability of Programming Tasks for Automated Evaluation 65

Table 1
Task survey results

Task Algorithm type Points

101 2004: artemis brute force, terminate on time 80

101 2004: farmer greedy 90+
101 2004: hermes “almost” greedy 45
101 2005: rectangle symmetrical strategy 70
ACM ICPC: safe pruned backtracking 100

including this task in the survey results was to illustrate that sometimes an unintended (in
this case: correct but theoretically inefficient) approach can achieve a full score.

As we show in Appendix A, there are two different reasons behind these unpleasant
facts. For some of these tasks the test inputs were not designed carefully, but the rest of
these tasks was not suitable for black-box testing at all! In other words, it was impossible
to design good test inputs for these tasks.

After writing most of this article we became aware of the fact that (van Leeuwen,
2005) carried out a more in-depth analysis of one of the tasks we investigated (Phidias,
101 2004) and managed to show that also the test inputs for this task allowed many in-
correct programs to score well, some of them even got a full score. A short overview of
these results is given in (Verhoeff, 2006).

Together, these results show that this issue is quite significant and we have to take
steps to prevent similar issues from happening in the future.

3. Tasks Unsuitable for Black-Box Testing

We would like to note that it can be formally shown that some interesting algorithmical
tasks are not suitable for automatic 10I-style evaluation. In this section we present two
such tasks and discuss why they are not suitable.

As a consequence, this means that while the current model of evaluation is used at
the 10, there will be some algorithmical tasks that can not be used as IOl problems. In
order to broaden the set of possible tasks a different evaluation procedure would have to
be employed.

Planar Graph Coloring

Given is a planar graph, find the smallest number of colors sufficient to color its vertices
in such a way that no two neighbors have the same color.

Regardless of how the test inputs are chosen, there is a simple and wrong algorithm
that’s expected to solve at least half of the possible inputs: Check the trivial cases (a graph
with no edges: 1 color, a bipartite graph: 2 colors). In the non-trivial case, flip a coin and
output 3 or 4.

66 M. ForiSek

The Four-color theorem (Appel and Haken, 1997) guarantees that the answer is al-
ways at most 4. Thus when the answer is 3 or 4, our algorithm is correct with a 50%
probability. Thus, for each possible set of test inputs this algorithm is expected to solve
at least 50% of the test inputs correctly.

(Note that for various other reasons this task wouldn’t be suitable for the 101, we just
used it because it is simple and well-known.)

Substring Search

Given are two stringshaystack andneedle, the task is to count the number of times
needle OCCUrS inhaystack as a substring.

There are lots of known linear-time algorithms solving this task, with KMP (Ketith
al., 1977) being probably the most famous one. If we ussnd h to denote the length
of needle andhaystack, the time complexity of these types of algorithm€ g + h).

These algorithms are usually quite complicated and error-prone.

The problem is that there are simple but incorrect algorithms which are able to solve
almost all possible inputs.

As an example, consider the Rabin-Karp algorithm (Karp and Rabin, 1987).

In its correct implementation, we process all substringd@jstack of lengthn.

For each of them we compute some hash value. (The common implementation uses a
“running hash” that can be updated@{1) whenever we move to examine the next sub-
string.) Each time the hash value matches the haste@tic, both strings are compared

for equality.

The worst-case time complexity of this algorithmGgn(h — n)), but its expected
time complexity iSO(h + n).

The algorithm as stated above is correct. Hovewer, there is a “relaxation” of this al-
gorithm that is even easier to implement, and guaranteed @(bhet n): Each time the
hash value matches, count it as a match.

Note that while this algorithm is incorrect, it is very fast, and it is very highly im-
probable that it will fail (even once!) when doing the automated testing. Moreover, it is
impossible to devise good test inputs beforehand, as the goodness of the test inputs de-
pends on the exact hash function used. Using a known trick from the design of random-
ized algorithms (a random choice of a prime number used to compute the hash value, see
(Hromkovic, 2005).) we can even implement an algorithm that alithostsurely find the
correct output for each valid input.

We would like to stress that, in practice, programs that misbehave only once in a
large while are often one of the worst nightmares. Testing a program for subtle, sparsely
occuring bugs, is almost impossible, and the bugs may have a critical impact when they
occur after the program is released. By allowing such programs to achieve a full score in
a programming contest we are encouraging students to write such programs. This may
prove to be fatal not only in their future career, but also in our everyday lives (if the faulty
software product touches them).

