
Informatics in Education, 2018, Vol. 17, No. 1, 117–150
© 2018 Vilnius University
DOI: 10.15388/infedu.2018.08

117

CodeMaster – Automatic Assessment and
Grading of App Inventor and Snap! Programs

Christiane Gresse von WANGENHEIM1,
Jean C. R. HAUCK1, Matheus Faustino DEMETRIO1,
Rafael PELLE1, Nathalia da CRUZ ALVES1,
Heliziane BARBOSA2, Luiz Felipe AZEVEDO2

1Department of Informatics and Statistics, Federal University of Santa Catarina
 Florianópolis/SC, Brazil
2Department of Graphic Expression, Federal University of Santa Catarina
 Florianópolis/SC, Brazil
e-mail: {c.wangenheim, jean.hauck}@ufsc.br, {matheus.demetrio, rafaelpelle}@grad.ufsc.br, na-
thalia.alves@posgrad.ufsc.br, {heliziane.barbosa, felipe.azevedo}@grad.ufsc.br

Received: November 2017

Abstract. The development of computational thinking is a major topic in K-12 education. Many
of these experiences focus on teaching programming using block-based languages. As part of
these activities, it is important for students to receive feedback on their assignments. Yet, in prac-
tice it may be difficult to provide personalized, objective and consistent feedback. In this context,
automatic assessment and grading has become important. While there exist diverse graders for
text-based languages, support for block-based programming languages is still scarce. This article
presents CodeMaster, a free web application that in a problem-based learning context allows to
automatically assess and grade projects programmed with App Inventor and Snap!. It uses a rubric
measuring computational thinking based on a static code analysis. Students can use the tool to get
feedback to encourage them to improve their programming competencies. It can also be used by
teachers for assessing whole classes easing their workload.

Keywords: computational thinking, programming, assessment, grading, app inventor, Snap!

1. Introduction

Computational Thinking (CT) is a competence that involves solving problems, de-
signing systems, and understanding human behavior, by drawing on the concepts fun-
damental to computer science (Wing, 2006). It is considered a key competence for
today’s generation of students in a world that is heavily influenced by computing
principles (Wing, 2006). Therefore, teaching computational thinking has been a focus

C.G. von Wangenheim et al.118

of worldwide efforts of computing K-12 education (Grover and Pea, 2013) (Kafai
and Burke, 2013) (Resnick et al., 2009). Many of these initiatives focus on teaching
programming, which is not only a fundamental part of computing, but also a key tool
for supporting the cognitive tasks involved in computational thinking (Grover and
Pea, 2013). Programming in K-12 is typically taught using visual block-based pro-
gramming languages, such as Scratch (https://scratch.mit.edu), BYOB/Snap!
(http://snap.berkeley.edu) or App Inventor (http://appinventor.mit.
edu/explore) (Lye and Koh, 2014). Block-based programming languages encourage
and motivate to learn programming concepts reducing the cognitive load by allowing
to focus on the logic and structures involved in programming rather than requiring to
learn the complex syntax of text-based programming languages (Kelleher and Pausch,
2005)(Maiorana et al., 2015)(Grover et al., 2015). Furthermore, they allow students to
enact computational practices more easily as the outcomes of their programming can
be viewed immediately in the form of animated objects, games or apps. This enables
students to acquire computational problem-solving practices more easily adopting an
engineering design cycle (Lye and Koh, 2014). Thus, many instructional units include
mainly hands-on programming activities to allow students to practice and explore
computing concepts effectively as part of the learning process (Lye and Koh, 2014)
(Grover and Pea, 2013) (Wing, 2006). This includes diverse types of programming
activities, including closed-ended problems for which a correct solution exists, such
as, e.g., programming exercises from Hour of Code (https://hourofcode.com)
(Kindborg and Scholz, 2006). Many computational thinking activities also focus on
creating solutions to real-world problems, where solutions are software artifacts, such
as games/animations on interdisciplinary topics or mobile apps to solve a problem in
the community (Monroy-Hernández and Resnick, 2008) (Fee and Holland-Minkley,
2010). In such constructionist-based problem-based learning environments, student
learning centers on complex ill-structured, open-ended problems, lacking explicit
parameters without a unique correct answer or solution path (Lye and Koh, 2014)
(Fortus et al., 2004) (Gijselaers, 1996) (Shelton and Smith, 1998) (Simon, 1983).
Educationally sound, especially such ill-structured problems engage students in deep
problem-solving and critical thinking (Fee and Holland-Minkley, 2010) (Gallagher,
1997).

A crucial element in the learning process is assessment and feedback (Hattie and
Timperley, 2007) (Shute, 2008) (Black and Wiliam, 1998). Assessment guides student
learning and provides feedback for both the student and the teacher (Ihantola et al.,
2010). For effective learning, students need to know their level of performance on a
task, how their own performance relates to good performance and what to do to close
the gap between those (Sadler, 1989). Formative feedback, thus, consists of informa-
tion communicated to the student with the intention to modify her/his thinking or be-
havior for the purpose of improving learning (Shute, 2008). Summative assessment
aims to provide students with information concerning what they learned and how well
they mastered the course concepts (Merrill et al., 1992) (Keuning et al., 2016). Assess-
ment also helps teachers to determine the extent to which the learning goals are being
met (Ihantola et al., 2010).

CodeMaster – Automatic Assessment and Grading of App Inventor ... 119

Despite the many efforts aimed at dealing with the issue of CT assessment (Grover
and Pea, 2013) (Grover et al., 2015), so far there is no consensus on strategies for as-
sessing CT concepts (Brennan and Resnick, 2012) (Grover et al., 2014). Assessment of
CT is particularly complex due the abstract nature of the construct being measured (Ya-
dav et al., 2015). Several authors have proposed different approaches and frameworks
to try to address the assessment of this competence in different ways, including the
assessment of student-created software artifacts as one way among multiple means of
assessment (Brennan and Resnick, 2012). The assessment of a software program may
cover diverse quality aspects such as correctness, complexity, reliability, conformity to
coding standards, etc.

Yet, a challenge is the assessment of complex, ill-structured activities as part of
problem-based learning. Whereas the assessment of closed-ended, well-structured
programming assignments is straight-forward since there is a single correct answer to
which the student-created programs can be compared (Funke, 2012), assessing complex,
ill-structured problems for which no single correct solution exist is more challenging
(Eseryel et al., 2013) (Guindon, 1988). In this context, authentic assessment based on
the created outcomes seems to be an appropriate means (Torrance, 1995; Ward and Lee,
2002). Thus, program assessment is based on the assumption that certain measurable
attributes can be extracted from the program, evaluating whether the students-created
programs show that they have learned what they were expected using rubrics. Rubrics
use descriptive measures to separate levels of performance on a given task by delineat-
ing the various criteria associated with learning activities (Whittaker et al., 2001) (Mc-
Cauley, 2003). Grades are determined by converting rubric scores to grades. Thus, in
this case the created outcome is assessed and a performance level for each criterion is
assigned as well as a grade in order to provide instructional feedback.

Another issue that complicates the assessment of CT in K-12 education in practice is
that the manual assessment of programming assignments requires substantial resources
with respect to time and people, which may also hinder scalability of computing educa-
tion to larger number of students (Eseryel et al., 2013) (Romli et al., 2010) (Ala-Mutka,
2005). Furthermore, as, due to a critical shortage of K-12 computing teachers (Grover
et al., 2015), many non-computing teachers introduce computing education in an inter-
disciplinary way into their classes, they face challenges also with respect to assessment
as they do not necessarily have a computer science background (DeLuca and Klinger,
2010) (Popham, 2009) (Cateté et al., 2016). This may further complicate the situation
leaving the manual assessment error prone due to several reasons such as inconsistency,
fatigue, or favoritism (Zen et al., 2011).

In this context, the adoption of automatic assessment approaches can be beneficial
by easing the teacher’s workload leaving more time for other activities with students
(Ala-Mutka and Järvinen, 2004). It can also help to ensure consistency and accuracy
of assessment results as well as eliminating bias (Romli et al., 2010). For students, it
can provide immediate feedback on their programs, allowing them to make progress
without a teacher by their side (Douce et al., 2005) (Wilcox, 2016) (Yaday et al., 2015).
Thus, automating the assessment can beneficial for both students and teachers, improv-

C.G. von Wangenheim et al.120

ing computing education, even more in the context of online learning and MOOCs (Vu-
josevic-Janicica et al., 2013).

As a result, automated grading and assessment tools for programming exercises
are already in use in many ways in higher education (Ala-Mutka, 2005) (Douce et al.,
2005). The most widespread approach currently used for the automatic assessment of
programs is through dynamic code analysis (Douce et al., 2005). Dynamic approaches
focus on the execution of the program through a set of predefined test cases, comparing
the generated output with the expected output (provided by test cases). The main aim of
dynamic analysis is to uncover execution errors and help to evaluate the correctness of
a program. An alternative is static code analysis, the process of examining source code
without executing the program. It is used for programming style assessment, syntax
and semantics errors detection, software metrics, structural or non-structural similar-
ity analysis, keyword detection or plagiarism detection, etc. (Fonte et al., 2013). And,
although there exist already a variety of automated systems for assessing programs, the
majority of the systems is targeted only for text-based programming languages such as
Java, C/C++, etc. (Ihantola et al., 2010). There still is a lack of tools that support the
evaluation of block-based programs assessing the development of CT, with only few
exceptions mostly assessing Scratch projects such as Dr. Scratch (Moreno-León and
Robles, 2015a) or Ninja Code Village (Ota et al., 2016). These tools adopt static code
analysis to measure the software complexity based on the kind and number of blocks
used in the program quantifying CT concepts and practices such as abstraction, logic,
control flow, etc. Allowing the assessment of ill-structured, open-ended programming
activities, they provide instructional feedback based on a rubric. Tools for assessing
programming projects in other block-based languages such as Snap! Autograder (Ball
and Garcia, 2016) or App Inventor Quizly (Maiorana et al., 2015), adopting a dynamic
analysis approach only allow the assessment of closed-ended problems.

Thus, in this respect we present CodeMaster, a free web tool that analyzes App
Inventor or Snap! programs to offer feedback to teachers and students assigning a CT
score to programming projects. Students can use this feedback to improve their pro-
grams and their programming competencies. The automated assessment can be used
as part of the learning process for formative, summative and/or informal assessment of
CT competencies, which may be further enhanced by teachers revising and completing
the feedback manually with respect to further important criteria such as creativity and
innovation.

