
Informatics in Education, 2005, Vol. 4, No. 2, 167–192 167
 2005Institute of Mathematics and Informatics, Vilnius

Object-Oriented Software Development Education:
a Constructivist Framework

Said HADJERROUIT
Agder University College, Faculty of Mathematics
Serviceboks 422, N-4604 Kristiansand, Norway
e-mail: said.hadjerrouit@hia.no

Received: June 2005

Abstract. The paper argues for the importance of the constructivist learning theory to software
development education. Constructivism frames learning less as the product of passive transmission
than a process of active construction whereby learners construct their own knowledge based upon
prior knowledge and experience. Now that a number of software development courses offer project-
based teaching, it seems that the importance of a constructivist perspective has been implicitly well-
taken in the current practice. What these approaches explicitly lack is a concrete methodology of
how to carry out the constructivist perspective and its consequences for learning. This paper reports
on a constructivist approach to object-oriented software development at the undergraduate level. It
explores methodological aspects of the approach and discusses the results from its evaluation.

Key words: constructivism,learning cycle, object-orientedsoftware development, online resources,
unified modeling language.

1. Introduction

To educate skilled software developers, teachers have tried to make software develop-
ment education more realistic and project-based (Saiedian, 2002). To meet this goal,
many approaches have been developed, particularly the Software Engineering Studio (Se-
bern, 2002), the Software Development Laboratory (Tomaykoet al., 2002), the Student-
Enacted Simulation Approach to Software Engineering Education (Blake, 2003), and the
Unified Process to Education and Training (Hallinget al., 2002). Now that a number of
pedagogical approaches are concerned with trying to make software development edu-
cation more realistic and project-based, it seems that the importance of a constructivist
perspective has been implicitly well-taken in the current practice. But, these approaches
do not explicitly integrate learning paradigms and associated pedagogical innovations,
such as constructivism and related approaches. As a result, they do not sufficiently take
into consideration the human aspect of the learning process – students’ thoughts, mis-
conceptions, behavior, difficulties – that is of particular importance for helping novice
students entering the field of software development. Clearly, what current approaches to
software development lack is a concrete methodology of how to carry out the construc-
tivist perspective of learning.



168 S. Hadjerrouit

The remainder of this article is organized as follows. First, the paper gives an overview
of the constructivist learning theory and how to translate it into practice. Then, the pa-
per describes a methodology of how to carry out a constructivist perspective in object-
oriented software development. The next section describes the content and structure of a
two-semester course in object-oriented software development at Agder University Col-
lege. This is followed by the description of the online learning environment of the courses.
Then, the article presents, in three sections, the results from the evaluation of the ap-
proach. Finally, some remarks on further work conclude the paper.

2. The Constructivist Learning Theory

Important to the design of a constructivist approach to software development is a ped-
agogical foundation built on solid learning theory and appropriate instructional strate-
gies. The constructivist learning theory has its roots in the movement of constructivist
epistemology and philosophy with three orientations: individual constructivism, radical
constructivism and social constructivism. Its central figures include (Bruner, 1990; Kelly,
1995; Piaget, 1969; Von Glasersfeld, 1993; Vygotsky, 1978).

2.1. Constructivist Principles

Constructivism suggests a set of principles that may be used to design constructivist
learning environments (Ben-Ari, 1998; Duffyet al., 1993; Duitet al., 2001; Gros, 2002;
Honebeinet al., 1993; Matthews, 2002; Phye, 1997; Spivey, 1997; Steffe and Gale, 1995;
Staver, 1998; Tam, 2000; Tynjaelae, 1999; Wilson, 1998; Young and Collin, 2004):

• Constructivism frames learning less as the product of passive transmission than
a process of active construction whereby learners construct their own knowledge
based upon prior knowledge and experience. Therefore, the constructivist model
calls for learner-centered instruction, because learners are assumed to learn bet-
ter when they are forced to discover things themselves rather than when they are
instructed.

• The process of constructing knowledge requires meta-cognitive and higher-order
thinking skills, such as analogical reasoning, reflection, and self-evaluation. Ana-
logical reasoning is a key skill of learning processes with a constructivist perspec-
tive: every learning process includes a search for similarities between what is al-
ready known and the new, the familiar and the unfamiliar.

• Constructivist learning requires learners to demonstrate their skills by construct-
ing their own knowledge when solving real-world problems. Rather than applying
knowledge to solve abstract problems, knowledge must be constructed in real con-
texts. Real-world problems have enormous potential for learning, because knowl-
edge construction is enhanced when the experience is authentic.

• In a constructivist setting, teachers serve primarily as guides and facilitators of
learning, not as transmitters of knowledge. Teachers must learn how to understand



Object-Oriented Software Development Education: a Constructivist Framework 169

students so that they can interpret responses better and guide communication more
effectively in order to facilitate learning.

• Constructivist learning will be appropriately implemented only if students are eval-
uated constructively. Such evaluation requires methods that are embedded in the
learning process and approaches that take into consideration the learners’ individ-
ual orientations.

• Learning emerges through interaction of learners with other people, e.g., instruc-
tors, fellow learners. Learning occurs as students construct, verify, test, and im-
prove their knowledge through discussion, dialogue, collaboration, and information
sharing. Thus, constructivism involves a communication process in which learners
are actively and reciprocally engaged in the process of knowledge construction,
creating, and sharing meaning and problem-solving situated in authentic tasks.

2.2. The Learning Cycle

There are many applications of constructivist principles in Computer Science and Soft-
ware Development Education (Ben-Ari, 1998; Ben-David Kolikan, 2001; Booth, 2001;
Fowleret al., 2001; Hadjerrouit, 1998a; Hadjerrouit, 1998b; Hadjerrouit, 1999; Mereno-
Seco and Fordaca, 1996; Pullen, 2001; Soendergaard and Gruba, 2001; Von Gorp and
Grissom, 2001). What these applications lack is a generic pedagogical framework that
may be used to bridge the gap between the constructivist principles and software de-
velopment education. Such a framework would facilitate the transfer of constructivist
insights into educational practice within different contexts.

Mayes and Fowler offer a model that may be used to bridge the gap between the rel-
evant theoretical insights of constructivism and academic disciplines. Mayes and Fowler
propose a three-stage model, or learning cycle, in which they identified three types of
learning: conceptualization, construction, and dialogue. Accordingly, learning develops
in three phases, beginning with conceptualization, progressing through construction to
dialogue. This describes learning as a cyclical dynamic feedback process (Fig. 1). Con-
ceptualization is characterized by the process of interaction between the learners’ pre-
existing framework and new knowledge. The construction phase – the intermediate phase
of learning - requires the building of new conceptualizations through the performance
of meaningful tasks. Dialogue is the final stage of learning where learners test the new

Fig. 1. Mayes and Fowler’s model of the learning cycle.



170 S. Hadjerrouit

conceptualizations during conversation with fellow learners and instructors. Dialogue
emerges through collaborative learning.

3. Constructivism and Software Development: Methodological Considerations

The starting point for applying the learning cycle to software development was to split
the learning process into three phases: a starting phase, an intermediate phase, and a final
phase of learning. The goal of the first phase (conceptualization phase) is to initiate the in-
teraction between the students’ pre-existing framework and new knowledge. The goal of
the intermediate phase (construction phase) is to teach the skills needed to build new con-
ceptualizations through the performance of meaningful software development tasks. The
final phase of the learning cycle is the dialogue phase where learners test the new concep-
tualizations during conversation with fellow learners and instructors. Dialogue emerges
through collaborative learning and project activities.