On the Suitability of Programming Tasks for Automated Evaluation 67

4. Heuristic Methods for Recognizing Tasks Unsuitable for Black-Box Testing

Here we give a short summary of the guidelines informally published after IOl 2004 in
(ForiSek, 2004).

In order to make this presentation sufficiently brief we have to make a few gener-
alizations. We will talk about an abstract problem statement along the lines “given this
set of combinatorial objects, find the best among them in some given sense”. (Most pro-
gramming tasks can be viewed in this way. E.g., the shortest path problem can be seen as
“given the set of vertex sequences, find the one that represents a path foanand has
the shortest length”.)

We will use the ternpossible answer® denote the combinatorial objects the algo-
rithm has to examine, anwbrrect answeto denote the one it should find.

The tasks that are unsuitable for black-box testing usually exhibit one or more of the
following properties:

1. The set of correct answers is large.

2. We are only required to output some value depending on the correct answer, and

the value for a random answer is nearly optimal.

3. There is a known (theoretically incorrect) heuristic algorithm with a high probabi-

lity of solving a random test input correctly, within the imposed limits.

The rationale behind this statement follows.

For almost all programming tasks it is possible, and not very hard, to implement a
randomized brute force search that examines a subset of possible answers and outputs the
best one found. If the set of correct answers is large, it is quite common that this approach
will be successful and the found answer will often be optimal.

We are in a similar situation if condition 2 holds for the problem. In this situation,
in addition to random search, it is possible to guess the value for the correct answer.
Examples of such problems are |0l 2004 tasks Artemis and Farmer, see Appendix A.

There are some problems that exhibit only the third property. Here it may be possible
to devise test inputs that break one known heuristic algorithm, but practice shows that
many contestants will implement variatons on the known heuristic algorithm(s), and that
these variations will solve all (or almost all) test inputs correctly. An example is the
substring search problem presented in the previous section. There it is even provably
impossible to design test inputs that break all possible incorrect heuristic algorithms.

More detailed arguments can be found in (ForiSek, 2004).

5. Theoretical Results on Testing

The general theoretical formulation of the testing problem (given are two Turing ma-
chines, do they accept the same language?) is not decidable — see (Hopcroft and Ullman,
1979). While this result does not exactly apply to programming competitions (the set of
valid test inputs is finite), it does give us insight about the hardness of our goal.

68 M. ForiSek

It can be shown that a more exact formulation of our testing problem is an NP-hard
problem. For the lack of space we present just the idea behind this claim: We will reduce
the boolean formula satisfiability problem (SAT) to the problem of testing programs.
Suppose we have an instance of SAT, i.e., a boolean formulanwitiriables. We will
encode it as follows: Take the referrence solution and in the beginning of the program
add a piece of code that splits the input into a sequence of bits, consider thebfitsto
be the values of variables, and evaluate the formula for these values. If the formula turns
out to be true, the modified program gives an incorrect answer and terminates.

Thus, deciding whether the contestant’s program is correct is at least as hard as decid-
ing SAT. This implies that there is no (known) way to do the automated testing efficiently,
and at the same time to guarantee 100% accuracy.

6. Other Evaluation Methods

In the previous sections we have shown that the currently used automated black-box
testing is not suitable for some tasks the computer science offers. To be able to have
contestants solve other task types it may be worth looking at other evaluation methods,
discuss their advantages, disadvantages and suitability for the 10I.

Moreover, a huge disadvantage of black-box testing is that an almost correct program
with a small mistake may score zero points. In our opinion the most important part of
solving a task is the thought process, when the contestant discovers the idea of the solution
and convinces himself that the resulting algorithm is correct and reasonably fast. We
shall try to find such ways of evaluating the contestants’ submissions that the contestant’s
score will correspond to the quality of the algorithm he found. The implementation is
important, too, but the punishment for minor mistakes may be too great when using the
current evaluation model. This is another reason why discussing new evaluation methods
is important.

Below we will present a set of alternate evaluation methods along with our comments.