2. Background

2.1. Block-Based Programming Environments

Block-based programming environments are a variety of visual programming languages
that leverage a primitives-as-puzzle pieces metaphor (Weintrop and Wilensky, 2015).
In such environments, students can assemble programs by snapping together instruc-

CodeMaster – Automatic Assessment and Grading of App Inventor ... 121

tion blocks and receiving immediate feedback on if a given construction is valid. The
construction space in which the blocks are used to program often also provides a visual
execution space and/or a live testing environment in which the created programs can be
tested throughout the development process. This supports an iterative development cycle
allowing the student to easily explore and get immediate feedback on their programming
(Wolber et al., 2014).

In recent years, there has been a proliferation of block-based programming envi-
ronments with the growing introduction of computing education in K-12. Well known
block-based programming environments, such as Scratch (https://scratch.mit.
edu), provide students with exploratory spaces designed to support creative activities
creating animations or games. And, although Scratch is being currently one of the
most popular environments, other environments such as App Inventor are also in-
creasingly adopted, enabling the development of mobile applications as well as Snap!
as an open-source alternative to Scratch providing also higher level programming
concepts.

2.1.1. App Inventor
App Inventor (http://appinventor.mit.edu) is an open-source block-based pro-
gramming environment for creating mobile applications for Android devices. It is an
online browser-based programming environment using a drag-and-drop editor. It has
been originally provided by Google and is now maintained by the Massachusetts Insti-
tute of Technology (MIT). The current version is App Inventor 2, retiring App Inventor
Classic in 2015.

With App Inventor, a mobile app can be created in two stages. First, the user interface
components (e.g., buttons, labels,) are configured in the Component Designer (Fig. 1).
The Component Designer also allows to specify non-visual components such as sensors,
social and media components accessing phones features and/or other apps.

In a second stage, the behavior of the app is specified by connecting visual blocks
that correspond to abstract syntax tree nodes in traditional programming languages.
Blocks represent events, conditions, or actions for a particular app component (e.g.,
button pressed, take a picture with the camera) while others represent standard program-
ming concepts (e.g., conditionals, loops, procedures, etc.) (Turbak et al., 2017). The
app’s behavior is defined in the Blocks Editor (Fig. 1b).

App Inventor allows to visualize the behavioral and/or visual changes of the applica-
tion through the mobile application App Inventor Companion, which runs the app being
developed in real-time on an Android device during development.

App Inventor project source code files are automatically saved in the cloud, but
can also be exported as .aia files. An .aia file is a compressed collection of files that
includes a project properties file, media files used by the app, and, for each screen in the
app, two files are generated: a .bky file and .scm file. The .bky file encapsulates an xml
structure with all the programming blocks used in the application logic, and the .scm
file encapsulates a json structure that contains all the visual components used in the app
(Mustafaraj et al., 2017).

C.G. von Wangenheim et al.122

2.1.2. Snap!
Snap! (http://snap.berkeley.edu) is an open-source, block-based programming
language that allows to create interactive animations, games, etc. Snap! 4.0 is an on-
line browser-based programming environment using a drag-and-drop editor. Snap! 4.0
and its predecessor BYOB were developed for Linux, OS X or Windows (Harvey &

Designer
User interface
Layout
Media
Drawing and Animation
Sensors
Social
Storage
Connectivity
Lego Mindstorms
Experimental
Extensions

(a)

Blocks
Control
Logic
Math
Text
Lists
Colors
Variables
Procedures

(b)

Blocks

Control
Logic
Math
Text
Lists
Colors
Variables
Procedures

(b)

Fig. 1. (a) Component Designer and block categories, (b) Blocks Editor and block categories

Designer
User interface
Layout
Media
Drawing and Animation
Sensors
Social
Storage
Connectivity
Lego Mindstorms
Experimental
Extensions

(a)

Blocks
Control
Logic
Math
Text
Lists
Colors
Variables
Procedures

(b)

Designer

User interface
Layout
Media
Drawing and
Animation
Sensors
Social
Storage
Connectivity
Lego Mindstorms
Experimental
Extensions

(a)

CodeMaster – Automatic Assessment and Grading of App Inventor ... 123

Mönig, 2017) and have been used to teach introductory courses in computer science
(CS) for non-CS-major students at the University of California. Snap! was inspired
by Scratch, but also targets both novice and more advanced students by including and
expanding Scratch’s features including concepts such as first class functions or pro-
cedures (“lambda calculus”), first class lists (including lists of lists), first class sprites
(prototype-oriented instance-based classless programming), nestable sprites and codifi-
cation of Snap! programs to mainstream languages such as Python, JavaScript, C, etc.
(Harvey et al., 2012).

Snap! Projects are programmed in the visual editor (Fig. 2). Blocks are grouped into
palettes, such as control, motion, looks, etc. A Snap! program consists of one or more
scripts, each of which is made of blocks, being assembled by dragging blocks from a
palette into the scripting area. The created programs can be executed directly in the stage
section of the editor (Harvey and Mönig, 2017).

Snap! project source code files can be saved locally or in the Snap! cloud (requiring
an account), but can also be exported as .xml files. The .xml file contains the code blocks
and other elements used in the project, including all media such as images and sounds
(in hexadecimal format).

2.2. Assessment and Grading

As with any pedagogic approach, it is important to align learning outcomes, teaching and
learning activities and assessment, particularly when the intention is to encourage deep,
rather than surface approaches to learning (Biggs, 2003). Thus, for assessing problem-
based learning, authentic assessment seems a more appropriate means to assess learning
compared to traditional assessments such as norm-reference and standardized testing
that assesses recall of factual content knowledge (Torrance, 1995)(Ward and Lee, 2002).
Authentic assessment measures performance based on the created outcomes or observed

Blocks

Control
Motion
Looks
Sensing
Sound
Operators
Variables
Pen

Fig. 2. Snap! Blocks Editor and block categories.

C.G. von Wangenheim et al.124

performance in learning activities that encourage students to use higher-order thinking
skills. There exist diverse types of authentic assessments in the context of problem-
based learning such as performance assessments, portfolio assessment, interviews, self-
assessments etc. (Hart, 1994) (Brennan and Resnick, 2012). Specifically, performance
assessments measure students’ ability to apply acquired competences in ill-structured
contexts and working collaboratively to solve complex problems (Wiggins, 1993). Per-
formance assessments typically require students to complete a complex task, such as
programming a software artifact.

In performance assessments, in order to evaluate whether the work produced by stu-
dents shows that they have learned what they were expected to learn, often rubrics are
used. Rubrics use descriptive measures to separate levels of performance on the achieve-
ment of learning outcomes by delineating the various criteria associated with learning
activities, and indicators describing each level to rate student performance (Whittaker
et al., 2001) (McCauley, 2003). When used in order to assess programming activities,
such a rubric typically maps a score to the ability of the student to develop a software
artifact (Srikant and Aggarwal, 2013) indirectly inferring the achievement of CT com-
petencies. Rubrics usually are represented as a 2D grid that describes (Becker, 2003)
(McCauley, 2003):

Criteria: identifying the trait, feature or dimension to be measured. ●
Rating scale: representing various levels of performance that can be defined using ●
either quantitative (i.e., numerical) or qualitative (i.e., descriptive) labels for how
a particular level of achievement is to be scored.

Levels of performance: describe the levels specifying behaviors that 	
demonstrate performance at each achievement level.
Scores: a system of numbers or values used to rate each criterion and that are 	
combined with levels of performance.

Descriptors: describing for each criterion what performance at a particular perfor- ●
mance level looks like.

So far there exist very few rubrics for assessing CT and/or programming competen-
cies in the context of K-12 education. Some of them focus on closed-ended program-
ming activities using indicators related to the evaluation of program correctness and
efficiency (Srikant and Aggarwal, 2014) (Smith and Cordova, 2005), programming style
(Smith and Cordova, 2005) and/or aesthetics and creativity, including not only the pro-
gram itself but also documentation (Becker, 2003) (Smith and Cordova, 2005). Others
are defined for a manual assessment of programming projects (Eugene et al., 2016)
(Becker, 2003) not supporting automated assessments. On the other hand, Moreno-León
et al. define a rubric to calculate a CT score based on the analysis of Scratch programs
automated through the Dr. Scratch tool (Moreno-León et al., 2017) (Moreno-León and
Robles, 2015b). The rubric is based on the framework for assessing the development
of computational thinking proposed by Brennan & Resnick (2012), covering the key
dimensions of computational concepts (concepts students engage with as they program,
such as logical thinking, data representation, user interactivity, flow control, parallel-
ism and synchronization) and computational practices (practices students develop as
they engage with the concepts, focusing on abstraction). Specifically for App Inventor

CodeMaster – Automatic Assessment and Grading of App Inventor ... 125

projects, Sherman et al. developed a rubric to assess mobile computational thinking, in-
cluding programming aspects typically related to computational thinking as represented
by the computing practice & programming strand of the CSTA K 12 standard as well as
related concepts that are present in mobile computing with App Inventor Classic, e.g.,
screen design, event based programming, location awareness, and persistent and shared
data (Sherman and Martin, 2015) (Sherman et al., 2014).

Rubrics also provide an objective basis for grading by converting rubric scores to
grades. A grade is an indication of the level of performance reflected by a particular
score of an assessment. Grades can be assigned as letters (generally A through F), as a
range (for example, 0 to 10), as a percentage of a total number of questions answered
correctly, or as a number out of a possible total (for example, 20 out of 100).

2.3. Automatic Code Analysis for Assessment and Grading

Indicating student performance, programming projects can be assessed with respect
to diverse quality factors and characteristics. These indicators are measured automati-
cally typically either through a dynamic or a static code analysis (Koyya et al., 2013)
(Ala-Mutka, 2005). Static analysis is the process of examining source code without
executing the program. It is used to analyze static features like coding style, software
metrics, programming errors (e.g., dead code), design, and special features related to
program structure, as well as diagram analysis, keyword detection, and plagiarism de-
tection (Ala-Mutka, 2005). Dynamic analysis is the process of executing the code and
comparing the generated output to the control output as specified in a test case (Benford
et al., 1995). The main aim of dynamic analysis is to uncover execution errors and to
evaluate the correctness of a program, as well as to evaluate efficiency and/or students’
testing competencies.