3.1. Conceptualization Phase: Interaction between the Learners’ Pre-existing
Framework and New Knowledge

The conceptualization phase refers to the learner’s “initial contact with other people con-
cepts. This involves an interaction between the learner’s pre-existing framework of un-
derstanding and a new exposition” (Mayes and Fowler, 1999, p. 6). This phase requires
being clear about the prior knowledge and skills of the students before entering the field
of object-oriented software development, because subsequent learning depends on. This
observation agrees with constructivism which asserts that students’ prior knowledge must
be taken into consideration by the construction of new knowledge, because understand-
ing a student’s behavior requires an understanding of the student’s prior knowledge. The
prerequisite skills that were required before entering the field of object-oriented software
development were sufficient experience with object-oriented programming with Java and
database development with the JDBC, MySQL, and Java Servlets.

3.2. Construction Phase: Performance of Meaningful Tasks and Acquisition of Software
Development Skills

The construction phase “refers to the process of building and combining concepts through
their use in the performance of meaningful tasks. Traditionally these were tasks like labo-
ratory work, writing, preparing presentations. The results of such process are product like
essays, notes, handouts, laboratory reports and so on” (Mayes and Fowler, 1999, p. 6).
In the field of object-oriented software development, the construction phase requires the
building of object-oriented concepts through their use in the performance of software de-
velopment tasks. These are normally requirements analysis, design, coding, testing, and
reuse of components. Through the performance of these tasks, students acquire specific
skills needed by software developers to perform their work during the software lifecycle
(Seffah and Grogono, 2002; Tegarden and Sheetz, 1999). The focus of the construction
phase is therefore the acquisition of specific skills:



Object-Oriented Software Development Education: a Constructivist Framework 171

• analysis skills, such as understanding, describing, refining, and representing the
problem domain using object-oriented concepts, including user requirements, use
cases; and simulation of scenarios;

• design skills, such as architectural, package, component, and deployment design;
cohesion and coupling issues, including collaboration design and elaboration of
use cases;

• coding and testing skills, such as program coding, testing, evaluating, and debug-
ging of the evolving code solution, and consistency checking;

• reuse skills, such as modifying, adapting, customizing, and reusing existing ob-
jects, including the reuse of solution ideas, such as analysis, design, and program
code solutions.

• critical thinking skills, such as evaluating, explaining, and justifying software de-
velopment solutions.

3.3. Dialogue Phase: Project Work, Reuse of Previous Experiences, and Collaborative
Learning

The third step refers to “the testing and tuning of conceptualizations through use in ap-
plied contexts” (Mayes and Fowler, 1999, p. 6). These conceptualizations are tested and
further developed during conversations and dialogue with both fellow students and in-
structors and in the reflection on these. Such conversations may benefit from resources
that were used by previous learners. This involves recording real-world experiences of
previous learners in similar situations and making these accessible for new learners. In
addition, the constructivist paradigm recommends to focus on realistic, intrinsically mo-
tivating problems that are situated in some real-world tasks. In this regard, project work
is particularly suited to get students actively involved in the testing of conceptualizations
(Blake, 2003; Sebern, 2002; Tomaykoet al., 2002).

Through project activities, students acquire two types of generic skills. First, writ-
ing and reading skills, such as writing and formatting project documentation and reading
texts and documents. Second, collaborative skills, such as interacting with other learners
and working in teams. Each member of a team must be assigned a role with team re-
sponsibilities that contribute to the final project solution. Generic skills are essential for
software developers in a work situation (Seffah and Grogono, 2002).

4. The Learning Cycle and Software Development Education

Normally, software development is taught during the fifth and the sixth semester of the
Bachelor Study Program in Computer Science at the Faculty of Mathematics (Hadjer-
rouit, 2003a; Hadjerrouit, 2003b). However, because of curriculum changes due to the
implementation of the Quality Reform in Norway in 2003, software development was
not taught in 2004.

The subject matter was re-designed for the first time in the fall semester of 2002
according to Mayes and Fowler’s learning cycle. To apply the learning cycle, the subject



172 S. Hadjerrouit

Fig. 2. Mayes and Fowler’s model applied to software development education.

matter was split into two closely related courses: Software Development I and Software
Development II.

The goals of Software Development I are twofold. First, to initiate the interaction be-
tween the learners’ pre-existing knowledge (object-oriented programming skills, database
development) and the new knowledge to be learned, that is object-oriented software de-
velopment with UML (conceptualization phase). Second, to teach specific skills (analy-
sis, design, analogical thinking, critical thinking, etc.) needed to construct software ap-
plications (construction phase).

The goals of Software Development II are threefold. First, to apply the concepts and
skills acquired in Software development I. Second, to help students acquire generic skills,
that is reading, writing, and collaboration skills, needed to perform project activities. Fi-
nally, to gain practical experience through involvement in real-world projects. Software
Development II is thus concerned with the realization of the dialogue phase of the learn-
ing cycle (Fig. 2).

From a constructivist point of view, the cornerstone of the learning process is the
Unified Modeling Language (UML). UML differs from other modeling languages such
as Data Flow Diagrams. It enables to use a common set of terms and concepts through-
out the whole modeling process and, therefore, makes the modeling process easier, for
at least three reasons (Maciazeck, 2001). First, students are supposed to possess suffi-
cient prerequisite knowledge in object-oriented programming. Thus, it may be easier for
them to move from object-oriented programming to object-oriented modeling with UML.
Second, UML facilitates the reuse of objects and analogical thinking, because of the sim-
ilarities of objects and their collaborations. Finally, UML is favored in industry, and this
is a major motivation for students for pragmatic considerations.

4.1. Software Development I

Software Development I was given in the form of four hours of lectures and four hours
of laboratory work per week during a 14-week semester (Hadjerrouit, 2003a).

To realize the conceptualization and the construction phases of the learning cycle, the
course content was divided into seven blocks (Table 1). The main focus of block 1 is
to introduce object-oriented concepts and the basic principles of object-oriented software



Object-Oriented Software Development Education: a Constructivist Framework 173

Table 1

Software development I: weekly schedule

Timeframe Block Focus

Week 1 Block 1 Object-oriented concepts.

Week 2 Principles of object-oriented software development. Software process models.

Week 3 Block 2 Basic principles and diagrams of the Unified Modeling Language (UML).

Week 4 Block 3 Requirements determination and specification.

Week 5 Class and use case modeling.

Week 6 Interaction and state chart modeling.

Week 7 Block 4 Software design. Reuse of components

Week 8 Package, component and deployment design.

Week 9 Collaboration design.

Week 10 Block 5 User interface design.

Week 11 Database design.

Week 12 Block 6 Program and test design. Verification and validation techniques.

Week 13 Block 7 Repetition. Solutions of lab assignments and past exams.

Week 14 Repetition. Solutions of lab assignments and past exams.

development. Block 2 explains the basic concepts and diagrams of UML. Block 3 focuses
on analysis modeling with UML. Block 4 covers design modeling with UML. Block 5
focuses on user interface design and database design. Block 6 presents program and test
design, verification and validation methods and techniques. Finally, block 7 is devoted to
repetition of the material covered during the semester, and to solutions of lab assignments
and past exams. Block 1 and 2 are concerned with the conceptualization phase and block
3, 4, 5 and 6 are concerned with the construction phase of the learning cycle.

Laboratory work consists of doing lab assignments in groups of two to four students.
There are six assignments each semester. In order to guarantee that every participating
student acquires a minimum of object-oriented software development skills, only students
who submitted well-designed solutions to the lab assignments were allowed to continue
with Software Development II.