Pen-and-Paper Evaluation

In the Slovak Olympiad in Informatics, in the first two rounds contestants have to solve
theoretical problems. Their goal is to devise a correct algorithm that'’s as fast as possible,
and to give rationale why their algorithm works. Their works are then reviewed and scored
by experienced informatics teachers, and enthusiastic university students.

While we believe that this form of a contest has got many benefits (as it forces the
contestants to find correct algorithms, to be able to formulate and formally denote their
ideas), we do not see it, per se, as suitable for the 10l. The main problems here are the
time necessary to evaluate all the works, the language barrier, and objectivity.

Note that this model is currently being used, among others, at the International Mathe-
matical Olympiad (IMO). In spite of the best effort of the delegation leaders and problem
coordinators at the IMO, the process is still prone to a human error, and we are aware of
cases when almost identical works were awarded a different score.

On the Suitability of Programming Tasks for Automated Evaluation 69
Supplying a Proof

For the sake of completeness, we want to state that some programming languages (e.g.,
see (Vodaet al,, 1994-2006)) allow the programmer to write not only the program itself,
but also its formal proof of correctness.

While this theoretically solves all the difficulties with testing the programs for correct-
ness, we do not see this option to be suitable for high school students. Giving a detailed
formal proof is far beyond the current scope of the 10l. Moreover, a formal proof is usu-
ally far more complex than the algorithm we are proving. Thus, this approach would just
turn the problem solving competition into a competition in writing formal proofs.

Code Review — White-Box Testing

Often a much easier task than designing a universal set of test inputs is proving a given
implementation wrong, i.e., finding a single test input that breaks it.

This model is currently implemented and used in the TopCoder Algorithm competi-
tions, see (TopCoder Algorithm Competitions, 2006). In each competition there is some
allocated time when the contestants may view the programs other contestants submitted.
During this phase, whenever a contestant thinks that he found a bug in some program, he
may try to construct a test input that breaks it. Programs shown to be incorrect in this way
score zero points. (Moreover, the contestant that found the test input is awarded some
bonus points for this.)

This procedure is accompanied by black-box testing on a relatively large set of test
inputs. Only programs that successfully pass through both testing phases score points.

We are aware that also in some online contests organized by the USA Computing
Olympiad (USACO) the contestants are encouraged to send in difficult and/or tricky sets
of test inputs. While this is not exactly white-box testing, this approach is similar in that
the contestants get to design the test inputs.

Some variation of this type of evaluation could be implemented on the I0I. During
the phase that’s currently only used to check the results of the automated testing and to
make appeals, the contestants could be able to read the submitted programs and suggest
new test inputs. This is an interesting idea and we feel that it should be discussed in the
IOl community.

One more note: The white-box testing still leaves the burden of proof on the wrong
side of the barrier. In real life the programmer should be responsible for showing that his
code is correct, but this is not the case here.

Open-Data Tasks

An open-data task is a fairly new notion, made famous by the Internet Problem Solving

Contest (IPSC, 2006) and later adopted by other contests, including the I10I. The main
point is that the contestants are only required to produce correct output for a given set
of inputs. The only evaluated thing are the output files, the method the contestant used
(within the imposed resource limits) is not important.

70 M. ForiSek

There is a wide spectrum of tasks that are suitable to be used as open-data tasks at
the 10I. For example, tasks where different approximation algorithms exist can be used
as open-data tasks and evaluated based on the value of the answer the contestant found.
(See the task XOR from 101 2002.) Large input sizes can be used to force the contestants
to write efficient programs. There may be tasks where some processing of the data “by
hand” can be necessary or at least useful.

In our opinion the 101 has not used the full potential of open-data tasks yet and there
are many interesting problems that can be formulated as open-data IOI-level competition
tasks.

More Extensive Black-Box Testing

In some contests other than the 101 (such as ACM ICPC and TopCoder) the correctness
of a submitted program has a larger importance. Usually if the program fails just one of
the test inputs it is considered incorrect and it scores zero points.

We do not think that this, per se, would be a good model for the IOl, as even many
of the participants are just beginners in programming and they often tend to make minor
mistakes. Hovewer, it is possible to move the evaluation process in this direction. (This
transition could be made less painful by selecting the competition tasks from a wider
difficulty spectrum.) There are interesting variations on the canonical evaluation scheme
that can be used to make correctness of the implementation more important.