Automated grading has been explored mostly for closed-ended well-structured as-
signments, for which a correct answer is known, as in this case it is easy to compare the
student’s program to the correct solution in order to evaluate correctness (Forsythe and
Wirth, 1965) (Al-Matka, 2005). However, as dynamic and some static code analysis
approaches depend on their ability to recognize and discriminate between correct and
incorrect program behavior, they may not be viable solutions in problem-based learning
contexts. Thus, for assessing open-ended ill-structured assignments for which no unique
correct solution exists, typically static code analysis is used, focusing typically on the
analysis of keywords, programming style, software metrics and/or plagiarism by count-
ing the types and number of blocks used in a program.

3. Research Methodology

This article presents an exploratory research on the automation of the assessment and
grading of ill-structured programming assignments in K-12 computing education. There-
fore, we adopt a multi-method research strategy (Fig. 3).

C.G. von Wangenheim et al.126

Analysis of the state of the art. In order to provide an overview on the current state of
the art on the automatic assessment and grading of block-based programming assign-
ments, we performed a systematic mapping study following the procedure proposed by
Petersen et al. (2015) and Kitchenham et al. (2011). In the definition phase, the research
questions and the review protocol were defined as well as the data sources, search strat-
egy, search strings and inclusion/exclusion criteria. The execution phase was carried
out based on the review protocol conducting the search in the specified repositories.
The initial search results were analyzed with respect to their relevancy applying the
inclusion/exclusion criteria. Once identified the relevant studies, data with respect to the
research questions was extracted. Based on the extracted data the encountered studies
were analyzed and results synthesized. The detailed results of this review are presented
by Alves et al. (2017).

Instructional design of the assessment and grading. Following the ADDIE model
(Branch, 2010), we initially performed a context analysis, characterizing the target
audience and environment, as well as, identifying typical learning objectives and in-
structional strategies for K-12 computing education. In accordance with the identified
context, we developed an assessment model by defining rubrics following the proce-
dure proposed by Goodrich (1996). We first analyzed existing frameworks and rubrics
for this specific context. In accordance to these existing models and the specific fea-
tures of both block-based programming environments (App Inventor and Snap!), we
identified assessment criteria. Then, we specified the levels of performance descriptors
with respect to the identified learning objectives. Based on the defined rubrics, we de-
fined a grading system in alignment with the generic grading system typically adopted
in Brazil.

Development of the CodeMaster software application. Adopting an iterative and in-
cremental software development approach (Larman and Basili, 2003), we analyzed the
requirements based on the context analysis and the defined assessment and grading mod-
el. We, then, iteratively and incrementally developed the software tool by first specifying
the use cases together with the interface design. In the next iterations, we implemented
the system, starting with the implementation of a first prototype of the analysis & grader
module, responsible for evaluating the projects. We, then, developed the presentation
module, responsible for the user interaction and the persistence layer. Then, integration

Fig. 3. Overview on the research method.

CodeMaster – Automatic Assessment and Grading of App Inventor ... 127

tests were performed and based on the results, necessary corrections and improvements
were implemented and tested.

Evaluation of CodeMaster. In order to evaluate the quality of the CodeMaster proto-In order to evaluate the quality of the CodeMaster proto-
type, we performed a preliminary evaluation using the Goal Question Metric (GQM)
approach (Basili et al., 1994) to define the purpose of the evaluation and to systemati-
cally decompose it into quality characteristics and sub-characteristics. In accordance to
the defined characteristics, we collected data by conducting a user test in order to obtain
data on the perceived quality from the point of view of teachers and students, and a cor-
rectness test comparing the assessment and grading generated by the CodeMaster tool to
manual assessment results. The collected data was analyzed in accordance to the defined
analysis questions, using descriptive statistics. The results were interpreted taking also
into consideration observations made during the applications.

4. Related Work

Taking into account the importance of (automated) support for the evaluation of practi-
cal programming activities in order to improve the teaching of computer science in K-12
education, only very few approaches were found to assess programming activities creat-
ed with block-based programming languages as detailed in Table 1 (Alves et al., 2017).

Most of the approaches are focused on analyzing Scratch programs. For the assess-
ment of App Inventor or Snap! programs only one approach has been encountered re-
spectively (Maiorana et al., 2015)(Ball, 2017). However, these approaches focus on the
assessment of closed-ended well-structured problems with a correct solution known in
advance, and are, thus, not applicable directly in problem-based learning context, for
ill-structured activities without one single correct solution.

In general, the encountered approaches analyze competences by considering mostly
algorithm and programming sub-concepts, such as, algorithms, variables, control and
modularity. Some approaches also analyze additional elements, including usability
(Denner et al., 2012), code organization and documentation (Denner et al., 2012), aes-
thetics (Kwon and Sohn, 2016a) (Kwon and Sohn, 2016b) (Denner et al., 2012) and/or
creativity (Kwon and Sohn, 2016a)(Kwon and Sohn, 2016b) (Werner et al., 2012).

Most of the approaches use static code analysis approaches counting the frequency
of blocks for assessment. Exceptions are approaches aimed at the assessment of prob-
lems with known solutions, which are based on tests (Maiorana et al., 2015) (Johnson,
2016) or comparisons with a pre-defined solution (Koh et al., 2014a) (Koh et al., 2014b)
(Koh et al., 2010) (Basawapatna et al., 2011). In the context of open-ended ill-structured
problems without a single correct solution most approaches use a rubric for assessment,
such as Dr. Scratch and Ninja CodeVillage.

Instructional feedback is presented in various forms, such as a total score, grade or in
case of Dr. Scratch also through a mascot badge. The approaches also vary in relation to
the presentation of only a total result and/or indicating also partial scores in relation to
each of the assessed criteria. In addition, Dr. Scratch and Quizly present tips (and tutori-
als) indicating how to improve the code.

C.G. von Wangenheim et al.128

Table 1
Overview on related work

Reference Approach Block-based
programming
language
being assessed

Type of
educational
activity being
assessed

Supported by
automated
software tool
for

Type of software
support provided

(Kwon and Sohn, 2016a)
(Kwon and Sohn, 2016b)

Approach
by Kwon &
Sohn

Block-based
programming
languages in
general

Open-ended
ill-structured
problem

-- --

(Franklin et al., 2013)
(Boe et al., 2013)

Hairball Scratch Closed-ended
well-structured
problem

Professor Script-based
without graphi-
cal user interface

(Moreno and Robles,
2014) (Moreno-León et al.,
2016) (Moreno-León and
Robles, 2015a) (Moreno-
León and Robles, 2015b)
(Moreno-León et al., 2017)

Dr. Scratch Scratch Open-ended
ill-structured
problem

Student /
Professor/
Institution

Web application
with graphical
user interface

(Johnson, 2016) ITCH Scratch Closed-ended
well-structured
problem

Student Script-based
without graphical
user interface

(Seiter and Foreman,
2013)

PECT Scratch Open-ended
ill-structured
problem

-- --

(Ota et al., 2016) Ninja Code
Village

Scratch Open-ended
ill-structured
problem

Student /
Professor

Web application
with graphical
user interface

(Wolz et al., 2011) Scrape Scratch Open-ended
ill-structured
problem

Professor Desktop system
with graphical
user interface

(Ball and Garcia, 2016)
(Ball, 2017)

Autograder Snap! Closed-ended
well-structured
problem

Student /
Professor

Web application
with graphical
user interface

(Maiorana et al., 2015) Quizly App Inventor Closed-ended
well-structured
problem

Student /
Professor/
Administrator

Web application
with graphical
user interface

(Koh et al., 2014a) (Koh
et al., 2014b) (Koh et al.,
2010) (Koh et al., 2011)
(Basawapatna et al., 2011)

CTP Agent Sheets Closed-ended
well-structured
problem

Professor not informed

(Werner et al., 2012) Fairy
Assessment

Alice Closed-ended
well-structured
problem

-- --

(Denner et al., 2012) Approach
by Denner,
Werner &
Ortiz

Stagecast
Creator

Closed-ended
well-structured
problem

-- --

CodeMaster – Automatic Assessment and Grading of App Inventor ... 129

Only a few approaches are automated through software tools (Boe et al., 2013)
(Moreno-León and Robles, 2015b) (Koh et al., 2014b) (Johnson, 2016) (Ota et al., 2016)
(Wolz et al., 2011) (Maiorana et al., 2015). Among these tools, some approaches per-
form the computation of the commands or compare the student’s program with a model
solution using static code analysis techniques (Boe et al., 2013) (Moreno-León and Rob-
les, 2015b) (Koh et al., 2014b) (Ota, et al., 2016) (Wolz et al., 2011). Dynamic analysis
approaches using tests to validate the student’s solution are only adopted in the context
of closed-ended well-structured problems (Johnson, 2016) (Maiorana et al., 2015). Half
of the encountered approaches are directed towards teacher use, with the specific objec-
tive of assessing and grading programming activities. Some tools can be used by both
teachers and students, e.g., CTP (Koh et al., 2014a) providing real-time feedback during
the programming activity. Only some of the tools provide a web interface facilitating
their usage (Moreno and Robles, 2014) (Ota et al., 2016) (Maiorana et al., 2015) (Ball,
2017). Most of the tools are provided as a stand-alone tool, not directly integrated into
the programming environment and/or a course management system. Another factor that
may hinder their widespread application in practice is their availability in English only,
with exception of Dr. Scratch available in several languages.

Thus, we can clearly identify a need for automatic assessment support for other
block-based programming languages (such as App Inventor and Snap!) that allow
the assessment of open-ended ill-structured problems in problem-based learning con-
texts.

5. CodeMaster

In order to facilitate the assessment of programming activities in problem-based con-
texts focusing on learning computational thinking in K-12 education, we developed Co-
deMaster. CodeMaster is a free web-based system to automatically assess and grade
App Inventor and Snap! projects. It focuses on the assessment of educational sound,
ill-structured and complex programming activities with no single correct solution, e.g.
students developing their own apps to solve transport or healthcare problems in their
community or developing their own games with respect to an interdisciplinary topic. It
can be used by students to obtain immediate feedback throughout the learning process
on their specific project or by teachers in order to assess and grade all programming
projects of a whole class being one means in a more comprehensive assessment as sug-
gested by Brennan & Resnick (2012). Furthermore, it can also be used by instructional
designers to characterize and create reference/example projects as well as to identify
improvement opportunities with respect to instructional units.