4.2. Software Development II

The intention of Software Development II is concerned with applying the concepts and
the skills that the students acquired in Software Development I for the performance of
project activities (Hadjerrouit, 2003b). Accordingly, the major goal was to work in teams
and to go through the whole software life cycle from requirements analysis to delivery of
a useful and well-documented piece of software.

The dialogue model which had been suggested according to the learning cycle, was
one in which students were recommended to work in small groups of two to four people,



174 S. Hadjerrouit

Table 2

Software Development II: Project phases, duration, focus and deliverables

Project Phase Duration Focus and Deliverables

Analysis modeling 4 weeks Project milestones. Requirements elicitation, class diagrams and use
case modeling. Delivery of analysis report.

Design modeling 4 weeks Architecture, component, and deployment design. User Interface de-
sign. Prototyping. Improvement of the analysis document. Delivery of
design report.

Coding and testing 2 weeks Start coding and testing. Improvement of design document.

Final report 2 weeks Complete project report. Finish coding and testing. Delivery of project
documentation.

Oral presentation 2 weeks Open presentation to fellow students, instructor, and stakeholders. Dis-
cussions.

cooperatively developing a software system. The organization of the projects in small
groups allowed the supervision to be achieved through regular group meetings in dialogue
with the instructor.

To create an atmosphere of reality according to the constructivist learning theory, stu-
dents were encouraged to specify their own projects in collaboration with an external
organization. This approach would allow students to develop applications that are mar-
ketable and important for their professional career.

To benefit from resources of previous versions of the course, students were recom-
mended to reuse the learning experiences of previous students. This requires the acqui-
sition of analogical reasoning, such as searching for similarities and differences between
their own project work and past project solutions that might be modified, extended, and
reused to meet the requirements of their own projects.

Software Development II was given in the form of eight hours project work, in small
groups, per week. During a 14-week semester, team students were required to submit
three written reports covering the analysis, design, and implementation phases, including
a final report covering the entire project. Working in small teams, students were given
four weeks to complete analysis modeling, four weeks for design modeling, two weeks
for coding and testing, and two weeks for delivering the entire project report. The last
two weeks were devoted to oral presentation and discussion of the projects (Table 2).

5. Online Learning Environment

The online learning environment of the software development courses was redesigned in
2002 and improved in 2003 to promote the learning cycle in three phases: conceptualiza-
tion, construction, and dialogue.

Mayes and Fowler (1999) describe a framework which they can use to distinguish
three types of courseware and their mapping to the three-stage of learning. Primary



Object-Oriented Software Development Education: a Constructivist Framework 175

courseware is intended mainly to present the subject matter. Secondary courseware de-
scribes the environment and a set of tools by which the learners perform learning tasks.
Tertiary courseware is material which was used by previous learners and that may be
reused by new learners to solve their own problems and the testing of the solutions in
dialogue with instructors and fellow students. According to Roberts (Roberts, 2003), this
model has been adapted to categorize three uses of the Web (Fig. 3):

• First, to support the conceptualization phase, the Web was designed as a source
for subject information to get either a greater understanding of software develop-
ment concepts or to obtain further information about them (Hadjerrouit, 2003a).
The most important criteria that have to be considered when designing Web-based
resources for conceptualization are a well-structured presentation of the subject
matter and easy accessibility of the information available on the Web.

• Second, to support the construction phase, the Web was designed to help students
benefit from well-structured examples of analysis and design modeling that the
students may follow when they model their own problems, as well as well-designed

Fig. 3. The learning cycle and associated online resources in software development.



176 S. Hadjerrouit

object-oriented software applications and reusable Java and MySQL code that may
be modified and reused with slight modifications (Hadjerrouit, 2003c).

• Finally, the Web was designed to support the dialogue phase of the learning cycle,
enabling students to test their project solutions through email and Web-enabled
discussions with the instructor and fellow students. In this case, the Web was used
as a medium for dialogue to support collaborative learning. The testing may also
benefit from previous students’ learning experiences and project work from past
versions of the course. Usually, these contain project documentation, reusable pro-
gram code, well-designed analysis and design solutions that may be modified and
reused to meet the requirements of the new projects (Hadjerrouit, 2003b).

6. Formative vs. Summative Evaluation

The concern of constructivist assessment “is not the mastery of a test but rather the ability
to function successfully in the environment. This includes the ability to notice when par-
ticular skills and information are called for, to be able to recall or find that information,
and to be able to apply those skills and that knowledge to solve a real world problem.”
(Honebeinet al., 1993, p. 90). As a result, constructivists advocate evaluations that focus
on the authentic use of information and skills to solve real-worlds problems. Such evalua-
tions require methods that are integrated into the learning process, so that, as learners are
acquiring knowledge in authentic tasks, instructors can evaluate what the learner is learn-
ing. Hence, constructivist learning will be appropriately implemented only if students are
evaluated constructively. To assess students’ learning according to constructivism, it is
thus important to collect data related to the three-stage model of the learning cycle: con-
ceptualization, construction, and dialogue. Accordingly, the following issues should be
evaluated:

1. The process of interaction between students’ pre-existing knowledge and the level
of difficulty, scope, and depth of the subject matter (1. phase of the learning cycle).

2. The degree of support provided by the construction phase to acquire software de-
velopment skills (2. phase of the learning cycle).

3. The extent to which the dialogue phase supports collaborative learning among stu-
dents and instructor (3. phase of the learning cycle).

Assessment of performance by means of oral/written exams may be considered as
summative evaluation methods. Summative assessment is the attempt to summarize stu-
dent learning at some point in time, say the end of a course. Most standardized tests are
summative. In constructivist learning environments where the emphasis is the acquisition
of critical skills, summative assessments like oral/written exams have advantages when
it comes to assess factual recall and memorization, but they are not completely consis-
tent with the learning cycle that takes place in those environments. Obviously, summative
assessment does not automatically encourage students to think constructively when used
in written/oral exams, because it is quite possible to pass an exam or test without us-
ing constructivist problem-solving techniques (Taxen, 2004; Lambert and Lines, 2000).
Therefore, they should not be the only form of assessment.



Object-Oriented Software Development Education: a Constructivist Framework 177

By contrast, formative assessment occurs when teachers feed information back to
students in ways that enable the student to learn better, or when students can engage
in a similar, self- reflective process. Formative assessment is asking questions in order
to determine the learners’ current understanding, so that they can make adjustments if
necessary (Beverly and Bronwen, 2002). It is based on the principle that the evaluation
of learning should not be separated from the learning process. Hence, assessment should
be embedded in the learning process and spread out over the duration of the course.

Assessment by means of project work may be considered as formative assessment, be-
cause the evaluation of project work is embedded in the learning process and is grounded
in authentic tasks that are spread over the duration of the course. In addition, the emphasis
of project-based work is on the acquisition of software development skills. This is in line
with constructivism.

In addition, formative assessment may include issues of qualitative character to as-
sess a greater portion of the learning cycle, such as motivational aspects, effort and time
required to perform project activities, students’ learning difficulties, teamwork and col-
laborative learning, students’ perceptions, meanings and beliefs, etc. Many of these issues
may be difficult to evaluate with standard assessment methods alone. Evaluation methods,
such as semi-structured interviews and dialogue with the students, teacher’s observations
in the classroom, and students’ comments and feedback are more appropriate to evaluate
qualitative issues (Salomon and Perkins, 1998).

Thus, in an attempt to provide a consistent evaluation of the learning cycle, the author
advocates a combination of two methods:

1. Assessment of project work performance to measure the degree of implementation
of the learning cycle.

2. Qualitative evaluation of the learning cycle based on students’ feedback and com-
ments, semi-structured interviews, and teacher’s observations.