One particular model worth mentioning is the model commonly used in the Polish
Olympiad in Informatics. (This model was also used for evaluating several tasks on 10l
2005 in Poland.) The test inputs are divided into sets and each set is assigned some points.
To gain the points for a set, a program has to solve all inputs from the set correctly.

Clearly this approach makes it easier to distinguish between correct and incorrect
programs (e.g., large random test inputs can be bundled with small tricky hand-crafted
inputs that will ensure that most of the heuristic algorithms fail). On the other hand, its
disadvantage is that the result of a minor bug in an implementation may have an even
worse impact.

Requiring Correctness, Aiming for Speed

In our opinion, the goal we want to reach is to guide the students to write correct programs
only. If the current evaluation scheme shall be changed, the new scheme should be better
in pushing the students towards writing correct programs.

We would like to suggest the following scheme: The author of the problem creates
two sets of test inputs. The first set, called tioerectness setvill consist of 10 relatively
small inputs. A reasonably fast correct program should be able to solve each of these
inputs well within the imposed limits. The second set, calleceffieiency setwill consist
of 20+ inputs of various sizes.

Programs will beforbidden to give a wrong answer, they are only allowed to
crash/time out on larger test inputs. In particular, they willrbguired to solve all in-
puts in the correctness set, and they will be scored according to their performance on the
efficiency sebonly.

On the Suitability of Programming Tasks for Automated Evaluation 71

During the actual competition the contestant will be able to submit his program at any
time. For each submission he will receive a report (pass/fail, running time, etc.) for each
of the (at that time unknown) inputs from the correctness set.

This proposal is still open for suggestions. (For example, we are considering to award
a small amount of points to programs that fail to solve one or two inputs from the cor-
rectness set, or alternatively the contestants could be allowed to see some of these inputs
for a penalty.)

New Task Types

Of course, one could suggest new task types with a completely different evaluation
scheme. For example, the contestants could design test inputs that force a given pro-
gram behave in some way. (Some possible formulations: “Find an input that will force
this program give an incorrect output”; “Find a valid input for which the result is as large
as possible™.)

Many examples of such tasks can be found in the past years of the IPSC contest (see
(IPSC, 2006)). Discussing the evaluation of such tasks at the 10l is beyond the scope of
this article.

7. Plans for the Future

Clearly, the short-term solution of the problems discussed above is awareness that these
problems exist. In past, it was sometimes the case that the International Scientific Com-
mittee of the 101 (ISC) was aware of some problems connected with a proposed task, but
they did not find these problems important enough to reject the task.

This article attempted to show that not all tasks are suitable for automated evaluation.
We described some of the reasons behind this fact and some possible ways of recognizing
such tasks. In our opinion, at the 10l it is important that both the host SC and the ISC
are aware that these issues do exist and that they'll take them into consideration when
selecting future competition tasks.

The mid-term to long-term solution includes discussion in the 10l community. The
currently used evaluation model has got many known disadvantages and if we are able to
come up with a better way to do the evaluation, the whole IOl could benefit from that. To
reach this goal it is imperative that members of the 10l community actively take part in
discussing the alternatives, some of which were presented in this article.

A. Details on Tasks Investigation

Here we present a short summary of our investigation for each of the 10l tasks where we
were able to find an incorrect algorithm that, in our opinion, scored too many points. As
we already stated, a detailed description of problems with the 101 2004 tasks Artemis and
Farmer was informally published after IOl 2004 in (ForiSek, 2004).

72 M. ForiSek
101 2004: Artemis

Task summary: Find an axes-parallel rectangle containing exagtlput of N given
points.

Task description:
http://ol ynpi ads. win.tue.nl/ioi/ioi2004/contest/dayl/
artem s. pdf

Correct solution: O(N?) dynamic programming

Incorrect algorithm: O(NN?3) brute-force search, terminate before the time limit expires
and output the best answer found. This algorithm requires only a few lines of code,
and it scores 80 points on the test inputs used in the competition.

Reason of the problems:A bad task. It is hard to construct a test input where no valid
rectangle contains exactlfy points. The set of possible answers is usually very
large, it is easy to find one, thus also the brute force algorithm scores well. The sad
thing is that the ISC was aware of the above facts(!) and still decided to use this
task in the competition.