We adopt an authentic assessment strategy measuring the students’ performance
based on the created outcomes of learning activities aiming at programming a soft-
ware artifact. In order to evaluate whether the outcome produced by students shows
that they have learned computational thinking, we use rubrics that indirectly assess
the competencies based on measuring indicators of the learning outcome. Following
Dr. Scratch (Moreno-León et al., 2016), we measure the complexity of the students’

C.G. von Wangenheim et al.130

programs with respect to several dimensions of computational thinking, such as ab-
straction, synchronization, parallelism, algorithmic notions of flow control, user inter-
activity and data representation based on the CT framework presented by Brennan &
Resnick (2012) and the mobile CT rubric (Sherman and Martin, 2015) (Sherman et al.,
2014). These dimensions are measured by analyzing the source code of the programs
created adopting static code analysis to measure the kind and number of blocks used
in the program quantifying CT criteria such as control statement, data, interaction, etc.
Then, based on a rubric, the programming projects are assessed and a score and grade
is assigned (Fig. 4).

5.1. CodeMaster Code Analysis

The CodeMaster tool analyzes the code of programming projects developed with App
Inventor 2 (.aia file) and/or Snap! (.xml file). The code analysis is done in three steps:

The project code (.aia file or .xml file) is decompressed, read, parsed and con-1.
verted into a string to be manipulated more easily.
A lexical analysis is performed on the resulting string, converting the sequence of 2.
characters into a sequence of tokens (strings with an assigned meaning).
Then, the tool goes through the token list, counting the frequency of each token, 3.
creating a table of tokens and their frequency of use.

Fig. 4. Overview on the CodeMaster analysis and assessment & grading process

CodeMaster – Automatic Assessment and Grading of App Inventor ... 131

5.2. CodeMaster Project Assessment

For the assessment, we defined programming language specific rubrics to assess App In-
ventor (Table 2) and Snap! projects (Table 3). We use analytic rubrics that define criteria
for separate individual CT concepts and practices, which allow to calculate a total score
based on the individual scores for each criterion. We define the CT criteria to be assessed
based on the Computational Thinking Framework presented by Brennan & Resnick
(2012) that involves three key dimensions: computational thinking concepts, compu-
tational thinking practices, and computational thinking perspectives and has also been
adopted by Dr.Scratch (Moreno-Léon et al., 2015a). With respect to the App Inventor
rubric, we also take into consideration the Mobile Computational Thinking rubric (Sher-
man and Martin, 2015) (Sherman et al., 2014), as it extends the CT Framework (Bren-
nan and Resnick, 2012) by adding CT concepts that are present in mobile computing,

Table 2
CodeMaster rubric for assessing SNAP! projects

Criteria Level of Performance
0 1 2 3

Abstraction Does not use
any abstraction
blocks.

Uses more than one
script.

Defines custom blocks. Uses clones.

Logic Does not use
any logic
blocks.

Uses the “if, then”
block.

Uses the “if, then, else”
block.

Uses logical opera-
tions blocks that
combine conditions.

Parallelism Does not
use any
parallelism
blocks.

Uses at least two
scripts starting with
“green flag” block.

Uses at least two scripts with
the “when key is pressed”
block using the same key or
two scripts with the “when
I’m clicked” block.

Uses two scripts of
receiving me-ssages,
creating clones or
two sensing scripts.

User
interactivity

Does not
use any user
interactivity
blocks.

Uses the “green
flag” block.

Uses the “key pressed”,
“sprite/mouse clicked”, or
“ask” block.

Uses “play sound”
block.

Data
representation

Does not use
any data rep-
resentation
blocks.

Uses blocks to mo-
dify actor properties
such as coordinates,
size and appearance.

Uses blocks for operations on
variables.

Uses blocks for ope-
rations on lists.

Flow control Does not use
any flow con-
trol blocks.

Uses a sequence of
blocks.

Uses “repeat” or “forever”
blocks.

Uses “repeat until”
block.

Synchroniza-
tion

Does not use
any synchroni-
zation blocks.

Uses the “wait”
block.

Uses “say” or “think” blocks
with time duration.

Uses “wait until”
block.

 Operators No use of
any operators
blocks.

Uses one type of
operator blocks.

Uses two types of operator
blocks.

Uses more than two
types of operator
blocks.

C.G. von Wangenheim et al.132

Table 3
CodeMaster rubric for assessing App Inventor projects

Criteria Level of Performance
0 1 2 3

Screens Single screen with
visual components
that do not
programmatically
change state.

Single screen with
visual components
that do program-
matically change
state.

Two screens with vi-
sual components and
one screen with visual
components that do
programmatically cha-
nge state.

Two or more screens with
visual components and
two or more screens with
visual components that do
programmatically change
state.

User
Interface

Uses one visual
component without
arrangement.

Uses two or more
visual components
without arrange-
ment.

Uses five or more visu-
al components with one
type of arrangement.

Uses five or more visu-
al components with two
or more types of arran-
gement.

Naming:
Components,
Variables,
Procedures

Few or no names
were changed from
their defaults.

10 to 25% of the
names were chan-
ged from their
defaults.

26 to 75% of the names
were changed from
their defaults.

More than 75% of the
names were changed from
their defaults.

Events No use of any type
of event handlers.

Uses one type of
event handlers.

Uses two types of
event handlers.

Uses more than two types
of event handlers.

Procedural
Abstraction

No use of
procedures.

There is exactly
one procedure,
and it is called.

More than one
procedure is used.

There are procedures for
code organization and re-
use (with more procedure
calls than procedures).

Loops No use of loops. Uses simple loops
(“while”).

Uses “for each” loops
with simple variables.

Uses “for each” loops with
list items.

Conditional No use of
conditionals.

Uses “if”. Uses one “if then
else”.

Uses more than one “if
then else”.

Operators No use of any
operators blocks.

Uses one type of
operator blocks.

Uses two types of ope-
rator blocks.

Uses more than two types
of operator blocks.

Lists No use of lists. Uses one single-
dimensional list.

Use more than one sin-
gle-dimensional list.

Uses lists of tuples.

Data
persistence

Data are only stor-
ed in variables or UI
component proper-
ties, and do not persist
when app is closed.

Data is stored
in files (File or
FusionTables).

Uses local databases
(TinyDB).

 Uses web databases
(TinyWebDB or
Firebase).

Sensors No use of sensors. Uses one type of
sensor.

Uses two types of
sensors.

Uses more than two types
of sensors.

Media No use of media
components.

Uses one type of
media compo-
nents.

Uses two types of
media components.

Uses more than two types
of media components.

Social No use of social
components.

Uses one type of
social compo-
nents.

Uses two types of
social components.

Uses more than two types
of social components.

Connectivity No use of connecti-
vity components.

Uses activity
starter.

Uses bluetooth
connection.

Uses low level web
connection.

Drawing and
Animation

No use of drawing
and animation com-
ponents.

Uses canvas com-
ponent.

Uses ball component. Uses image sprite
component.

CodeMaster – Automatic Assessment and Grading of App Inventor ... 133

such as, screen design, location-awareness, and persistent and shared data. We revised
the Mobile CT rubric, which has been defined with respect to the technical capabilities
of App Inventor Classic, adjusting and adding criteria with respect to new features of
App Inventor 2 (such as social and media components).

Different to the CT Framework, we do not include a criterion on sequence, as this is
measured based on the simple presence of a sequence of blocks. With respect to the App
Inventor rubric, we do not include a criterion on parallelism, as this is not common in app
programs also indicated by the fact that is not covered by the Mobile CT rubric. Different to
the Mobile CT rubric, we include a criteria related to operators in both rubrics as suggested
by the CT framework. Following Dr. Scratch, we also include a criterion on synchroniza-
tion in the Snap! rubric. Other differences in the App Inventor rubric are basically due to
enhancements of the features provided by App Inventor 2, which were not available in App
Inventor Classic, when the Mobile CT rubric was defined. Other criteria proposed by the
CT framework related to the development process and computational thinking perspectives
are not considered as the assessment here is based on the created outcome exclusively.

Each criterion of both CodeMaster rubrics is described along a 4-point ordinal scale,
with increasing points representing more sophistication within the concept being mea-
sured. For each level of performance of each criterion, we describe observable behaviors
as quality definitions. These range from “criterion is not (or minimally) present” to a de-
scription of what constitutes advanced usage of the criterion. As a result a score is assigned
for each of the criteria, as well as total CT score by the sum of the partial scores. The total
CT score ranges from [0; 45] for the assessment of App Inventor projects and from [0; 24]
for the assessment of Snap! projects due to the different quantity of criteria assessed:

Total CT score = Σ score per criterion

5.3. CodeMaster Project Grading

Based on the total CT score a grade is assigned as an indication of the level of perfor-
mance reflected by the total CT score. CodeMaster assigns grades in two ways, as a
numerical grade and a ninja badge.

A numerical grade is assigned in a range from 0.0 to 10.0 by converting the total CT
score:

Grade = (score / maximum score of assessed criteria) * 10

Due to the fact, that not necessarily all programming projects are always expected to
include all the defined assessment criteria (especially with respect to mobile apps), we
allow teachers to customize the assessment and grading to a specific kind of program-
ming project. Therefore, CodeMaster supports the selection of relevant CT criteria in the
assessment of App Inventor programming projects, excluding irrelevant criteria.

CodeMaster also presents the grade in form of a ninja badge on an 10-point ordinal
scale of colors of a ninja belt in an engaging way aiming at making the assessment a

C.G. von Wangenheim et al.134

rewarding, challenging and fun part of the learning experience. The color of the ninja
badge is based on the numerical grade as indicated in Table 4.

6. Implementation of CodeMaster

Based on the conceptual model the CodeMaster tool has been developed as a web ap-
plication. The tool automates the assessment and grading of App Inventor and/or Snap!
projects. Fig. 5 presents an overview on the use cases implemented by the CodeMaster
tool as illustrated in Fig. 6.

Table 4
Definition of Ninja belt color scale

Numerical grade Ninja belt

 0 – 0.9 white
1.0 – 1.9 yellow
2.0 – 2.9 orange
3.0 – 3.9 red
4.0 – 4.9 purple
5.0 – 5.9 blue
6.0 – 6.9 turquoise
7.0 – 7.9 green
8.0 – 8.9 brown
9.0 – 10.0 black

Fig. 5. Use Case diagram1.

1 http://www.omg.org/spec/UML/2.5/

CodeMaster – Automatic Assessment and Grading of App Inventor ... 135

(a)

(b)

Fig. 6. (a) Examples of screens of the assessment of individual projects.
 (b) Examples of screens of the assessment of a whole class.