7. Evaluation of the Learning Cycle through Project Performance Assessment

In line with constructivism, assessment of project work differs from conventional tests.
First, unlike conventional measures that tend to evaluate student’s possession of knowl-
edge as well as factual recall and memorization of facts, project work assessment evalu-
ates students’ ability to apply software development knowledge and skills to solve real-
word problems. Hence, the evaluation of project work was based on the constructivist idea
that it is not possible to separate the evaluation of learning from the learning process. Ac-
cordingly, assessment of students’ project work must be embedded in the learning process
and spread out over the duration of the course. To assess their learning, students were re-
quired to submit three written reports covering the analysis, design, and implementation
phases, and a final report covering the entire project. The instructor, then, monitored stu-
dents’ project work by examining reports, replying to e-mail, providing oral and written
feedback as necessary in order to help students revise and improve their project work,
and ensure that they meet the course objectives. Monitoring project work and providing



178 S. Hadjerrouit

feedback is an iterative process that occurs throughout the entire learning process. Fi-

nally, students had to present the project work orally to the whole class. The evaluation

consisted of assessing:

a) the understanding of key software development concepts (1. phase of the learning

cycle);

b) project work performance and the quality of the submitted project reports (2. phase

of the learning cycle);

c) the presentation of project results to the whole classroom (3. phase of the learning

cycle);

d) the active participation, collaboration, and contribution of students to group work

(3. phase of the learning cycle).

Grades were based on a six-point scale from A to F, where F was coded as the lowest

and A as the highest. Score E was required in order to pass the subject matter. Before

2003, grades were based on a six-point scale from 1 to 6, where 6 was coded as the

lowest and 1 as the highest. Score 4 was required in order to pass the subject matter. This

scale does not affect the interpretation of the evaluation results.

Based on students’ performances, it appears that project work was an effective method

for developing students’ software development skills and project work activities. The

scores exhibited by 3 student teams in 2003 were: 2 teams received an “A” and 1 received

a “B”. In 2002, 1 team received an “A” (1.3 in a six-point scale) and 2 teams a “B” (1.8

and 2.1 in a six-point scale).

These grades indicate that the overall performance of the students in 2003 and 2002

was clearly higher compared to the previous versions of the course in 2001, 2000 and

1999. All the students who completed the course indicated that the use of project work

assessment to determine their grades was appropriate, especially considering that they

were given the opportunity to submit and revise their work many times throughout the

semester.

A possible interpretation of the positive results is that project work encourages stu-

dents to think constructively in order to successfully perform project activities, because

the emphasis is not on factual recall and memorization of facts or the mastery of a test, but

on activities that are embedded in the learning process. The positive grades could be, to

some degree, attributed to the fact, that the students received a greater amount of guidance

in project work during the whole semester. Thus, it may very well be that students felt

that constructivist-oriented learning activities are appropriate to achieve deeper learning.

Thus, it seems that project work has many advantages to assess quantitative aspects of the

learning cycle, but it is not entirely sufficient to evaluate qualitative aspects of construc-

tivist learning, such as students’ thoughts, misconceptions, behavior, difficulties, that are

of particular importance for novice students entering the field of software development.

Therefore, it should not be the only form of assessment (Salomon and Perkins, 1998).



Object-Oriented Software Development Education: a Constructivist Framework 179

8. Qualitative Assessment through Students’ Feedback and Teacher’s
Observations

Considering that project work assessments alone are not sufficient to give a reliable pic-
ture of the learning cycle, the evaluation was extended to include issues of qualitative
character of the learning process. Thus, the concern of the qualitative evaluation was to
assess a greater portion of the learning cycle. The evaluation was based on experiences
from the academic year of 2002/2003. The participants were 8 students from the aca-
demic year of 2002/2003.

8.1. Data Collection and Analysis Methods

With an emphasis on understanding the students’ meanings, experiences, thoughts, per-
ceptions and beliefs about teaching and learning software development, data collection
methods that are consistent with constructivist principles and the learning cycle were re-
quired. Given this consideration, particular attention was devoted to the following data
collection strategies:

a) defining the subjects of inquiry and associated issues that fit the learning cycle;
b) semi-structured interviews and formal and informal dialogue with the students;
c) teacher’s observations in the classroom over a three-month time period (scheduled

time);
d) comparing the data that was collected in the academic years of 2000/2001 and

2001/2002 with data collected in the academic year of 2002/2003;
e) when possible, finding evidence in the research literature that supports or contra-

dicts the data collected.

The method used for data analysis consisted of finding diverse pieces of evidence from
four different perspectives: teacher’s perspective, students’ perspective, the perspective of
the research literature, and the perspective of the data collected before the evaluation was
performed. To ensure the rigor and validity of analysis, data sources were triangulated
through overlapping of diverse pieces of evidence and perspectives (Teacher Education
Research, 2005), and an active search for conforming and disconfirming evidence was
made through new dialogue and conversations with the students. These conversations
consistently resulted in deeper understanding of the students’ experiences.

To facilitate the analysis of the data collected, the subjects of inquiry and associated
questions of the semi-structured interviews and dialogue with the students were closely
aligned with the teacher’s observation criteria. To define the subject of inquiry according
to the learning cycle, data collection was divided into three categories:

1. Category one was related to the first phase of the learning cycle, and included the
following subjects of inquiry: Prerequisite knowledge, course objectives, content
understanding, and knowledge level.

2. Category two was related to the second phase of the learning cycle, and included
the following subjects of inquiry: Analysis and design modeling, reuse of compo-
nents and analogical reasoning, coding and testing, and critical thinking.



180 S. Hadjerrouit

3. Category three was related to the third phase of the learning cycle, and included
the following subjects of inquiry: Reading and writing, dialogue with instructor,
teamwork and collaboration, and motivation.

Each of these categories was associated with 4 types of issues (Table 3, 4, and 5).
Category 1 addressed issues 1–4. Category 2 was concerned with issues 5–8, and category
3 with issues 9–12.

8.2. Evaluation of the First Phase of the Learning Cycle

The evaluation of the first phase of the learning cycle was concerned with the students’
initial contact with the concepts of the subject matter. This phase requires being clear
about the prior knowledge and skills of the learners before entering the field of object-

Table 3

First phase of the learning cycle: subjects of inquiry and associated issues

Subjects of inquiry for the
conceptualization phase

of the learning cycle
Associated Issues

1. Prerequisite knowledge 1. Do you agree that the course framework takes into consideration the
students’ prerequisite knowledge and experience?

2. Course objectives 2. Do you think that the intended learning objectives of the course are
achieved?

3. Content understanding 3. Do you believe that the course framework helped you understand the
knowledge, concepts, and methods of the subject matter?

4. Knowledge level 4. What do you think about the level of difficulty, scope, and depth of
the course? Is it appropriate? Difficult? Easy?

Table 4

Second phase of the learning cycle: subjects of inquiry and associated issues

Subjects of inquiry for
the construction phase

of the learning cycle
Associated Issues

5. Analysis and design
modeling

5. Do you believe that the course framework provides appropriate support
to help you perform analysis and design modeling? Yes/no. Please,
explain why.

6. Reuse and analogical
reasoning

6. Do you think that the course framework provides sufficient support to
help you acquire reuse and analogical thinking skills? Yes/no. Please,
explain why.

7. Coding and testing 7. Do you agree that the course framework provides sufficient support to
help you perform coding and testing?

8. Critical thinking 8. Do you agree that the course framework helped you develop critical
thinking skills? Yes/no. Please, explain why.