Notes: We are aware of the fact that several contestants submitted a dot¥étlog V)
algorithm, which timed out on the larger test inputs, thus scoring approximately 40
points. This is the immediate consequence of a “solution” the host SC and ISC
applied — raising the limit fofV so thatone known brute-force programwould
not score well.

This problem could probably be saved by requesting that the contestants output
the exact number of minimal rectangles satisfying the given criteria. This forces all
brute-force programs to time out on larger test inputs.

101 2004 Farmer

Task summary: Given a graph withV vertices containing only cycles and lines, find
the largest possible number of edges in a subgraph@itbrtices.

Task description:
http://ol ynpi ads.wi n.tue.nl/ioi/ioi 2004/ contest/day2/
farmer . pdf

Correct solution: Knapsack-style dynamic programming.

Incorrect algorithm: Greedy. Consider all the cycles. If they contain more tQaver-
tices, flip a coin and outpu® or @ — 1. Otherwise, take all the cycles and several
strips (in sorted order, starting from the longest ones).

Regardless of the choice of test inputs, the expected score for this algorithm is at
least 50 points. For the actual test data used in the competition, the expectation
rises to 90 points, as our algorithm will always solve most of the actual test inputs

correctly.
Reason of the problems:The host SC and ISC were aware that some heuristic algo-

rithms can score well. The test data was chosen in such a way that the algorithms
known to them did not score too many points. Sadly, this was not taken to be a
reason to reject the task, as none of the problemsetters had the insight presented in
(Forisek, 2004). It is impossible to create good test data for this task.

On the Suitability of Programming Tasks for Automated Evaluation 73

101 2004: Hermes

Task summary: Given a sequence é¥ lattice points, find a lattice path starting(at0)
such that a postman walking the path “can see” (horizontally or vertically) each of
the given points in the given order.

Task description:
http://ol ynpiads. win.tue.nl/ioi/ioi2004/contest/dayl/
her nes. pdf

Correct solution: Somewhat complicated(N?) dynamic programming.

Incorrect algorithms: A simple O(N) greedy algorithm: Out of the two possibilities
for the next step choose the shorter one. In case of a tie, flip a coin. This algorithm
was apparrently known to the SC and scores only 10 points.

A O(N?) greedy algorithm: Run the first greedy algorith¥times, in thek-th
run do the opposite choice in tleth step. (I.e., make exactly 1 choice that's not
locally optimal.) This algorithm is clearly incorrect, and still it scores 45 points.
Reason of the problems:Bad test data. In the problem specification it was stated that
50% of the test inputs will havéy < 80. The truth was that in 50% of test in-
puts N did not exceed 20. This number of lattice points was not enough to make
sufficiently complicated inputs.
Notes: In this problem the dimensiaP of the grid was smaller thaN. There was a cor-
rectO(DN) algorithm (which is faster than the presentetV?)). No additional
points were awarded for finding and implementing this algorithm.

Moreover, the size of test inputs allowed a simple backtracking algorithm to score
more points than the problem statement promised.

IOl 2005: Rectangle

Task summary: Find an optimal strategy for a 2-heap NIM where an allowed move is
to choose one of the heaps and remove at most half of the tokens. The player not
able to make a move loses.

Task description:
http://ol ynpi ads.wi n.tue.nl/ioi/ioi 2005/ cont est/day2/rec/
rec. pdf

Correct solution: An optimal move may be found by a clever observation after encoding
both heap sizes as base-2 numbers. Also, the more general Sprague-Grundy theory
can be applied. (An overview of this theory can be found in (Berlekamal,,
1982).)

Incorrect algorithm: Whenever possible, try to make two equal heaps. This algorithm
is incorrect and yet it scored 70 points.

Reason of the problems:Bad test data. In almost all test inputs the heap sizes were
similar and thus the player was able to enforce this strategy from the first move on.
Actually, our algorithm easily solves all of the large test inputs and only fails on
several small hand-crafted inputs.

74 M. ForiSek

ACM ICPC: Safe/Ouroboros

We are aware that this problem was presented on different contests, including ACM ICPC
Mid-Central European Regionals 2000, Slovak IOl Selection Camp 2003, and ACM
ICPC Murcia Local Contest 2003.

Task summary: Given a set ofD digits and N, find the shortest string of digits such
that it contains each of thB? possibleN-digit strings as a substring.