C.G. von Wangenheim et al.136

The architectural model of the CodeMaster tool has been defined with the objective
of separating presentation and analysis and assessment & grading layers into different
modules in order to make the application scalable in the long term and also to allow
direct connection of other applications in the future (Fig. 7). The “Analysis & Grader”
module is responsible for receiving the project(s), their settings and returning the results
of the assessment and grading, through a REST web service. It has been implemented
using the Jersey framework (https://jersey.github.io) which uses the API JAX-
RS (https://github.com/jax-rs) abstracting the low-level details of the implemen-
tation of the communication between the servers and simplifying the implementation
of the REST service. The "Presentation" module is responsible for the user interface,
registration of teachers and classes, submission of projects and presentation of results.

The entire backend system was implemented in the Java 8 programming language,
running on an Apache Tomcat 8 application server over an Ubuntu 16 operational sys-
tem, due to our team’s competence and the server infrastructure available. The front-end
component was implemented in the JavaScript programming language using the Boot-
strap library with an additional custom layout. The database used was MySQL 5.7 able
to meet the initially estimated demand.

The tool is available online in Brazilian Portuguese and English at:
http://apps.computacaonaescola.ufsc.br:8080.

7. Evaluation of CodeMaster

In order to evaluate the quality of the CodeMaster prototype we performed a preliminary
evaluation. Our objective is to analyze the quality of the CodeMaster tool in terms of
usefulness, functional suitability, performance efficiency and usability from the point

Fig. 7. Overview on CodeMaster’s components.

CodeMaster – Automatic Assessment and Grading of App Inventor ... 137

of view of K-12 teachers and students in the context of computing education. Based on
ISO/IEC 25010 (2011), ISO/IEC 9241 (1998) TAM (Davis, 1989), and SUS (Brooke,
1996) the quality factors to be evaluated are decomposed (Table 5).

The respective data is collected by conducting a user testing and a correctness test.

Table 5
Overview on the decomposition of the quality characteristics and measurement operationalization

Characte-
ristic

Sub-
characte-
ristic

User evaluation Test
Questionnaire Observa-

tionTeacher questionnaire Student questionnaire

Usefulness Do you find the CodeMaster
tool useful in computer edu-
cation in basic education?

Do you find the Code-
Master tool useful for
learning programming?

Do you think that in its
current form (uploading a
set of student projects by
identifying them by name
in the file) the CodeMaster
tool is a practical way in
your classes?

Functional
suitability

Functional
complete-
ness

Do you think there are as-
pects/criteria for evaluating
programming projects in
teaching computing in
basic education that are not
supported by the tool?
Do you think that there is
any relevant aspects with
respect to the process of
evaluating programming
projects in basic education
that are not supported by the
CodeMaster tool?
Do you think the provided
feedback information is
sufficient?

Do you think the provided
feedback information is
sufficient?

Functional
correctness

Have you noticed any error
regarding the functionality
of the CodeMaster tool?

Have you noticed any
error regarding the fun-
ctionality of the Code-
Master tool?

Correctness
test comparing
results from
CodeMaster
with manual
a s s e s s m e n t
results

Did you find the assigned
grade fair?

Perfor-
mance
efficiency

Time
behavior

Is the performance of the
CodeMaster tool satisfac-
tory?

Is the performance of
the CodeMaster tool sa-
tisfactory?

Performance
test

Continued on next page

C.G. von Wangenheim et al.138

Table 5 – continued from previous page

Characte-
ristic

Sub-
characte-
ristic

User evaluation Test

Questionnaire Observa-
tionTeacher questionnaire Student questionnaire

Usability Effective
ness

User
completed
task

Efficiency Task
comple-
tion time

Satisfaction I think that I would like to
use this system frequently.

I think that I would li-
ke to use this system
frequently.

I found the system unneces-
sarily complex.

I found the system unne-
cessarily complex.

I thought the system was
easy to use.

I thought the system was
easy to use.

I think that I would need
the support of a technical
person to be able to use this
system.

I think that I would need
the support of a technical
person to be able to use
this system.

I found the various functions
in this system were well
integrated.

I found the various
functions in this system
were well integrated.

I thought there was too
much inconsistency in this
system.

I thought there was too
much inconsistency in
this system.

I would imagine that most
people would learn to use
this system very quickly.

I would imagine that most
people would learn to use
this system very quickly.

I found the system very
cumbersome to use.

I found the system very
cumbersome to use.

I felt very confident using
the system.

I felt very confident using
the system.

I needed to learn a lot of
things before I could get
going with this system.

I needed to learn a lot of
things before I could get
going with this system.

Operability Did you find the CodeMaster
tool easy to use?

Did you find the Code-
Master tool easy to use?

Do you think the CodeMaster
tool has elements that are
ambiguous or difficult to
understand?

Do you think the Code-
Master tool has elements
that are ambiguous or
difficult to understand?

7.1. User Testing

The user testing aims at evaluating the perceived quality from the point of view of
teachers and students. During user testing, the users are first given a basic overview
on the objective and features of the CodeMaster tool. Then, they perform a predefined
task (assessing one or a set of programming projects with the tool). Data is collected
through observation as well as a post-test questionnaire. The questionnaire items were

CodeMaster – Automatic Assessment and Grading of App Inventor ... 139

derived from the quality characteristics (Table 6). We basically used a nominal scale
for the questionnaire items (yes/no), with exception of the items regarding satisfaction.
This quality sub-characteristic is measured by adopting the SUS questionnaire (Brooke,
1996) on a 5-point Likert scale. In addition, we also asked them to identify strengths and
weaknesses of the tool. The complete material used in the user evaluation is documented
in Brazilian Portuguese by Demetrio (2017) and Pelle (2018).

7.1.1. Execution of User Evaluation
The evaluation of the tool was carried out by a total of 7 teachers and 9 students in Flo-
rianopolis/Brazil (Table 6).

All tests were accompanied by researchers of our initiative Computação na Escola/
INCoD/INE/UFSC. The evaluation occurred in September 2017. The data collected is
detailed in Appendix A (Demetrio, 2017) (Pelle, 2018).

7.1.2. Analysis of User Evaluation
In accordance to the defined quality factors (Table 6), we analyzed the collected data.

Is CodeMaster useful?
All participants considered the CodeMaster tool useful for learning and teaching pro-
gramming. In general, its contribution to understand the learning of programming has
been pointed out as a strength, as it helps the students as well as the teachers to un-
derstand if they are learning or not, as well as indicating improvement opportunities.
During the test we observed that several students were motivated by a low assessment
to immediately continue programming in order to obtain a higher ninja belt. Teach-
ers also emphasized the value of the partial scores with respect to specific criteria
providing a detailed feedback. They also recognized that the CodeMaster tool allows
to make assessments rapidly and in an organized way. The only issue cited is the way
of identification of the individual projects by the names of the students in the teacher
module. Teachers suggested that this identification should also include the name of the
app and/or project.

Is CodeMaster functional suitable?
The majority of the participants think that all aspects/criteria for evaluating program-
ming projects in teaching computing in basic education are supported by the tool. Only

Table 6
Overview on user testing participants

Elementary/Middle School
teachers

Elementary/Middle School
students

Total

CodeMaster – App Inventor 3 5 8
CodeMaster – Snap! 4 4 8

Total 7 9 16

C.G. von Wangenheim et al.140

one teacher suggested that it also should be possible to modify the order of the criteria
as well as the projects when presenting the assessment results in the teacher module. An-
other suggestion with respect to the presentation of the assessment results to the teacher
was to visualize the level by a colored image and not only by a label expressing the
ninja belt color. One teacher also suggested the consideration of further aspects such as
dead code, duplicated code, etc. The way to upload projects was considered positive, but
some suggestions were given, such as the possibility of the student sending the project
to the teacher directly via the CodeMaster tool.

During the tests we also identified the lack of error messages in case of uploading
empty/invalid files and or requesting an assessment without uploading any file. Correct-
ing this issue, the respective error messages have been added.

The majority of the students considered the assigned grade fair. Only one student,
trying to improve his grade, indicated that although advancing his program he was not
able to improve his grade, which consequently discouraged the student. As a result we
increased the number of ninja badge levels from initially 8 to 10 levels in order to facili-
tate the achievement of a higher level. We also observed during the tests that the primary
focus of the student was on the ninja badge, some even not noticing at all that the tool
also presented a grade.

Is CodeMaster’s performance efficient?
The results of performance tests have shown acceptable average assessment time also
confirmed by the participating teachers. However, two students did not agree demon-
strating a much lower tolerance on performance delays. One student encountered an
efficiency problem uploading a large App Inventor project (including several images)
taking about 10 secs to upload probably due to a slow internet connection. In order to
improve usability with respect to this issue an indication of the status during upload
has been added.

Is CodeMaster usable?
All participants were able to complete successfully the task of assessing one (in the case
of students) or a set of projects (in case of the teachers). Applying the System Usability
Scale (SUS) (Brooke, 1996) to measure the satisfaction, high scores were given (Bangor
et al., 2009) indicating an excellent level of satisfaction (Table 7).

All participants considered the CodeMaster tool easy to use. However one teacher
and two students identified elements that were difficult to understand. They indicated

Table 7
Averages of SUS Scores

Elementary/Middle School
teachers

Elementary/Middle School
students

Total

CodeMaster – App Inventor 88.13 91.25 89.69
CodeMaster – Snap! 89.17 90.83 90

Total 88.65 91.04 89.84

CodeMaster – Automatic Assessment and Grading of App Inventor ... 141

difficulty with respect to the understanding of the assessment criteria based on computa-
tional thinking concepts and practices, e.g.” I do not know what a loop is”. This indicates
that, although, all participants had some knowledge on computing obtained in previous
computing workshops, a need for revising the adopted terminology for the instructional
feedback is necessary in order to make it more easily understandable. Especially the
children liked the ninja being motivated much more to obtain a higher ninja belt level
than taking into consideration the numerical grade.

7.2. Correctness Test

This test aims at evaluating the correctness of the results generated by the CodeMaster
tool comparing the assessment and grading generated by the tool with manual assess-
ment results. For the test we randomly selected 10 apps from the App Inventor Gallery

Table 8
Comments from the participants

Topic Comments from the teachers Comments from the students

What did
you like with
respect to the
CodeMaster
tool?

Practicality and agility in the evaluation.
The design of the tool is excellent, very acce-
ssible and easy to use. Within what it proposes
to evaluate it is certainly very relevant and
practical.
It supports the teacher to identify the concepts
that the students are able to use and to visualize
their progression. Another important aspect is
the feature that allows the student to perceive
what he learned and what he needs to improve,
pointing out ways to overcome difficulties.
The items evaluated are useful for us as teachers
to think of what we want our students to learn.
Collaborate in the integration of curricular
content and tool.
With the tool it is possible to organize.
The functionality and practicality of the tool and
the amount of data that can be analyzed.