Object-Oriented Software Development Education: a Constructivist Framework 181

Table 5

Third phase of the learning cycle: subjects of inquiry and associated issues

Subjects of inquiry for
the dialogue phase
of the learning cycle

Associated Issues

9. Reading and writing
activities

9. Do you think that reading and writing skills are important to software
development education? Do you believe that the course framework suf-
ficiently supports reading and writing activities?

10. Dialogue with
instructor

10. Was the dialogue with the instructor effective in terms of facilitating
your learning? Did it help you reflect on the strengths and limits of you
own knowledge of software development?

11. Teamwork and
collaboration

11. Do you agree that the course framework provides appropriate support
for teamwork and collaboration among students and other people?

12. Motivation 12. Did the course framework and content (project activities, real-world
tasks) support your motivation and engagement in the subject matter?
Yes/no. Please, explain why.

oriented software development, because subsequent learning depends on. The subjects
of inquiry of the first phase of the learning cycle were: Prerequisite knowledge, course
objectives, content understanding, and knowledge level. These subjects were related to
Software Development I.

Analysis of the responses to issues 1, 2, 3, and 4 show that students were globally
positive about these issues.

First, most students’ believed that the course framework takes into consideration the
students’ background knowledge, because the construction of object-oriented software
development build upon the object-oriented programming language Java and database
development with the JDBC, MySQL, and Java Servlets.

Second, the majority of the students felt that the intended learning objectives of Soft-
ware Development I are achieved, namely to initiate the interaction between the students’
pre-existing knowledge and object-oriented software development with UML, and to ac-
quire specific skills (analysis, design, analogical thinking, critical thinking, etc) needed
to construct software applications. These results show that the course framework in Soft-
ware Development I was well-designed to bridge the gap between the students’ back-
ground knowledge and the new knowledge. In correlation with this issue, the majority of
the students also found that the course framework helped them to gain knowledge and
understanding of software development concepts and skills.

Finally, over 50 % of the students agreed that the knowledge level of the course is
acceptable due to an appropriate balance between conceptual understanding of software
development and practical lab assignments.



182 S. Hadjerrouit

8.3. Evaluation of the Second Phase of the Learning Cycle

The evaluation of the second phase of the learning cycle – the construction phase – was
concerned with the acquisition of specific skills, that is analysis and design modeling,
reuse and analogical thinking, coding and testing, and critical thinking. This evaluation
was mainly related to Software Development II.

8.3.1. Analysis and Design Modeling
Basically, most students agreed that Software Development II provides sufficient support
to analysis and design modeling (issue nr. 5). But, students also reported that analysis
modeling with UML (requirements determination and specification, class and use case
modeling, interaction and state chart modeling) was a relatively difficult task, essentially
due to insufficient experience with modeling problem situations. The instructor agrees
that analysis modeling is a challenging task for many novice students entering the field
of software development as it requires a radical change from lower–order thinking skills,
characterized by the tendency to focus on programming issues, to higher-order thinking
skills required by software engineers to perform analysis modeling on the basis of pre-
vious experiences with solving problems in similar situations. This observation agrees
with students’ experiences in analysis modeling. By contrast, students found that design
modeling (package, component and deployment design, collaboration design, user inter-
face design and database design) was relatively easier compared to analysis modeling, for
essentially two reasons. First, moving from analysis modeling to design modeling does
not require a radical change of the object-oriented methodology with UML (Maciazeck,
2001; Stevens and Pooley, 2000). Second, the reuse of past project solutions helped them
to perform design modeling. Most students agreed with these observations.

8.3.2. Reuse and Analogical Reasoning
From a software development point of view, it is not necessary to develop object-oriented
software from the ground, since the reuse of objects is an essential element of object-
orientation. Similarly, the reuse philosophy of this work relies on the basic idea that
project activities are similar. Hence, solutions of past projects may be adapted and reused
to meet the requirements of new projects. Thus, in order to achieve effective reuse, stu-
dents need to acquire some experience in analogical reasoning, such as recognizing sim-
ilarities and differences between past and new projects. Analogical thinking includes a
search for similarities between what is already known and the new, the familiar and the
unfamiliar (Duitet al., 2001).

To help students acquire some experience in analogical thinking, the instructor used
Web-based applications as examples to demonstrate the use of analogies in terms of struc-
tural similarities. Analogical thinking and reuse are potentially relevant for building e-
commerce applications and instructional Web sites, since both have a number of similar
components, e.g., user interface, shopping card, product catalogue for e-commerce ap-
plications; reusable learning objects for instructional Web sites (Hadjerrouit, 2005). To
apply analogical thinking, students must be encouraged to take an active role in construct-
ing their own understanding of project solutions from previous versions of the course in
order to reuse some components of the projects.



Object-Oriented Software Development Education: a Constructivist Framework 183

However, analogical reasoning is not quite evident for novice students in software
development. It takes time and effort, even for proficient students, to learn to distinguish
between deep similarities (based on structural and architectural features of the appli-
cations) and surface similarities, such as graphical user interface appearances (colors,
layout, style). Not surprisingly, then, that most students reported that the reuse of compo-
nents during the phase of analysis modeling was quite difficult due to insufficient experi-
ence in analogical thinking (issue nr. 6).

Clearly, students must learn to carefully read reports from previous versions of the
course in order to reflect on and discover the structural characteristics of the software
solutions. These activities, in turn, may help them to effectively improve their analogical
thinking skills and the quality of the projects at the end. As a result, even if analysis
modeling remains a problem, analogical thinking provides a great potential for improving
the project quality.

8.3.3. Coding and Testing
Students generally agree that Software Development II provides support to achieve cod-
ing and testing, in form of reusable Java and MySQL code available on the Web and
from previous versions of the course (issue nr. 7). But the support provided by the course
would not be sufficient without prior knowledge from the programming language Java
and database development with the JDBC, MySQL, and Java Servlets, since the coding
and testing of object-oriented software depends on. Students agreed that prior experience
from object-oriented programming and database development was crucial for implement-
ing object-oriented software, but not without some problems. Students reported that cod-
ing and testing were quite short but nevertheless did work. This because the major part
of the code was written and tested in the last two weeks before delivery, resulting many
times in late night work. Another problem was that the testing phase was not realized as
originally planned. Often, students did not manage to stop coding at the proper time, in
order to be able to systematically test the software. As a result, the quality and complete-
ness of the test cases were rather of moderate quality for some teams, but this did not
produce major problems for the delivery of the software, because it was not required to
deliver a complete system, but just a prototype that realizes the main functionality.

8.3.4. Critical Thinking
As a result of passive listening to lectures, taking notes, assessing information from text-
books, students generally do not sufficiently know the value of critical thinking before
entering the field of software development. Since software development was being taught
for the first time in 1999, the instructor observed that students often focus, from the
very beginning, on the software product rather than on the solution process. They often
conceive a solution just as a solution that works for them, rather than a solution that is
readable for others (Mereno-Seco and Forcada, 1996; Hadjerrouit, 1999). This problem
is particularly visible in the phase of analysis modeling.

Not surprisingly, then, most students do not sufficiently know what it means to ac-
quire critical thinking skills when asked whether the course framework helped them de-
velop critical thinking skills. Their responses reflect their beliefs about learning, which



184 S. Hadjerrouit

are clearly mediated and impacted by a passive transmission view of knowledge acquisi-
tion (issue nr. 8).

To dislodge this misconception, students need to learn to reflect on their own solu-
tions. It is however quite difficult to teach critical thinking skills within a one-semester
course, because of the high workload of the projects and the short time frame.