Task description:
http://ww. acm i nf. ethz. ch/ Probl enSet Ar chi ve/ B_EU_MCRC/ 2000/
pr obl ens. pdf , problem E

Correct solution: These strings are known as de Bruijn strings/sequences (see (de
Bruijn, 1946)), they correspond to an Eulerian path in a wisely constructed directed
graph.

Inefficient algorithm: Pruned backtracking is able to solve all reasonably large inputs
quickly.

Reason of the problems:A bad problem. The set of alD, N) de Bruijn sequences is
large and the backtracking algorithm can find one quickly.

B. Acknowledgements

The author would like to express his thanks to the Slovak Informatics Society (SISp) and
the 10l for their partial financial support. The author is also indebted to all the anonymous
reviewers. Their remarks significantly helped to improve the clarity of this paper.

References

ACM International Collegiate Programming Cont¢2006).
http://icpc. bayl or. edu/

Appel, K., and W. Haken (1997). Solution of the four color map probigaientific Americaj237(4), 108-121.

Berlekamp, E.R., J.H. Conway and R.K. Guy (198&)nning Ways for Your Mathematical Playscademic
Press, New York.

de Bruijn, N.G. (1946). A combinatorial probler{oninklijke Nederlandse Akademie v. Wetenschap#@n
758-764.

ForiSek, M. (2004)On suitability of tasks for the IOl competition
http://ksp.sk/ msof/ioi/tasks. htm

Hopcroft, J.E., and J.D. Ullman (1979ntroduction to Automata Theory, Languages, and Computation
Addison-Wesley.

Hromkovic, J. (2005)Design And Analysis of Randomized Algorith®@gringer-Verlag.

International Olympiad in Informaticé2006).
http://ioinformatics.org/

Internet Problem Solving Conte&006).
http://ipsc. ksp. sk/

Karp, R.M., and M.O. Rabin (1987). Efficient randomized pattern-matching algorittBivs Journal of Re-
search and Developmer&l(2), 249-260.

On the Suitability of Programming Tasks for Automated Evaluation 75

Knuth, D.E., J.H. Morris (Jr) and V.R. Pratt (1977). Fast pattern matching in st&§d1 Journal on Comput-
ing, 6(1), 323-350.

van Leeuwen, W.T. (20054 Critical Analysis of the 101 Grading Process with an Application of Algorithm
Taxonomies. Master Thesis at TU Eindhaven
http://ww. win.tue.nl/ wstonmv/m sc/ioi-analysis/thesis-final.pdf

TopCoder Algorithm Competitior{2006).
http://ww.topcoder.conltc?nodul e=Stati c&1l=hel p&d2=i ndex

Verhoeff, T. (2006). The 10l is (not) a science olympi&formatics in Education5(1).

Voda, P.J., and J. Komara, and J. Kluka (1994-2008)usal Language
http://ww. ii.fnph.uniba.sk/cl/

M. ForiSek is currently a graduate student at the Comenius University in Slovakia. He
received a master’'s degree in computer science from this university in 2004. As a stu-
dent he was a very successful participant in programming contests, he was awarded gold
medals both at the 101l and at the ACM ICPC World Finals. In the past years he became an
active member of the community around various programming contests. He was the head
of the problem committee for several international programming contests, including sev-
eral years of the Internet Problem Solving Contest and one year of the Central European
Olympiad in Informatics. His research interests range from theoretical computer science
to education of mathematics, informatics, and algorithms.

76 M. ForiSek

Programavimo varzyby uzduoCiu tinkamas parinkimas automatiniam
testavimui

Michal FORISEK

Siuo metu daugelyje programavimo variybaudojamos vienokios ar kitokios automasn
uzduciu testavimo priemags. Nors tokia praktika yra gana efektyvici@u ji turi ir tam tikru
trukumy. DaZnai testavimo duomenys negali ,p&sk“ visu programos niuansir del to i$ esrés
klaidingas sprendimas galiuli ivertinamas gana gerai. Straipsnyje atskleidZiama, jog tokios
situacijos kyla dazniausiaiédl dviejy skirtingy priezagiu, aprasomi bdai, leidZiantys atpazinti
Sias pavojingas situacijas bei aptariamos kitos galimos vertinimo alternatyvos.