More possibilities than just Scratch.
Easy to use, quick to evaluate and the little
doll is cute.
I like the little eyes of the doll indicating an
error.
I was able to do it myself and I liked the
doll.
The ninja.

Any impro-
vement sug-
gestion with
respect to the
CodeMaster
tool?

Option to choose the concepts that best fit your
evaluation objective.
Create a gallery on the platform itself.
Just make clear what the concepts, scores and
grades mean.
Option to drag the projects as an e-mail attach-
ment.
Especially for those who are not from the area
the tool could provide a quick explanation as tool
tips on the evaluated items, when presenting the
scores. It would be helpful to include a function
that allows the sorting of the projects by each of
the items, screens, interfaces ... and also total
score, grade and ninja belt.

I would like to customize the doll (eye color,
ponytail)
I wanted tips on how to become a black
belt and be able to see all my scores/ninja
belts (the same way commonly presented by
mobile games).
On the error page the ninja could get dizzy
and fall to the ground.
While the tool evaluated the project, you
could show the ninja training. Depending on
the result the ninja could be happy or sad,
e.g., grade 5 and up he becomes happier
with each grade, and grade 5 and down he
becomes sadder.

C.G. von Wangenheim et al.142

and 10 Snap! projects from the Snap Galerie (https://nathalierun.net/snap/
Snap.Galerie). For the manual evaluation of the projects, each selected project was
opened in the respective programming environment (App Inventor or Snap!). A per-
formance level was manually assigned with respect to each criteria of the rubric by
counting the presence of the blocks and visual components. For the automatic evalua-
tion the projects were uploaded as a set and assessed with the CodeMaster tool. Com-
paring the results we observed that the same results were obtained in all cases, thus,
providing a first indication of the correctness of the CodeMaster tool with respect to
the defined rubric.

7.3. Discussion

The results of the evaluation provide a first indication that the CodeMaster tool can be
a useful, functional, performance-efficient and usable tool to support the assessment of
App Inventor and Snap! projects. Principal strengths based on the feedback of the stu-
dents include the playful way in which the assessment results are presented through the
ninja badge. We also observed that getting feedback on their projects motivated them
to continue programming trying to improve their assessment. However as observed,
the terminology used to provide a detailed feedback per criterion needs to be revised
in order to become more understandable by children as well as teachers. Furthermore,
in order to guide their improvement more explanations on how the projects can be im-
proved should be presented giving not only an assessment feedback but also guiding the
learning process in a personalized way. Although considering the grade fair, some chil-
dren became frustrated when they were not easily able to improve their grade/ninja belt
level continuing programming. Especially with respect to App Inventor projects it can be
difficult to achieve higher levels as currently this would require the inclusive of diverse
concepts in one app, which not always be necessary depending on the kind of app. Tak-
ing into consideration this fact, the teacher module permits to customize the criteria used
for the assessment of App Inventor project, yet such a customization is not implemented
as part of the student module as the students may not be able to foresee which criteria are
relevant, requiring a different solution.

From the viewpoint of the teachers the main strength is the possibility of having
a tool that provides support for assessing programming projects of the students in an
easy, organized and rapid way. They also emphasised the usefulness of such a tool in
the typical school context in Brazil having to attend 30–40 students in each class. The
adoption of the tool can also be further facilitated when being integrated into the pro-eing integrated into the pro-ing integrated into the pro-
gramming platform itself. Taking into consideration that today computing education
is mostly provided by non-computing teachers, they also emphasized the importance
of the detailed information per assessment criteria giving not only a general grade, as
this allows them to understand more clearly the learning of their students and needs for
adjusting teaching.

In general, the assessment criteria are aligned with prominent CT assessment frame-general, the assessment criteria are aligned with prominent CT assessment frame-, the assessment criteria are aligned with prominent CT assessment frame-
works and similar tools, providing the opportunity to mainly automate the assessment

CodeMaster – Automatic Assessment and Grading of App Inventor ... 143

of computational thinking concept and practices (focusing on programming). Yet, taking
into consideration the importance of teaching computing in order to advance 21th cen-
tury skills (CSTA, 2013) it becomes obvious that a comprehensive performance assess-
ment in computing education should also cover further concepts such as creativity and
innovation as well as practices (communication, collaboration etc.) and CT perspectives.
In this context, CodeMaster represents only a first step into the direction of automated
assessment of programming assignments. Thus, in order to provide a comprehensive
feedback, the assessment given by the tool needs to be completed by a manual assess-
ment of the teacher taking into consideration alternative methods as suggested by Bren-
nan and Resnick (2012).

7.4. Threats to Validity

The results obtained in this preliminary evaluation need to be interpreted with caution,
taking into account potential threats to their validity. One threat may be the research
design adopted conducting a series of tests collecting data with respect to utility,
functional suitability, and usability through post-test questionnaires and observations.
Due to the lack of measurements in a real educational context and a control group, the
results are limited to provide only a first indication on the quality of the CodeMaster
tool.

The subjects were selected so that their profiles would match the roles of prospective
users. However, another threat to validity is related to the sample size, which may com-
promise the generalizability of the results. Our exploratory study is based on a total of 16
subjects. Such a small sample size hinders any kind of quantitative analysis. However,
according to Hakim (1987) small samples can be used to develop and test explanations,
particularly in the early stages of the work.

There may also be threats to construct validity. Due to practical limitations, running
the study as user tests, the results related to learning effects were obtained from obser-
vations of the participants. This type of assessment occurring not within an educational
context may not be enough to measure the tool effect. Further evaluation studies within
educational contexts are therefore necessary in order to confirm the results. Another
possible threat is the definition of the measurement as the quality of software tools is
difficult to measure. To counteract this threat, the questionnaires have been developed
by systematically decomposing the evaluation goal into questionnaire items adopting the
GQM approach (Basili et al., 1994).

8. Conclusion

In this article we present the CodeMaster tool, a web application that analyzes App
Inventor or Snap! programs to provide feedback to teachers and students and assigns a
CT score and grade to projects. Based on the CT framework and the Mobile CT rubric,
we define programming language specific rubrics to conduct performance based assess-

C.G. von Wangenheim et al.144

ments of the learning outcome. Adopting a static code analysis approach, we measure
the number of programming blocks as performance indicators with respect to CT cri-
teria such as control flow, abstraction, events etc. Based on the rubric a total CT score
is calculated that is also converted into a grade. A preliminary evaluation demonstrates
that CodeMaster is considered useful, functional, performance-efficient and usable by
students and teachers. It can motivate students to continue improving their programs as
well as ease the assessment process for teachers. However, we also identified some limi-
tations. An assessment based only on the program project might be limited requiring the
usage of other means of assessments approaching CT practices and perspectives. In ad-
dition, other competencies, such as creativity or design (being a critical success criterion
for apps) are not covered currently. Furthermore, a more detailed personalized feedback
on how to improve CT competencies is required in order to better guide and motivate the
students. Other issues are related to the implementation of the tool, such as a semantic
analysis, coding issues (e.g. dead code, correct use of blocks, etc.) as well as for example
the detection of plagiarism. Other improvement opportunities include the inclusion of
the approach directly into the programming environment and/or Learning Management
Systems, enabling the monitoring of the progress throughout a course. Thus, currently
we are working on the improvement of the CodeMaster tool with respect to the identified
issues as well as carrying out a series of case studies applying and evaluating the tool in
the classroom.

Acknowledgments

We would also like to thank all participants in the evaluation for their valuable feed-
back.

This work is supported by CNPq (Conselho Nacional de Desenvolvimento Científico
e Tecnológico), an entity of the Brazilian government focused on scientific and techno-
logical development.

References

Ala-Mutka, K.M. (2005). A survey of automated assessment approaches for programming assignments. Com-
puter Science Education, 15(2), 83–102.

Ala-Mutka, K.M., Järvinen, H.-M. (2004). Assessment process for programming assignments. In: Proceedings
of IEEE Int. Conference on Advanced Learning Technologies. Joensuu, Finland, 181–185.

Alves, N.d.C., Gresse von Wangenheim, C., Hauck, J.C.R. (2017).Approaches to Assess Computational Think-
ing Competences Based on Code Analysis in K-12 Education: A Systematic Mapping Study. (in progress)

Ball, M., 2017. Autograding for Snap!. Hello World, 3, 26.
Ball, M.A., Garcia, D.D. (2016). Autograding and feedback for Snap!: A visual programming language. In:

Proceedings of the 47th ACM Technical Symposium on Computing Science Education. Memphis, TN,
USA, 692–692.

Bangor, A., Kortum, P., Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective
rating scale. Journal of Usability Studies, 4(3), 114–123.

CodeMaster – Automatic Assessment and Grading of App Inventor ... 145

Basawapatna, A.; Koh, K.H.; Repenning, A.; Webb, D.C.; Marshall, K.S. (2011). Recognizing computational
thinking patterns. In: Proceedings of the 42nd ACM Technical Symposium on Computer Science Education.
Dallas, TX, USA, 245–250.

Basili, V.R.; Caldiera, G.; Rombach, D. (1994). Goal question metric approach. Encyclopedia of Software
Engineering. John Wiley & Sons, 528–532.

Becker, K. (2003). Grading programming assignment using rubrics. In: Proceedings of the 8th Annual Confer-
ence on Innovation and Technology in Computer Science Education. Thessaloniki, Greece, 253–253.

Biggs, J. (2003). Teaching for Quality Learning at University. 2nd ed. SRHE/Open University Press, Buck-
ingham.

Black, P. Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy
& Practice, 5(1), 7–74.

Boe, B., Hill, C., Len, M. (2013). Hairball: lint-inspired static analysis of scratch projects. In: Proceeding of
the 44th ACM Technical Symposium on Computer Science Education. Denver, Colorado, USA, 215–220.

Branch, R.M. (2010). Instructional Design: The ADDIE Approach. New York: Springer.
Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the development of compu-

tational thinking. In: Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada.

Brooke, J. (1996). SUS: a “quick and dirty” usability scale. In: P.W. Jordan, B. Thomas, B.A. Weerdmeester,
A.L. McClelland. Usability Evaluation in Industry. London: Taylor and Francis.

Cateté, V., Snider, E., Barnes, T. (2016). Developing a Rubric for a Creative CS Principles Lab. In: Proceed-
ings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Areq-
uipa, Peru. 290–295.