Fortunately, the reading of well-structured reports and software solutions from pre-
vious versions of the course and the reflection on these helped some students, within a
relatively short time, to understand the value of critical thinking. They learned to ask
critical questions about their own work: What is a software product vs. software process?
What difficulties problems were encountered in developing software? What cause the dif-
ficulties? How will they overcome them? What general principles may be extracted from
the learning experiences? What patterns have they perceived in the problems? Clearly,
learning experiences like these often give students the necessary pieces of how to de-
velop well-structured software and documents that are readable and understandable for
others.

8.4. Evaluation of the Third Phase of the Learning Cycle

The evaluation of the third phase of the learning cycle – the dialogue phase - was con-
cerned with the quality of project work, the reading and writing of reports, teamwork and
collaboration, dialogue with the instructor, and motivational aspects.

8.4.1. Reading and Writing Activities
Students believed that the consideration of writing and reading activities is a key issue
of software development education. This is reflected in their responses when asked about
the value of reading and writing documentation (issue nr. 9). They think that these skills
would help them understand and reflect on the writings of other people and to write
documents that are understandable for others (Tynjaelae, 1999). This observation sup-
ports previous research, wherein Spivey (Spivey, 1997) found that the process of reading
reports written by other students in order to write their own reports can produce rich in-
terferences and elaborations. They believed also that the ability to write and read both in
Norwegian and English is an advantage for any student and a prerequisite for a successful
professional life.

However, despite the availability of well-structured reports from previous versions of
the course, students reported that the elaboration of the analysis document, and, in less
degree, design report, took more time than expected due to the amount of work required
to write substantial analysis and design project reports. Students reported that they had
difficulties to write a stable document, and were forced to change it many times. As a
result, project work had to be adjusted several times due to some misjudgments about time
consuming, particularly in the analysis phase, which was often longer than planned. This
created some problems during the design and coding phases, which were not rigorously
planned and prepared as expected, and some deficiencies in the resulting documentation.

Nevertheless, the instructor was satisfied with the documentation delivered by the
students given the fact that they were given only three months, a very short period of time,



Object-Oriented Software Development Education: a Constructivist Framework 185

to write substantial analysis and design reports with over 450 pages. Clearly, proficiency
in reading and writing requires considerable efforts, and can, therefore, only be acquired
through active involvement and engagement with project work over a long time.

8.4.2. Dialogue and Scaffolding
Students agreed that Software Development II places a large emphasis on dialogue be-
tween the students and the instructor (issue nr. 10). They believed that dialogue enables
to express a point of view and reflect one’s own learning when solving problems with the
instructor.

In order to facilitate dialogue, the instructor also had to learn how to understand stu-
dents so that they can interpret their responses better and guide communication more
effectively (Miller and Luse, 2004; Soendergaard and Gruba, 2001). Thus, it was not
surprising for the instructor that dialogue with the students turned out to be more time
consuming and challenging than originally anticipated. Dialogue may therefore be a chal-
lenge for inexperienced instructors as constructivism requires to make a radical change
in their thinking and practice. In a constructivist setting, the instructor does not just con-
vey information or supply facts, but must act as a mentor, facilitator, guide, coach, and
mediator. Such a drastic change of attitude is difficult for any teacher, and certainly for
university faculty members who are not educational researchers.

On the other hand, scaffolding (Robert-Jan Simons, 1993; Dunlap and Grabinger,
1998), that is when the instructor guides the learners towards a solution to a software
problem, essentially allows adjusting the level of learning and helps the students (and
their teams) according to their abilities. When adjusting the help to the students, the
instructor felt that those who had initially been weaker had improved during the course,
and had achieved relatively good results.

Despite the challenges of dialogue with the students and the time and effort required
to act as a guide and facilitator of learning, scaffolding was an interesting experience from
the instructor’s perspective and a good way to experience practical problems of managing
the student’s learning. But, in the form presented here, scaffolding and dialogue can be
suggested only for rather small groups, say up to 20 students, essentially because it is
time consuming, challenging, and expensive for the university.

8.4.3. Teamwork and Collaboration
From a constructivist point of view, teamwork is one of the most important characteristics
of software development, since group work decisions, expressing the point of views of
the members, are better than individual decisions when it comes to develop god software
(Blake, 2003; Franket al., 2003; Miller and Luse, 2004). Teamwork involves a lot of
activities: working with students with different backgrounds and experiences, sharing
out project tasks, organizing project activities, collecting and distributing information,
writing up protocols of meetings, nominating a leader, and many other issues which affect
the group decision process. It is thus evident that in order to achieve effective learning in a
team, students must be trained in teamwork before performing project activities, because
a random collection of students does not necessarily make for an effective team (Frank



186 S. Hadjerrouit

et al., 2003). Unfortunately, many students were not trained in teamwork before entering
the field of software development.

Not surprisingly, then, that some students were not prepared to achieve effective col-
laboration. This is reflected in their responses to issue nr. 11. As a result, they did not
manage to solve problems between members of their team, resulting sometimes in frus-
tration and insufficient collaboration, and this affected the effectiveness of their team.
Effective collaboration may be a challenge when some students are more proficient than
other members of their team. Two students reported that they felt that teamwork – a con-
structivist activity that is supposed to help students play active role in solving problems
- is a waste of time and is in conflict with the goal at hand – deliver a successful project
work within a limited period of time. Thus, there is a danger that students see software
development education as exclusively the acquisition of performance skills and neglect
the value of teamwork.

It is the responsibility of the teacher to help students understand the value of team-
work, both from a theoretical and practical point of view. Hence, the instructor has to
intervene in order to help students overcome their problems whenever students have dif-
ficulties with teamwork. According to the teacher’s experience the last five years, most
students performed better when the teacher provided help and support. However, when
not prompted by the teacher, students tended not to solve their problems by their own.

8.4.4. Motivation, Real-World Projects, and Professional Career
A major goal of the constructivist approach to software development is to try to be as
close as possible to reality, and to involve as many people as possible in project activities
and discussions. But still, in contrast to real-world projects from the industry, there were
only three months time to deliver the software product – just enough to go through a full
life cycle of small software projects. Therefore one could not expect students to design
a complete software product. Therefore, the learning goal was to let students experience
the challenges of developing small, but well-structured and documented software. The
instructor believes that this goal has been achieved.

Furthermore, despite the limited timeframe, students were very enthusiastic about the
real-world character of the projects, which clearly created a proper context for discussion
for many students. Most students felt that this course increases their motivation to learn
and to make greater efforts in the right direction. Thus, according to the students’ ex-
periences, it is evident that the course developed their engineering skills, increased their
motivation, and made them feel that they were responsible for the learning process.

Students reported that their motivation is directly related to the marketability of the
projects, the profession of software development, and future professional career. When
asked about the relevance of marketability for their professional career, students were
very clear in their responses. They reported that software development combined with
real-world projects is highly motivating (issue nr. 12) and relevant to them as it can help
them to gain practical experience and knowledge in software development and to increase
their marketability. Thus, the motivational aspect should not be underestimated, since
marketability seems to be very important for students.



Object-Oriented Software Development Education: a Constructivist Framework 187

Clearly, motivation was one of the most important factors for project’s success (Green,
1998; Hadjerrouit, 1999; Hadjerrouit, 2001). High motivation of all participants in a team
resulted always in god working atmosphere which was very positive for the performance
of project activities. This experience is consistent with the constructivist point of view,
which asserts that real-world projects are motivating to get students actively involved
in knowledge construction and skill acquisition. Clearly, motivating the students is an
essential element of constructivist learning.

8.5. Evaluation of the Online Resources

Finally, the evaluation included students’ perceptions of the online resources based on
feedback made through email, face-to-face discussions, and informal conversations. In
contrast to the issues discussed above, the evaluation of the online resources refers to all
phases of the learning cycle. Students were asked three questions:

• How did you use the online resources?
• How much have the online resources helped you to learn software development

and perform project activities?
• How would you improve the online resources?