CSTA (2013). CSTA K-12 Computer Science Standards: Mapped to Partnership for the 21st Century Essential
Skills. https://www.ncwit.org/sites/default/files/file_type/2013ce21_cstastandards-
mappedtop21centuryskills.pdf

Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technol-
ogy. MIS Quarterly, 13(3), 319–340.

DeLuca, C., Klinger, D.A. (2010). Assessment literacy development: identifying gaps in teacher candidates’
learning. Assessment in Education: Principles, Policy & Practice, 17(4), 419–438.

Demetrio, M.F. (2017). Development of an App Inventor code analyzer and grader for computing education
Project Thesis. Bachelor of Computer Science Course, Federal University of Santa Catarina, Florianópolis,
Brazil.

Denner, J.; Werner, L.; Ortiz, E., (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts? Computers & Education, 58(1), 240–249.

Douce, C., Livingstone, D., Orwell, J. (2005). Automatic test-based assessment of programming: A review.
Journal on Educational Resourses in Computing, 5(3), no.4.

Driscoll, A., Wood, S. (2007). Developing Outcomes-Based Assessment for Learner– Centered Education: a
Faculty Introduction. Stylus Publishing, Sterling, VA, USA.

Eseryel, D., Ifenthaler, D., Xun, G. (2013). Validation study of a method for assessing complex ill structured
problem solving by using causal representations. Educational Technology and Research, 61, 443–463.

Eugene, K., Stringfellow, C., Halverson, R.(2016). The usefulness of rubrics in computer science. Journal of
Computing Sciences in Colleges, 31(4), 5–20.

Fee, S.B., Holland-Minkley, A.M. (2010). Teaching Computer Science through Problems, not Solutions. Com-
puter Science Education, 2, 129–144.

Fonte, D., da Cruz, D., Gançarski, A.L., Henriques, P.R. (2013). A Flexible Dynamic System for Automatic
Grading of Programming Exercises. In: Proceedings of the 2nd Symposium on Languages, Applications
and Technologies. Porto, Portugal, 129–144.

Forsythe, G.E., Wirth, N. (1965). Automatic grading programs. Communications of the ACM, 8(5), 275–278.
Fortus, D., Dershimer, C., Krajcik, J., Marx, R., Mamlok-Naaman, R. (2004). Design-based science and stu-

dent learning. Journal of Research in Science Teaching, 41(10), 1081–1110.
Forsythe, G.E.; Wirth, N. (1965). Automatic grading programs. Communications of the ACM 8(5), 275–278.
Benford, S.D., Burke, E.K., Foxley, E., Higgins, C., (1995). The Ceilidh system for the automatic grading of

students on programming courses. In: Proceedings of the 33rd ACM-SE Annual on Southeast Regional
Conference, Clemson, South Carolina, 176 – 1182.

C.G. von Wangenheim et al.146

Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., Dreschler, G., Aldana, G., Almeida-Tanaka, P.,
Kiefer, B., Laird, C., Lopez, F., Pham, C., Suarez, J., Waite, R. (2013). Assessment of Computer Science
Learning in a Scratch-Based Outreach Program. Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, Denver, Colorado, USA 371–376.

Funke, J. (2012). Complex problem solving. In: N. M. Seel (Ed.), The Encyclopedia of the Sciences of Learn-
ing, New York: Springer; Jonassen, 3, 682–685.

Gallagher, S.A. (1997). Problem-based learning: Where did it come from, what does it do, and where is it go-
ing? Journal for the Education of the Gifted, 20(4), 332–362.

Gijselaers, W.H. (1996). Connecting problembased practices with educational theory. In: L. Wilkerson &
W.H. Gijselaers (Eds.), Bringing Problem-Based Learning to Higher Education: Theory and Practice. San
Francisco: Jossey-Bass, 13–21.

Goodrich, H. (1996). Understanding Rubrics. Educational Leadership, 54(4), 14–18.
Grover, S., Cooper, S., Pea, R. (2014). Assessing computational learning in K-12. In: Proceedings of the 2014

Conference on Innovation & Technology in Computer Science Education, Uppsala, Sweden, 57–62.
Grover, S., Pea, R. (2013). Computational Thinking in K–1: A review of the state of the field. Educational

Researcher, 42(1), 38–43.
Grover, S., Pea, R., Cooper, S. (2015). Designing for deeper learning in a blended computer science course for

middle school students. Journal Computer Science Education, 25(2), 199–237.
Guindon, R. (1988). Software design tasks as ill-structured problems, software design as an opportunistic

process. Microelectronics and Computer Technology Corporation, Austin, TX, USA.
Hakim, C. (1987). Research Design: Strategies and Choices in the Design of Social Research. Contemporary

Social Research: 13, ed. M. Bulmer, London: Routledge.
Hart, D. (1994). Authentic Assessment: A Handbook for Educators. Addison-Wesley Pub. Co, Menlo Park,

CA.
Harvey, B., Garcia, D., Paley, J., Segars, L. (2012). Snap!:(build your own blocks). In: Proceedings of the 43rd

ACM Technical Symposium on Computer Science Education, Raleigh, NC, USA.
Harvey, B., Mönig, J. (2017). “Snap! Reference Manual. https://people.eecs.berkeley.edu/~bh/

byob/SnapManual.pdf

Hattie, J., Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.
Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O. (2010). Review of recent systems for automatic assess-

ment of programming assignments. In: Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, Koli, Finland, 86–93.

ISO/IEC 25010. (2011). Systems and software engineering –Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality models.

ISO 9241-11. (1998) Ergonomic requirements for office work with visual display terminals (VDTs) – Part 11:
Guidance on usability.

Johnson, D. E., (2016). ITCH: Individual Testing of Computer Homework for Scratch Assignments. In: Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education, Memphis, Tennessee,
USA, 223–227.

Kafai, Y., Burke, Q. (2013). Computer programming goes back to school. Phi Deltan Kappan, 95(1), 61–65.
Kelleher, C., Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environ-

ments and languages for novice programmers. ACM Computing Surveys, 37(2), 83–137.
Keuning , H., Jeuring, J., Heeren, B. (2016). Towards a Systematic Review of Automated Feedback Genera-

tion for Programming Exercises. In: Proc. of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, Arequipa, Peru, 41–46.

Kindborg, M., Scholz, R. (2006). MagicWords – A programmable learning toy. In: Proceedings of the 2006
Conference on Interaction design and children, Tampere, Finland, 165–166.

Kitchenham, B.A, Budgen, D., Brereton, O.P., (2011). Using mapping studies as the basis for further research
– A participant-observer case study. Information and Software Technology, 53(6), 638–651.

Koyya, P., Lee, Y., Yang, J. (2013). Feedback for programming assignments using software-metrics and refer-
ence code. ISRN Software Engineering, article id 805963.

Koh, K.H., Basawapatna, A.,Bennett, V., et al., (2010). Towards the automatic recognition of computational
thinking. In: Proceedings of the IEEE International Symposium on Visual Languages and Human-Centric
Computing, Madrid, Spain, 59–66.

Koh, K.H., Bennett, V., Repenning, A., (2011). Computing indicators of creativity. In: Proceedings of the 8th
ACM Conference on Creativity and Cognition Atlanta, Georgia, USA, 357–358.

CodeMaster – Automatic Assessment and Grading of App Inventor ... 147

Koh, K.H., Basawapatna, A., Nickerson, H., Repenning, A. (2014a). Real time assessment of computational
thinking. In: Proceedings of the IEEE Symposium onVisual Languages and Human-Centric Computing,
Melbourne, Australia, 49–52.

Koh, K.H., Nickerson, H., Basawapatna, A., Repenning, A., (2014b). Early validation of computational think-
ing pattern analysis. In: Proceedings of the Annual Conference on Innovation and Technology in Computer
Science Education, Uppsala, Sweden, 213–218.

Kwon, K.Y., Sohn, W.-S. (2016). A framework for measurement of block-based programming language. Asia-
Pacific Proceedings of Applied Science and Engineering for Better Human Life, 10, 125–128.

Kwon, K.Y. and Sohn, W-S. (2016). A method for measuring of block-based programming code quality. Inter-
national Journal of Software Engineering and Its Applications, 10(9), 205–216.

Larman C., Basili, V. (2003). Iterative and Incremental Development: A Brief History. IEEE Computer, 36(6),
47–56.

Lye, S. Y., Koh, J.H.L. (2014). Review on teaching and learning of computational thinking through program-
ming: What is next for K-12?. Computers in Human Behavior, 41(C), 51–61.

Maiorana, F., Giordano, D., Morelli, R., (2015). Quizly: A live coding assessment platform for App Inventor.
In: Proceedings of IEEE Blocks and Beyond Workshop,Atlanta, GA, USA, 25–30.

McCauley, R. (2003). Rubrics as assessment guides. Newsletter ACM SIGCSE Bulletin, 35(4),17–18.
Merrill, D.C., Reiser, B.J., Ranney, M., Trafton, J.G. (1992). Effective tutoring techniques: A comparison of

human tutors and intelligent tutoring systems. Journal of the Learning Sciences, 2(3), 277–305.
Monroy-Hernández, A., Resnick, M. (2008). Empowering kids to create and share programmable media In-

teractions. 15(2), 50–53.
Moreno, J., Robles, G., (2014). Automatic detection of bad programming habits in scratch: A preliminary

study. In: Proceeding of Frontiers in Education Conference, Madrid, Spain, 1–4.
Moreno-León, J., Robles, G. (2015a). Analyze your Scratch projects with Dr. Scratch and assess your Compu-

tational Thinking skills. In: Proceedings of the Scratch Conference, Amsterdam, Netherlands, 1–7.
Moreno-León, J., Robles, G. (2015b). Dr. Scratch: a Web Tool to Automatically Evaluate Scratch Projects.

In: Proceedings of the 10th Workshop in Primary and Secondary Computing Education, London, UK,
132–133.

Moreno-Léon, J., Robles, G., Román-González, M. (2015). Dr. Scratch: Automatic Analysis of Scratch Proj-
ects to Assess and Foster Computational Thinking. RED-Revista de Educación a Distancia, 4615.

Moreno-León, J., Robles, G., Román-González, M. (2016). Comparing computational thinking development
assessment scores with software complexity metrics. In: Proceedings of IEEE Global Engineering Educa-
tion Conference, Abu Dhabi, UAE, 1040– 1045

Moreno-León, J., Román-González, M., Harteveld, C., Robles, G.(2017). On the Automatic Assessment of
Computational Thinking Skills. In: Proc. of the Conference on Human Factors in Computing Systems
Denver, Colorado, USA, 2788–2795.