Students reported that they used the online resources in three different ways. First,
as information source to gain a greater understanding of software development issues.
This reflects the conceptualization phase of the learning cycle. The second use of the re-
sources concerned the reuse of previous students’ projects and their solutions to perform
new project activities. In the opinion of the students, the resources available on the Web
provided useful support for the construction and dialogue phases of the learning cycle.
From the data collected, it seems that reuse was a relevant aspect of the online resources.
The third use of the online resources involved the testing of project solutions through
dialogue, particularly by means of email discussions with the instructor.

The most common and useful use concerned mainly questions and comments about
project work. Otherwise, dialogue happened rather in face-to-face discussion. Quite few
used group discussion forum to engage in dialogue with fellow students.

Students made also suggestions for improving the resources. First, they wanted that
there should be more information and study material in the Norwegian language. In ad-
dition, they suggested improvement of the multimedia elements of the online resources
to enhance look and feel of the Web pages. They also suggested to improve the dialogue
component related to group discussion. Finally, they recommended to solve technical
problems for ensuring a trouble-free interaction with the resources, in particular during
the implementation phase, which caused some troubles.

9. Conclusions and Future Research Work

The goal of this work was to determine whether a constructivist-oriented pedagogy is
suitable for software development education. In evaluating the approach after two years
of experience, the instructor can draw the following conclusions.



188 S. Hadjerrouit

Even if it is impossible to draw any general conclusions from the evaluation of the
approach, it is clear that the majority of the students were positive about the implica-
tions of the constructivist approach. The approach appears to encourage students to think
constructively and become involved in real-world project activities. The evaluation re-
sults also show that the constructivist approach to software development was proven to
be beneficiary to many students. For instructors, constructivism holds important lessons
for how to design environments to support active learning. It gives teachers a framework
for understanding students’ needs and motivations. It helps teachers to expose students
to many aspects of the subject matter that are of crucial importance for the profession of
software development. It allows to focus on what really matters for students – the acqui-
sition of critical skills, authentic tasks, motivational aspects, teamwork and collaboration,
reading and writing skills, formative assessment, etc.

Second, the form of this model can be suggested for rather small groups around 20
students and 3–5 student teams, because one instructor would have difficulty handling
larger groups. Thus, the model needs to be studied in varied instructional settings, for
example for larger groups over 20 students and more than one teacher to confirm and
support the findings of this work. In addition, applying the constructivist learning the-
ory may be a challenge for inexperienced instructors as it takes time and considerable
effort to translate the philosophy of constructivism into practice and to make significant
pedagogical changes.

Third, if constructivism is the appropriate pedagogical philosophy for software devel-
opment, it is quite evident that assessment should not exclusively be exam-oriented, for
two reasons. When students are forced to choose between passing of an exam through
memorization of facts and solving problems constructively, most students will likely be
to choose the former alternative (Taxen, 2004). Written exams are clearly not entirely
adequate to evaluate constructivist learning, because it is difficult to measure it through
performance assessment methods alone. Thus, alternative evaluation methods are neces-
sary to assess constructivist learning. The author advocates a combination of methods
that include not only project work evaluation, but also complementary methods that are
embedded in the learning process.

Finally, several things could be done better, and some open questions remain. First,
the instructor believes that students should have more than three months to accomplish
project tasks. One suggestion is to start the projects earlier in order to give students more
time for analysis modeling, which was the most difficult task. Second, it is important
to write god documentation. The value of god documentation, however, often surfaces
during the maintenance phase, which was not included in the project time. One way to
partially solve this problem is to allow students to work with project tasks of previous
versions of the course in order to improve their quality. This would make software devel-
opment more realistic. Third, reading, writing, and oral skills must be improved, because
they enable students to reflect on the writings of other people, to write documents that
are understandable for other, and to express a point of view in the course of project work.
Third, applying a constructivist approach to learning is an iterative and evolutionary pro-
cess that progresses through a series of experimentations, evaluations, and redesigns over



Object-Oriented Software Development Education: a Constructivist Framework 189

many years. Hence, significant pedagogical changes in software development education
require considerable time and effort. This work is thus a long-term research work on
the application of the constructivist learning theory in software development education.
The constructivist model will be further developed through continuous cycles of design,
experimentations, evaluations, and research directions.

References

Ben-Ari, M. (1998). Constructivism in computer science. InProceedings of the 29th SIGCSE Technical Sym-
posium on Computer Science Education. Atlanta, Georgia. pp. 257–261.

Ben-David Kolikan, Y. (2001). Gardeners and cinema tickets: high school students’ preconceptions of concur-
rency.Computer Science Education, 11(3), 221–245.

Beverly, B.F., and C. Bronwen (2002).Formative Assessment and Science Education. Kluwer Academic, Lon-
don.

Blake, M.B. (2003). A student-enacted simulation approach to software engineering education.IEEE Transac-
tions on Education, 46(1), 124–132.

Booth, S. (2001). Learning computer science and engineering in context.Computer Science Education, 11(3),
169–188.

Bruner, J. (1990).Acts of Meaning. Harvard University Press, Cambridge, MA.
Duffy, T.M., J. Lowyck and D.H. Jonassen (1993).Designing Environments for Constructive Learning.

Springer-Verlag, New York.
Duit, R., W.-M. Roth, M. Komorek and J. Wilbers (2001). Fostering conceptual change by analogies – between

Scylla and Charybdi.Learning and Instruction, 11, 283–303.
Dunlap, J.C., and R.S. Grabinger (1998). Rich environments for active learning in the higher education class-

room. In B.G. Wilson (Ed.),Constructivist Learning Environments: Case Studies in Instructional Design.
Educational Technologies Publications, Englewood Cliffs, New Jersey.

Fowler, L., J. Armarego and M. Allen (2001). CASE-tools: constructivism and its application to learning and
usability of software development tools.Computer Science Education, 11(3), 261–272.

Frank, M., I. Lavy and D. Elata (2003). Implementing the project-based learning approach in an academic
engineering course.International Journal of Technology and Design Education, 13, 273–288.

Green, A.M. (1998). Project-based learning: moving students toward meaningful learning. In L.P. Steffe and
J. Gale (Eds.),Constructivism in Education. Lawrence Erlbaum Associates, New Jersey.

Gros, B. (2002). Knowledge construction and technology.Journal of Educational Multimedia and Hypermedia,
11(4), 323–343.

Halling, M., W. Zuser, M. Koehle and S. Biffl (2002). Teaching the unified process to undergraduate students.
In Proceedings of the 15th Conference on Software Development Education and Training, (CSEET’02).
pp. 148–159.

Hadjerrouit, S. (1998a). A constructivist perspective for software engineering education. InSoftware Develop-
ment Symposium (SEES’98). Scientific Publishers. pp. 91–96.

Hadjerrouit, S. (1998b). A constructivist approach for integrating the Java Paradigm into the Undergraduate
Curriculum. InProceedings of the 3th Annual Conference on ITiCSE’98, Dublin. pp. 105–107.

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and programming. InProceedings
of the 4th Annual Conference on ITiCSE’99, Cracow. pp. 171–174.

Hadjerrouit, S. (2001). Web-based application development: a software engineering approach.SIGCSE Bulletin,
23(2), 31–34.

Hadjerrouit, S. (2003a).Software Development I.
http://fag.hia.no/kurs/inf2450/www_docs/

Hadjerrouit, S. (2003b).Software Development II.
htttp://fag.hia.no/kurs/inf2470/www_docs/

Hadjerrouit, S. (2003c).Database Development.
http://fag.hia.no/kurs/inf2490/www_docs/

Hadjerrouit, S. (2005). Designing a pedagogical model for web engineering education: an evolutionary per-
spective.Journal of Information Technology Education, 4, 115–140.



190 S. Hadjerrouit

Honebein, P.C., T.M. Duffy and B. Fishman (1993). Constructivism and the design of learning environments:
context and authentic activities for learning. In T.M. Duffy, J. Lowyck, and D.H. Jonassen (Eds.),Designing
Environments for Constructive Learning, Springer-Verlag, New York. pp. 88–108.

Kelly, G.A. (1955).The Psychology of Personal Constructs. Norton, New York.
Lambert, D., and D. Lines (2000).Understanding Assessment: Purposes, Perceptions, Practice. Routledge

Falmer, London.
Maciazeck, L.A. (2001).Requirements Analysis and System Design: Developing Information Systems with

UML. Addison-Wesley, London.
Mereno-Seco, F., and M.L. Forcada (1996). Learning compiler design as research activity.Computer Science

Education, 7, 73–98.
Matthews, M.R. (2002). Constructivism and science education: a further appraisal.Journal of Science Educa-

tional Technology, 11(2), 121–134.
Mayes, J.T., and C.J. Fowler (1999). Learning technology and usability: a framework for understanding course-

ware.Interacting with Computers, 11(5), 485–497.
Miller, R.A., and D.W. Luse (2004). Advancing the Curricula: the identification of important communication

skills needed by IS staff during systems development.Journal of Information Technology Education, 3,
117–131.

Piaget, J. (1969).Judgment and Reasoning in the Child. Routledge & Kegan Paul, London.
Phye, G.D. (Ed.) (1997).Handbook of Academic Learning: Construction of Knowledge. Academic Press.
Pullen, M. (2001). The network workbench and constructivism: learning protocols by programming.Computer

Science Education, 11(3), 189–202.
Roberts, G. (2003). Teaching using the web: conceptions and approaches from a phenomenographic perspective.

Instructional Science, 31, 127–150.
Robert-Jan Simons, P. (1993). Constructive learning: the role of the learner. In T.M. Duffy, J. Lowyck, and

D.H. Jonassen (Eds.),Designing Environments for Constructive Learning. Springer-Verlag, New York.
pp. 291–313.

Saiedian, H. (2002). Bridging academic software engineering education and industrial needs.Computer Science
Education, 12(1–2), 5–9.

Salomon, G., and D. Perkins (1998). Individual and social aspects of learning. In P. Pearson and Iran-Nejad
(Eds.),Review of Research in Education, Vol. 23. American Educational Research Association, Washington
DC. pp. 1–24.

Sebern, M.J. (2002). The Software Development Laboratory: incorporating industrial practice in an academic
environment. InProceedings of the 15th Conference on Software Development Education and Training
(CSEET’02). pp. 118–127.

Seffah, A., and P. Grogono (2002). Learner-centered software engineering education: from resources to skills
and pedagogical patterns. InProceedings of the 15th Conference on Software Development Education and
Training. pp. 14–21.

Soendergaard, H., and P. Gruba (2001). A constructivist approach to communication skills instruction in com-
puter science.Computer Science Education, 11(3), 203–209.

Spivey, N.N. (1997).The Constructivist Metaphor: Reading, Writing, and the Making of Meaning. Academic
Press.

Steffe, L.P., and J. Gale (Eds.) (1995).Constructivism in Education. Lawrence Erlbaum Associates, New Jersey.
Stevens, P., and R. Pooley (2000).Using UML: Software Development with Objects and Components. Edison-

Wesley, London.
Staver, J.R. (1998). Constructivism: sound theory for explicating the practice and science education.Journal of

Research in Science Education, 35(5), 501–520.
Tam, M. (2000). Constructivism, instructional design, and technology: implications for transforming distance

learning.Educational Technology & Society, 3(2), 50–60.
Taxen, G. (2004). Teaching computer graphics constructively.Computer & Graphics, 393–399.
Teacher Education Research (2005).Triangulating Your Evidence.

http://gse.gmu.edu/research/tr/TRtriangulation.shtml
Tegarden, D., and S.D. Sheetz (2001). Cognitive activities in OO development.International Journal of Human-

Computer Studies, 54, 779–798.
Tomayko, J.E., S. Kuhn, O. Hazzan and B. Corson (2002). The software studio in software engineering educa-

tion. In Proceedings of the 15th Conference on Software Development Education and Training (CSEET’02).



Object-Oriented Software Development Education: a Constructivist Framework 191

pp. 236–238.
Tynjaelae, P. (1999). Towards expert knowledge? A comparison between a constructivist and a traditional learn-

ing environment in the university.International Journal of Educational Research, 31, 357–442.
Van Gorp, M.J., and D. Grissom (2001). An empirical evaluation of using constructive classroom activities to

teach introductory programming.Computer Science Education, 11(3), 247–260.
Von Glaserfeld, E. (1993).Radical Constructivism. A Way of Knowing and Learning. Routledge Falmer, Lon-

don.
Vygotsky, L.S. (1978).Mind in Society: The Development of Higher Psychological Processes. Harvard Univer-

sity Press, Cambridge M.A.
Wilson, B.G. (Ed.) (1998).Constructivist Learning Environments: Case Studies in Instructional Design. Edu-

cational Technologies Publications. Englewood Cliffs, New Jersey.
Young, R.A., and A. Collin (2004). Introduction: constructivism and social constructionism in the career field.

Vocational Behavior, 373–388.

S. Hadjerrouit received the MS and PhD degrees in software engineering and artificial
intelligence from the Technical University of Berlin (Germany), in 1985 and 1992, re-
spectively. He joined Agder University College, Kristiansand (Norway) in 1991. He is
currently an associate professor of computer science at the Faculty of Mathematics. He
has been in the teaching profession for 23 years. He has extensive experience teaching
object-oriented programming, Web design, database development, and software engineer-
ing. His research interests include computer science and software engineering education,
didactics of informatics, e-learning, Web engineering, and object-oriented software de-
velopment with the Unified Modeling Language (UML). Hadjerrouit has published over
30 papers in international journals and conference proceedings.



192 S. Hadjerrouit

Objektinis informatikos mokymas: konstruktyvistinis požiūris

Said HADJERROUIT

Straipsnyje nagriṅejama konstruktyvistiṅes mokymosi teorijos svarba mokant informatikos,
tiksliau, programiṅes ↪irangos k̄urimo darb↪u. Konstruktyvizmas mokym↪asi apibṙežia ne kaip pasy-
vaus žini↪u perdavimo rezultat↪a, – veikiau, kaip aktyv↪u konstravimo proces↪a, kurio metu besi-
mokantieji konstruoja savo pači ↪u žinias, remdamiesi anksčiau ↪igytomis žiniomis bei patirtimi.
Šiuo metu daugelio informatikos (programinės ↪irangos k̄urimo) kurs↪u metu taikomas projektinis
mokymas, tad atrodyt↪u, jog konstruktyvistiṅes perspektyvos atveriamos galimybės yra pakankamai
suprantamos ir plǎciai taikomos. Vis ḋelto, daugeliu atvej↪u pasigendama konkrečios metodologi-
jos, skirtos konstruktyvistiṅes perspektyvos taikymo bei jos↪itakos mokymuisi klausimams. Straip-
snyje supažindinama su konstruktyvistine perspektyva, taikoma objektiniam informatikos moky-
mui (object-oriented software development) dirbant su baigiamojo kurso studentais. Straipsnyje
aptariami metodologiniai miṅetos perspektyvos aspektai, atliekama jos analizė.