Mustafaraj, E., Turba, F., Svanberg, M. (2017). Identifying Original Projects in App Inventor. MIT. App Inven-
tor Classic. http://appinventor.mit.edu/explore/classic.html

Ota, G., Morimoto, Y., Kato, H. (2016). Ninja code village for scratch: Function samples/function analyser
and automatic assessment of computational thinking concepts. In: Proc. of IEEE Symposium on Visual
Languages and Human-Centric Computing, Cambridge, UK.

Pelle, R. (2018). Development of a Snap! code analyzer and grader for computing education Project Thesis,
Bachelor of Computer Science Course, Federal University of Santa Catarina, Florianópolis, Brazil. (in
progress)

Petersen, K., Vakkalanka, S., Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in
software engineering: An update. Information and Software Technology, 64(C), 1–18.

Popham, W.J. (2009). Assessment literacy for teachers: Faddish or fundamental? Theory into Practice, 48(1),
4–11.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K. (2009). Scratch: Pro-
gramming for all. Communications of the ACM, 52(11), 60–67.

Romli, R., Sulaiman, S., Zamli, K.Z. (2010). Automatic programming assessment and test data generation – a
review on its approaches. In: Proceedings of International Symposium in Information Technology, Kuala
Lumpur, Malaysia, 1186–1192.

Sadler, D.R. (1989). Formative assessment and the design of instructional systems, Instructional Science,
18(2), 119–144.

C.G. von Wangenheim et al.148

Seiter, L., Foreman, B.(2013). Modeling the Learning Progressions of Computational Thinking of Primary
Grade Students. Proceedings of the 9th Annual Int. ACM Conference on International Computing Educa-
tion Research, San Diego, California, USA, 59–66.

Shelton, J.B., Smith, R.F. (1998). Problem-based learning in analytical science undergraduate teaching. Re-
search in Science and Technological Education, 16(1), 19–29.

Sherman, M., Martin, F. (2015). The assessment of mobile computational thinking. Journal of Computing
Sciences in Colleges, 30(6), 53–59.

Sherman, M., Martin, F., Baldwin, L., DeFilippo, J. (2014). App Inventor Project Rubric – Computational
Thinking through Mobile Computing. https://nsfmobilect.files.wordpress.com/2014/09/mo-
bile-ct-rubric-for-app-inventor-2014-09-01.pdf

Shute. V.J. (2008). Focus on formative feedback. Review of Educational Research, 78(1),153–189.
Simon, H.A. (1983). The structure of ill-structured problems. Artificial Intelligence, 4, 181–201.
Smith, L., Cordova, J. (2005). Weighted primary trait analysis for computer program evaluation. Journal of

Computing Sciences in Colleges, 20(6), 14–19.
Srikant, S., Aggarwal, V. (2013). Automatic Grading of Computer Programs: A Machine Learning Approach.

Proceeding of 12th International Conference on Machine Learning Applications, Miami, FL, USA.
Srikant, S., Aggarwal , V. (2014). A System to Grade Computer Programming Skills using Machine Learning,

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, New York, NY, USA,1887–1896.

Torrance, H. (1995). Evaluating Authentic Assessment: Problems and Possibilities in New Approaches to As-
sessment. Buckingham: Open University Press.

Turbak, F., Mustafaraj, F., Svanberg, M., Dawson, M. (2017). Identifying and analyzing original projects in an
open-ended blocks programming environment. In: Proc. of the 23rd Int. Conference on Visual Languages
and Sentient Systems. Pittsburgh, PA, USA.

Vujosevic-Janicic, M., Nikolic, M., Tosic, D., Kuncak, V. (2013). On software verification and graph simi-
larity for automated evaluation of students’ assignments. Information and Software Technology, 55(6),
1004–1016.

Ward, J.D. & Lee, C.L. (2002). A review of problem-based learning. Journal of Family and Consumer Sci-
ences Education, 20(1), 16–26.

Weintrop, D. Wilensky, U., (2015). To Block or not to Block, That is the Question: Students’ Perceptions of
Blocks-based Programming. In: Proceedings of the 14th International Conference on Interaction Design
and Children, Boston, Massachusetts, USA, 199–208.

Werner, L., Denner, J., Campe, S., Kawamoto, D.C., (2012). The Fairy performance assessment: Measuring
computational thinking in middle school. In: Proceedings of ACM Technical Symposium on Computer Sci-
ence Education, Raleigh, North Carolina, USA, 215–220.

Whittaker, C.R., Salend, S.J., Duhaney, D. (2001). Creating instructional rubrics for inclusive classrooms.
Teaching Exceptional Children, 34(2), 8–13.

Wiggins, G.P. (1993). The Jossey-Bass education series. Assessing student performance: Exploring the pur-
pose and limits of testing. San Francisco: Jossey-Bass.

Wilcox, C. (2016). Testing Strategies for the Automated Grading of Student Programs. In: Proceedings of the
47th ACM Technical Symposium on Computing Science Education, Memphis, Tennessee, USA, 437–442.

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–36.
Wolber, D., Abelson, H., Friedman, M. (2014). Democratizing computing with App Inventor. Get Mobile,

18(4), 53–58.
Wolz, U., Hallberg, C., Taylor, B. (2011). Scrape: A tool for visualizing the code of scratch programs. In: Pro-

ceedings of the 42nd ACM Technical Symposium on Computer Science Education, Dallas, TX, USA.
Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., Clayborn, L. (2015). Sowing the Seeds: A Landscape

Study on Assessment in Secondary Computer Science Education. In: Proceedings of CSTA Annual Confer-
ence, Grapevine, TX, USA.

Zen, K., Iskandar, D.N.F.A., Linang, O. (2011). Using Latent Semantic Analysis for automated grading pro-
gramming assignments. In: Proc. of the 2011 International Conference on Semantic Technology and Infor-
mation Retrieval. Kuala Lumpur, Malaysia, 82–88.

CodeMaster – Automatic Assessment and Grading of App Inventor ... 149

C.G. von Wangenheim, is a professor at the Department of Informatics and Statistics
(INE) of the Federal University of Santa Catarina (UFSC), Florianópolis, Brazil, where
she coordinates the Software Quality Group (GQS) focusing on scientific research, de-
velopment and transfer of software engineering models, methods and tools and software
engineering education in order to support the improvement of software quality and pro-
ductivity. She also coordinates the initiative Comput ing at Schools, which aims at bring-Comput ing at Schools, which aims at bring-, which aims at bring-
ing computing education to schools in Brazil. She received the Dipl.-Inform. and Dr.
rer. nat. degrees in Computer Science from the Technical University of Kaiserslautern
(Germany), and the Dr. Eng. degree in Production Engineering from the Federal Univer-
sity of Santa Catarina. She is also PMP – Project Management Professional and MPS.
BR Assessor and Implementor.

J.C.R. Hauck holds a PhD in Knowledge Engineering and a Master’s Degree in Com-
puter Science from the Federal University of Santa Catarina (UFSC) and a degree in
Computer Science from the University of Vale do Itajaí (UNIVALI). He held several
specialization courses in Software Engineering at Unisul, Univali, Uniplac, Uniasselvi,
Sociesc and Uniarp. He was a visiting researcher at the Regulated Software Research
Center – Dun dalk Institute of Technology – Ireland. He is currently a Professor in the
Department of Informatics and Statistics at the Federal University of Santa Catarina.

M.F. Demetrio is an undergraduate student of the Computer Science course at the De-the De-
partment of Informatics and Statistics (INE) of the Federal University of Santa Catari-
na (UFSC) and a research student at the initiative Comput ing at Schools/INCoD/INE/
UFSC.

R. Pelle is an undergraduate student of the Computer Science course at the Department
of Informatics and Statistics (INE) of the Federal University of Santa Catarina (UFSC)
and a research student at the initiative Comput ing at Schools/INCoD/INE/UFSC.

N. da Cruz Alves is an master student of the Graduate Program in Computer Science
(PPGCC) at the Federal University of Santa Catarina (UFSC) and a research student at
the initiative Comput ing at Schools/INCoD/INE/UFSC.

H. Barbosa is an undergraduate student of the Design course at Department of Graphic
Expression of the Federal University of Santa Catarina (UFSC) and a scholarship stu-
dent at the initiative Comput ing at Schools/INCoD/INE/UFSC.

L.F. Azevedo is an undergraduate student of the Design course at Department of Graph-
ic Expression of the Federal University of Santa Catarina (UFSC) and a scholarship
student at the initiative Comput ing at Schools/INCoD/INE/UFSC.

C.G. von Wangenheim et al.150

Appendix A. Responses collected during user testing via questionnaire

Characte-
ristic

Sub-
characte-
ristic

Teacher questionnaire Yes No Student questionnaire Yes No

Usefulness Do you find the CodeMaster to-
ol useful in computer education
in basic education?

7 0 Do you find the CodeMas-
ter tool useful for learning
programming?

7 0

Do you think that in its current
form (uploading a set of stu-
dent projects by identifying
them by name in the file) the
CodeMaster tool is a practical
way in your classes?

5 2

Functional
suitability

Functional
comple-
teness

Do you think there are as-pects/
criteria for evaluating pro-
gramming projects in teaching
computing in basic education
that are not supported by the
tool?

2 5

Do you think that there is any
relevant aspects with respect
to the process of evaluating
programming projects in basic
education that are not supported
by the CodeMaster tool?

2 5

Do you think the provided
feedback information is suf-
ficient?

6 1 Do you think the provided
feedback information is
sufficient?

7 0

Functional
correctness

Have you noticed any error
regarding the functionality of
the CodeMaster tool?

1 6 Have you noticed any error
regarding the functionality
of the CodeMaster tool?

1 6

Did you find the assigned
grade fair?

6 1

Perfor-
mance
efficiency

Time
behavior

Is the performance of the
CodeMaster tool satisfactory?

7 0 Is the performance of the
CodeMaster tool satisfac-
tory?

5 2

Usability Effectiveness Task completed 7 0 7 0

Satisfaction Average SUS score Table 7 Average SUS score Table 7

Operability Did you find the CodeMaster
tool easy to use?

7 0 Did you find the Code-
Master tool easy to use?

7 0

Do you think the CodeMaster
tool has elements that are
ambiguous or difficult to
understand?

1 6 Do you think the Code-
Master tool has elements
that are ambiguous or
difficult to understand?

2 5

